
1

TASSEL 3 Genotyping by Sequencing (GBS) pipeline documentation

Authors: Jeff Glaubitz, Rob Elshire, Terry Casstevens, James Harriman, Ed Buckler

December 17, 2013

Table of Contents

Introduction ... 1
How to cite the TASSEL-GBS pipeline .. 3
TASSEL Google Group .. 3
TASSEL Source Code is Available on SourceForge .. 3
Discovery Pipeline overview ... 3
Discovery versus Production pipelines.. 5
Recommended directory (folder) structure for a GBS analysis... 5
FastqToTagCountPlugin.. 6
MergeMultipleTagCountPlugin .. 9
TagCountToFastqPlugin.. 10
Indexing with BWA .. 11
Alignment with BWA.. 12
Exporting BWA Alignments in SAM Format ... 12
Indexing with bowtie2 ... 13
Alignment with bowtie2 .. 14
SAMConverterPlugin .. 15
FastqToTBTPlugin .. 15
MergeTagsByTaxaFilesPlugin .. 17
SeqToTBTHDF5Plugin ... 18
ModifyTBTHDF5Plugin ... 20
TagsToSNPByAlignmentPlugin (the Discovery SNP Caller) .. 22
MergeDuplicateSNPsPlugin .. 27
GBSHapMapFiltersPlugin ... 28
BiParentalErrorCorrectionPlugin .. 30
MergeIdenticalTaxaPlugin .. 33
RawReadsToHapMapPlugin (the Production SNP Caller) ... 35
BinaryToTextPlugin .. 37
TextToBinaryPlugin .. 38
Appendix 1: Key file example .. 39
Appendix 2: Pedigree file example .. 43
Appendix 3: Contents of a TagsOnPhysicalMap (TOPM) file .. 47

Introduction

This document describes the GBS pipeline available in the TASSEL 3 standalone for species with a reference
genome. If your species does not have a reference genome, we suggest that you try the UNEAK pipeline, which is
available as part of the TASSEL 3 standalone. Documentation for the UNEAK pipeline is available here:
http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf

The reference genome-based GBS analysis pipeline described below is an extension to the Java program TASSEL.
On Linux, Unix, or Mac operating systems (or Windows machines with perl installed), GBS commands are run as

http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf
http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf

2

TASSEL plugins via the command line by calling a perl script (which in turn launches Java) with the following
syntax:

run_pipeline.pl -fork1 -PluginName --plugin-option(s) -endPlugin -runfork1

On a Windows machine without perl installed use run_pipeline.bat instead. Each step of the pipeline is
specified with a "-fork" command and a number, since TASSEL can run several processes at once, split and
recombine their results, and use the output of one “fork” as the input to the next.. The fork option is followed by
the name of the plugin, and any plugin-specific options. “-endPlugin” signals the end of plugin-specific options,
and “-runfork1” then runs the specified plugin. In all of our examples here for the GBS pipeline, we run only a
single fork at a time (always “-fork1”).

All of the GBS plugins will print out their available options/arguments if you call them without any:
run_pipeline.pl -fork1 -PluginName -endPlugin -runfork1

Please see http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf for general instructions on how to
install the TASSEL 3.0 Standalone Build on your computer. These GBS-specific instructions assume that you
have unzipped the standalone into the directory (folder):

/programs

and then renamed the directory:
/programs/tassel3.0_standalone

to:
/programs/tassel

If not, you will have to edit the example commands appropriately (e.g., replace “tassel” with
“tassel3.0_standalone”).

If you have more memory available on your machine than 1.5GB, then you can increase the amount of memory
available to TASSEL by opening run_pipeline.pl (or run_pipeline.bat if running on Windows) in a
text editor and modifying “-Xmx1536m” to (for example) “-Xmx6g” (the -Xmx option controls the maximum
amount of memory available to the java pipeline). Note that the first step of the pipeline,
FastqToTagCountsPlugin, required at least 6G of memory in order to run (under the original default value of its -s
parameter of 200,000,000 good, barcoded reads). Therefore, in order to run the TASSEL GBS pipeline, you
need a computer with at least 8G of RAM. Because recent fastq files often contain more than 200,000,000
good, barcoded reads, we have recently raised the default value of the -s parameter to 300,000,000 -- hence you
might need more than 8G of RAM to run the pipeline using this default setting (16G should suffice).

If you are launching the pipeline via the perl script, you can also allocate memory directly in the command line,
for example:

run_pipeline.pl -Xmx6g -fork1 -PluginName --plugin-option -endPlugin
-runfork1

Many of the GBS commands produce a large amount of console output (“stdout” = “standard output”). Although
we won’t describe this output in detail here, some of it is very informative in tracing bugs or finding problems
with your input files or command syntax. You will likely find it helpful to either copy and paste it to a text log file
or, better, to redirect stdout to both the console and a log file. In Linux, this can be done by appending “ | tee
GBSlogfile20110915.txt” on the end of your pipeline command (rename the log file as you see fit).

http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf

3

How to cite the TASSEL-GBS pipeline

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. TASSEL-GBS: A high capacity
genotyping by sequencing analysis pipeline. PLoS ONE (in press) [manuscript].

TASSEL Google Group

The TASSEL Google Group (https://groups.google.com/group/tassel) provides a forum where TASSEL users in
general can pose questions to other TASSEL users or the TASSEL developers, browse the answers to previous
questions, or request new features. It also provides these functions for users of the TASSEL GBS pipeline. It is
always a good first resource if you get stuck: someone else may have already encountered the same problem.

TASSEL Source Code is Available on SourceForge

The most detailed, accurate, and up-to-date documentation of the Tassel GBS Pipeline is the code itself. So, if
you are able to understand Java, you can get the source code here:

Tassel3: http://sourceforge.net/p/tassel/svn/2538/tree/
Tassel4 & 5: http://sourceforge.net/p/tassel/code/ci/master/tree/

If you both understand Java and are brave, you might even modify/customize the code to better suit your own
purposes.

Discovery Pipeline Overview

The flow chart below shows how the steps of a possible GBS “Discovery Pipeline” analysis link together
(variations on this approach are possible). Light blue boxes represent files (or data structures) produced at each
step of the analysis, and purple boxes represent the processes (Tassel3 plugins) that produced them:

http://www.panzea.org/pdf/Glaubitz_etal_PLoS_ONE_(in_press).pdf
https://groups.google.com/group/tassel
http://sourceforge.net/p/tassel/svn/2538/tree/
http://sourceforge.net/p/tassel/code/ci/master/tree/

4

Most of the intermediate files are in a binary format. You can convert some of the file types (TagCounts,
TagsByTaxa, TagsOnPhysicalMap) to human-readable, tab-delimited text format using the BinaryToTextPlugin.
These text files will often be too large to open in a text editor or Excel. However, in Linux (or with Cygwin on a
PC) you can use the “head” and “tail” commands to extract a section from the middle of a file. For example the
command:

head -2000000 myLargeFile.txt | tail -10000 > myLargeFileMid10KLines.txt

will extract lines 1,990,001 to 2,000,000. Excel can usually open a file with 10,000 lines in it quite quickly.

Once you have genotypes, subsequent possible steps include:

• MergeDuplicateSNPsPlugin: To merge duplicate SNPs called from overlapping tags on opposite strands.

• GBSHapMapFiltersPlugin: To filter SNPs based upon (1) amount of missing data, (2) minor allele
frequency, (3) deviation of observed from expected heterozygosity (FIS = 1-HO/HE), or (4) amount of linkage
disequilbrium (LD) with nearby markers (if you are working with a population with extensive linkage
disequilibrium such as a biparental linkage mapping population). The LD filter works only for highly
homozygous samples (e.g., RILs).

• BiParentalErrorCorrectionPlugin: If the samples that you are analyzing include one or (preferably) more
biparental families, you can use this plugin to remove SNPs with high error rates (i.e., SNPs that are not
actually segregating 1:1 in one or more of the families but appear to be weakly polymorphic in those families
because of high error rates) and SNPs that are not in LD with their neighboring SNPs (in families where they
are actually segregating). The error detection part of this plugin works only for families with expected
segregation ratios of 1:1 (e.g., F2 or RILs derived from F2). The LD filter part works only for highly
homozygous families (e.g., RILs).

• MergeIdenticalTaxaPlugin: To merge the genotypes of taxa with identical short names (up to the first
colon of their full name) but run on different lanes or in the same lane but with different barcodes.

• FastImputationBitFixedWindowPlugin: If a large proportion of your samples (“taxa”) are inbred lines or
have very low heterozygosity, you can use this plugin to impute missing data. This plugin will not be
documented here. Imputation is a tricky problem that is the subject of a lot of ongoing research. We
recommend that you use the FastImputationBitFixedWindowPlugin only if you are able to read the Java
code and understand the underlying assumptions.

If you are working with very large numbers of samples (taxa) in your discovery build (e.g., >10,000 samples), and
the master TagsByTaxa (TBT) file produced by the MergeTagsByTaxa file is too large, you can use the alternate
route in the flowchart below (top of next page) to produce a master TBT file in HDF5 format. The only
differences in the flowchart below (compared to the one above) is that the SeqToTBTHDF5 and
ModifyTBTHDF5 plugins are used in place of the FastqToTBT and MergeTagsByTaxaFiles plugins.

The only drawback with using a TBT HDF5 (instead of a TBTByte) is that it is currently not possible to convert a
TBT HDF5 to text via the BinaryToTextPlugin. However, you can use the program HDF5View (available from
http://www.hdfgroup.org/hdf-java-html/hdfview/) to manually inspect a TBT HDF5 file.

http://www.hdfgroup.org/hdf-java-html/hdfview/

5

Discovery versus Production Pipelines

The above flow charts and subsequent steps describe a typical Discovery Pipeline. “Discovery Builds” are
typically done at the species level with all available GBS sequence data for that species, from multiple lanes.
Filtering for good GBS SNPs is usually best done at the species level.

Once you have run a large-scale, species-wide Discovery Pipeline, it is possible to use the knowledge of useful
variants that you gained from that (stored in the TagsOnPhysicalMap file by using the -mUpd flag during SNP
calling) to quickly call known SNPs in newly sequenced samples, without re-analyzing all of the samples
sequenced to date. We refer to this as the Production Pipeline, which is carried out by the single step
RawReadsToHapMapPlugin. The RawReadsToHapMapPlugin (Production Pipeline) can be used to match GBS
tags found in a single lane of sequence data to those already present in the TagsOnPhysicalMap (TOPM) file
created and populated with variants during the most recent Discovery Build. It calls SNPs based on the known
useful variants stored in the TOPM, producing a HapMap format genotype file just for that single lane of
sequence data. More details are provided in the documentation for the RawReadsToHapMapPlugin, below.

Recommended directory (folder) structure for a GBS analysis

A dot (.) represents the working directory (folder) for your analysis, which will be your current working directory
(e.g., /home/myUserName/myGBSstudyName)

The example commands below for each plugin don’t create the directories (and will fail if the directories don’t
already exist), so at the start of the analysis, create the following directories inside your working directory:

./fastq OR ./qseq (original raw data files, one file per flowcell lane)

6

./tagCounts (for output from FastqToTagCountPlugin)

./mergedTagCounts (for output from MergeMultipleTagCountPlugin)

./topm (for output from SAMConverterPlugin)

./tbt (for output from FastqToTBTPlugin)

./mergedTBT (for output from MergeTagsByTaxaFilesPlugin)

./hapmap

./hapmap/raw (for output from TagsToSNPByAlignmentPlugin)

./hapmap/mergedSNPs (for output from MergeDuplicateSNPsPlugin)

./hapmap/filt (for output from GBSHapMapFiltersPlugin)

./hapmap/bpec (for output from BiParentalErrorCorrectionPlugin)

FastqToTagCountPlugin

Summary:
Derives a tagCount list for each FASTQ file in the input directory (and all subdirectories thereof). Keeps only
good reads having a barcode and a cut site and no N's in the useful part of the sequence. Trims off the barcodes
and truncates sequences that (1) have a second cut site, or (2) read into the common adapter.

Input:
• Barcode key file (see example in Appendix 1)
• Directory (folder) containing FASTQ files

Output:
• Directory (folder) containing a corresponding tagCount (.cnt) file for every FASTQ file in the input directory

Arguments:
FastqToTagCountPlugin
-i Input directory containing FASTQ text (_fastq.txt) or gzipped FASTQ (_fastq.gz)

text files. NOTE: Directory will be searched recursively, and should be written
without a slash after its name.

-k Key file listing barcodes for each sample and plate layout. See Appendix 1.
-e Enzyme used to create the GBS library (ApeKI, PstI or several others).
-s Maximum number of good, barcoded reads per lane. Default: 300,000,000.
-c Minimum number of times a tag must be present to be output. Default: 1
-o Output directory to contain ouput .cnt (tag count) files, one per input FASTQ file.

Defaults to input directory (the default is not recommended - it is best to use a
separate directory).

Example command:
/programs/tassel/run_pipeline.pl -fork1 -FastqToTagCountPlugin -i fastq -k
myGBSProject_key.txt -e ApeKI -o tagCounts -endPlugin -runfork1

Gory Details:
This is the initial step of a GBS “Discovery Pipeline” analysis. It reads a user-supplied key file (-k option) in
tab-delimited text format which indicates, for each lane of interest from a flowcell, which barcodes are assigned to
which sample. An example key file is provided in Appendix 1. Note that you can combine lanes from multiple
flowcells into a single key file and GBS analysis. In fact, to take full advantage of the features of our pipeline, we
encourage you to lump all samples using the same restriction enzyme from multiple lanes/flowcells together into
a single, species-level analysis.

7

After reading the key file the FastqToTagCountsPlugin then recursively searches the specified input directory (-i
option) and all of its subdirectories for FASTQ files matching one of the flowcell/lane combinations in the key
file and with one of the following acceptable file naming conventions:

FLOWCELL_LANE_fastq.txt (example: 42A87AAXX_2_fastq.txt)
FLOWCELL_LANE_fastq.txt.gz (example: 42A87AAXX_2_fastq.txt.gz)
FLOWCELL_LANE_sequence.txt (example: 42A87AAXX_2_sequence.txt)
FLOWCELL_LANE_sequence.txt.gz (example: 42A87AAXX_2_sequence.txt.gz)
FLOWCELL_s_LANE_fastq.txt (example: 42A87AAXX_s_2_fastq.txt)
FLOWCELL_s_LANE_fastq.txt.gz (example: 42A87AAXX_s_2_fastq.txt.gz)
code_FLOWCELL_s_LANE_fastq.txt (example: 10225395_42A87AAXX_s_2_fastq.txt)
code_FLOWCELL_s_LANE_fastq.txt.gz (example: 10225395_42A87AAXX_s_2_fastq.txt.gz)

Note that both compressed (.gz) and uncompressed (.txt) files can be read - we recommend using compressed files
to save disk storage space. The “code” part of the latter two file name examples is a numerical tracking code that
our sequencing center used to generate. Our GBS pipeline doesn’t actually use this numerical code, so you can
substitute any text or numbers. The same thing goes for the “_s_” part: you can substitute any text or numbers
(but not underscores) for the “s”. The underscores are essential for correct parsing of the parts of each FASTQ
file name (only FLOWCELL and LANE are actually used by our pipeline).

For each FASTQ file that has samples in the key file with a matching flowcell and lane, the
FastqToTagCountPlugin finds all reads that begin with one of the expected barcodes immediately followed by the
expected cut site remnant (CAGC or CTGC for ApeKI) and trims them to 64 bases (including the cut site remnant
but after removing the barcode). Reads containing N within the first 64 bases after the barcode are rejected. If a
read contains either a full cut site (from incomplete digestion or chimera formation) or the beginning of the
common adapter (from restriction fragments less than 64bp) within the first 64 bases it is truncated appropriately
and padded to 64 bases with polyA (where “polyA” = “AAAA…”). The actual length of all reads (64 bases or
less, if truncated) is recorded. Once all of the reads in an input FASTQ file have been loaded into memory (or
when the maximum number of good, barcoded reads specified by the -s option have been read from the file), the
plugin then sorts all of the reads and collapses identical reads (over the first 64 bases after the barcode) into a
single tag. It then writes out this list of tags into an output tagCount file.

Hence, the output of FastqToTagCountPlugin is a single tagCount file in the specified output directory (-o
option) for every matching FASTQ file in the input directory. The tagCount files are named after their
corresponding FASTQ file, with “_fastq.txt.gz” (or “_fastq.txt”, etc.) replaced by “.cnt”. The tagCount files are
binary, and can only be read by our pipeline (you can use the BinaryToTextPlugin to convert them into human
readable text if you wish). They contain the 64 base sequence of each observed tag (padded with polyA if
truncated), the actual length of the tag (either 64 bases or less if it is padded with polyA), and the number of times
that tag was observed in the corresponding FASTQ file. The tags are sorted by their sequence.

In the future (in Tassel4, eventually) we will modify the pipeline to allow the user to retain tags of any desired
(but fixed) length, not just 64 bases. But until we make the changes required for that, keep in mind that the
sequencing error rate tends to rise dramatically after 64 bases, so the extra sequence may not be worth the bother.
For most purposes, 64 base tags should suffice.

The restriction enzyme used to create the GBS library is indicated via mandatory option -e. Currently, our
pipeline only accepts the enzymes (or pairs of enzymes) in the table below combined with the indicated common
adapter sequence. Also provided in the table are the initial cut site remnant(s) expected to occur in each read
immediately after the barcode, and the full cut sites that are diagnostic of either incomplete restriction digestion or
chimera formation. Reads that contain either a full cut site or the beginning of the common adapter sequence are
truncated appropriately. The first few bases of the common adapter (not shown in the table) are defined by the
restriction enzyme “sticky end”. The “Y-adapter” employed by Poland et al. (2012) as the common (non-
barcoded) adapter ensures unidirectional cloning of doubly digested restriction fragments. Pairs of restriction
enzymes are specified in the -e option separated by a hyphen (for example “-e PstI-MspI”).

8

Enzyme or
Enzyme Pair

Initial Cut Site
Remnant(s)

Full Cut Site(s) Common Adapter

ApeKI CAGC or CTGC GCAGC or GCTGC Elshire et al. 2011
ApoI AATTC or AATTT AAATTT, AAATTC, GAATTC or GAATTT Elshire et al. 2011
BamHI GATCC GGATTC Elshire et al. 2011
EcoT22I TGCAT ATGCAT Elshire et al. 2011
HinP1I CGC GCGC Elshire et al. 2011
HpaII CGG CCGG Elshire et al. 2011
MseI TAA TTAA Elshire et al. 2011
MspI CCG CCGG Elshire et al. 2011
NdeI TATG CATATG Elshire et al. 2011
PasI CAGGG or CTGGG CCCAGGG or CCCTGGG Elshire et al. 2011
PstI TGCAG CTGCAG Elshire et al. 2011
Sau3AI GATC GATC Elshire et al. 2011
SbfI TGCAGG CCTGCAGG Elshire et al. 2011
AsiSI-MspI ATCGC CCGG or GCGATCGC Poland et al. 2012
BssHII-MspI CGCGC CCGG or GCGCGC Poland et al. 2012
FseI-MspI CCGGCC CCGG or GGCCGGCC Poland et al. 2012
PaeR7I-HhaI TCGAG GCGC or CTCGAG Poland et al. 2012
PstI-ApeKI TGCAG GCAGC, GCTGC, or CTGCAG Poland et al. 2012
PstI-EcoT22I TGCAG or TGCAT CTGCAG or ATGCAT Elshire et al. 2011
PstI-MspI TGCAG CCGG or CTGCAG Poland et al. 2012
PstI-TaqI TGCAG TGCA or CTGCAG Poland et al. 2012
SalI-MspI TCGAC CCGG or GTCGAC Poland et al. 2012
SbfI-MspI TGCAGG CCGG or CCTGCAGG Poland et al. 2012

If you would like us to add additional enzymes or enzyme combinations to the pipeline, please post your request
on the TASSEL Google Group (groups.google.com/group/tassel). We are also considering adding a feature that
allows the user to specify all the information needed for any combination of restriction enzymes and common
adapters (but that has not been implemented yet - a possible problem with this is it will likely lead to a lot of user
errors).

The -s option (maximum number of good reads per lane) is used to set an upper limit on memory usage. Our
initial default value of the -s option was 200 million, which required 6G of available RAM, allowing the pipeline
to be run on a computer with a total of 8GB of RAM. However, as Illumina next gen sequencing technology has
improved, FASTQ files with more than 200 million good, barcoded reads have become more commonplace.
Therefore, we have now increased the default value of -s to 300 million, which might require a computer with
more than 8GB of RAM (a 16GB machine should suffice).

If the console output of the FastqToTagCountsPlugin indicates that exactly 300 million good, barcoded reads (or
whatever you set -s to) were found in one or more of the input files, then you should increase the -s parameter,
provided that your computer has enough memory. In this case, it is extremely likely that the FASTQ file actually

https://groups.google.com/group/tassel

9

contained more than 300 million good, barcoded reads. Unlike most of the steps in the GBS pipeline, the
FastqToTagCounts step will not overwrite pre-existing output tagCount (.cnt) files, so in order to rerun with a
higher value for the -s option, you will first have to delete (or move) the previously output tagCount (.cnt) files.

If we are combining the results of multiple lanes in our analysis, we usually keep the -c option (minimum
number of times a tag must be present in a FASTQ file to be output) at its default value of 1. In that case, the
minimum number of times that a tag must be seen across the entire experiment to be retained can instead be
controlled by the -c option at the next step, MergeMultipleTagCountPlugin. Tags that occur only once in a given
flowcell lane (input FASTQ file) might occur multiple times in other lanes, so they might be real (i.e., not from
sequencing error). In contrast, if your analysis consists of only a single lane’s worth of data (i.e., a single input
FASTQ file), then you should consider setting the -c option in the FastqToTagCount step to value higher than its
default of 1, depending on the lowest allele frequency of interest and expected level of coverage. The trade-off is
as follows: the lower is the value of the -c option, the more sequencing errors you will include in your analysis;
the higher is the value of the -c option, the more rare alleles will be missed. Keep in mind that tags that contain
one or more sequencing errors can still be useful to score SNPs at the non-error positions, and to increase the
depth of coverage at these non-error positions. The balancing act is to keep the amount of sequencing error down
to a reasonable level via the -c option, and then to remove most of the remaining error-prone SNPs at subsequent
steps in the pipeline (GBSHapmapFiltersPlugin and/or the BiParentalErrorCorrectionPlugin; see below for more
details on these plugins).

If your sequence data predates CASAVA 1.8 (a version of the Illumina software for generating the sequence files
released in 2011) and you thus have it in both QSEQ and FASTQ format, we recommend using the QSEQ files if
possible because they contain all reads, not just the ones passing Illumina’s quality filters. (CASAVA 1.8 only
provides FASTQ files but these contain all reads.) We have found that perfectly good reads - exactly matching a
64 base tag that we have seen many times - can fail to pass Illumina’s filters. To analyze QSEQ input files
instead of FASTQ, use the QseqToTagCountPlugin, which uses exactly the same arguments as the
FastqToTagCountPlugin.

MergeMultipleTagCountPlugin

Summary:
Merges each tagCount file in the input directory into a single “master” tagCount list. Only keeps tags with a total
count (after merger) greater than or equal to that specified by the -c option (minimum number of times a tag
must be present to be output). It has two output formats: (1) a binary output format (.cnt) that is used by the
FastqToTBTPlugin to construct tags by taxa (TBT) files, and (2) a fastq text format (.fq) that is used as an input to
BWA or bowtie2 to align tags to the reference genome. For clarity, the latter functionality (conversion of a
master tagCount list into fastq format) has been made into its own plugin (see TagCountToFastqPlugin below).

Input:
• Input directory (folder) containing tagCount (.cnt) files

Output:
• Merged tagCount file (it is best to send this to a separate directory from the input directory)

Arguments:
MergeMultipleTagCountPlugin
-i Input directory containing tagCount (.cnt) files.
-o Output file name (should be in a separate directory from the input).
-c Minimum number of times a tag must be present to be output. Default: 1
-t Specifies that reads should be output in FASTQ text format (for use as

input to either BWA or bowtie2 for alignment to the reference genome).

10

Example command:
/programs/tassel/run_pipeline.pl -fork1 -MergeMultipleTagCountPlugin -i
tagCounts -o mergedTagCounts/myMasterGBSTags.cnt -c 5 -endPlugin -runfork1

Gory Details:
The MergeMultipleTagCountPlugin step merges multiple tagCount files produced by the FastqToTagCountPlugin
step (from multiple lanes and/or flowcells) into a single “master” tagCount file. (For a description of the
tagCount file format, see FastqToTagCountPlugin.) All binary tagCount (.cnt) files in the specified input
directory (argument -i) are merged into a single, output tagCount file.

To remove rare or singleton tags that possibly result from sequencing errors, we use the -c option (minimum
number of times a tag must be present to be output). A -c option setting between 5 and 20 is typical, but when
deciding on an appropriate cutoff, you should consider the number of individuals in your analysis, the expected
coverage (currently about 0.3-0.5x for maize with ApeKI at 384 plex), the expected segregation ratio, minimum
minor allele frequency of interest, etc. The trade-off is as follows: the lower is the value of the -c option, the more
sequencing errors you will include in your analysis; the higher is the value of the -c option, the more rare alleles
will be missed. Keep in mind that tags that contain one or more sequencing errors can still be useful to score
SNPs at the non-error positions, and to increase the depth of coverage at these non-error positions. The balancing
act is to keep the amount of sequencing error down to a reasonable level via the -c option, and then to remove
most of the remaining error-prone SNPs at subsequent steps in the pipeline (GBSHapmapFiltersPlugin and/or the
BiParentalErrorCorrectionPlugin; see below for more details on these plugins).

The merged tagCount output file is used as a master tag list for two subsequent steps: alignment to the reference
genome (via BWA or bowtie2) and/or the FastqToTBTPlugin step. The output of the
MergeMultipleTagCountPlugin is, by default, in binary tagCount (.cnt) format, which serves as the input format
for the FastqToTBTPlugin step.

Alignment to the reference genome is performed with external software: BWA and bowtie2 are currently
supported by our pipeline. To obtain a master tagCount file in FASTQ format for use as input to BWA or
bowtie2, invoke the -t option. Omitting this option produces a binary tag count file (the default). However,
output binary master tag count (.cnt) file can be directly converted to a FASTQ file for input to BWA or bowtie2
using the TagCountToFastqPlugin described immediately below.

Note that, instead of using the binary master tag list tagCount (.cnt) file as the input Master Tags List specified in
the -t option of the FastqToTBTPlugin, you may alternatively use the TagsOnPhysicalMap (TOPM) file
produced by the SAMConverterPlugin. More details are provided in the FastqToTBTPlugin section.

TagCountToFastqPlugin

Summary:
Converts a master tagCount file containing all the tags of interest for your species/experiment (i.e., all of the tags
with a minimum count greater than the -c parameter used in the MergeMultipleTagCountPlugin) from binary
(.cnt) format into a FASTQ format file (.fq) that can then be used as input to one of the aligners BWA or bowtie2.

Input:
• A binary tag count (.cnt) file containing all tags of interest (= master tag list).

Output:
• The master tag list in FASTQ format (.fq). Can be used as input to BWA or bowtie2.

11

Arguments:
TagCountToFastqPlugin
-i Input binary tag count (.cnt) file
-o Output FASTQ file to use as input for BWA or bowtie2.
-c Minimum count of reads for a tag to be output (default: 1)

Example command:
/programs/tassel/run_pipeline.pl -fork1 -TagCountToFastqPlugin -i
myMasterGBSTags.cnt -o myMasterGBSTags.fq -c 5 -endPlugin -runfork1

Gory Details:
If you have already run MergeMultipleTagCountPlugin with the -t option and with your desired minimum tag
count (-c), then there is no need to run this TagCountToFastqPlugin. However, if you did not use the -t option
when you ran the MergeMultipleTagCountPlugin, or if you have only a single lane of GBS sequence data that you
are working with, and a single corresponding tagCount (.cnt) file, then you can use this TagCountToFastqPlugin
to convert from binary, tagCount (.cnt) format to FASTQ (.fq) format. The FASTQ output file will contain all the
tags present in the input tagCount (.cnt) file, and can be used as an input to BWA or bowtie2 to try to align all of
the tags against the index reference genome. The quality string for each tag is given the arbitrary value of
“fffffff…” (all f), corresponding to an arbitrary, and very high, Phred score of 69 at all positions.

Indexing with BWA

Summary:
Creates a series of support files needed to operate BWA. You must have BWA installed on your computer:
http://bio-bwa.sourceforge.net. For more details, consult the BWA manual:
http://bio-bwa.sourceforge.net/bwa.shtml

Input:
• A FASTA file containing one record for each chromosome or contig in the genome. In order for the

SAMConverterPlugin (see below) to work correctly, the header of each record should contain only a single
integer corresponding to that chromosome or contig’s number. The suffix “chr” prior to the chromosome
number is permissible, but no others. For example, the headers “>1”, “>2”, “>3”, etc. are acceptable, as are
“>chr1”, “>chr2”, “>chr3”, etc.

Output:
• A series of support files with the same name as the FASTA file and different suffixes

(.sa, .rsa, .rpac, .rbwt, .pac, .bwt, .ann, .amb).

Key Arguments:
bwa index
-a Indexing algorithm: “is” or “bwtsw”.

Example command:
bwa index -a bwtsw referenceSequence/rice.fa

Gory Details:
In order to quickly align short reads, BWA needs to go through an initial, time-consuming, indexing step that
generates a series of lookup tables from the input genome sequence. There are two alternative algorithms
available. The default, “is”, does not work with genomes larger than 2GB, but has no lower limit on genome size,
and is the fastest option. The alternative, “bwtsw”, is slower and cannot be used for genomes under 20MB, but it
is capable of indexing human, bovine, maize, or other large genomes.

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/bwa.shtml

12

The Tassel3 GBS pipeline can use tag alignments produced either by BWA or by the default (-M) mode of
bowtie2. In our experience, bowtie2 is more sensitive than BWA, and produces results that are more similar to
BLAST. The tradeoff of the greater sensitivity of bowtie2 is that misalignment of tags will occur more often (e.g.,
tags from paralogous loci or from inserted sequences not present in the reference).

Alignment with BWA

Summary:
Aligns the master set of GBS tags to the reference genome. This input master tag list is stored in the fastq (.fq)
file produced by TagCountToFastqPlugin (or the MergeMultipleTagCountPlugin with the -t option). You must
have BWA installed on your computer: http://bio-bwa.sourceforge.net.

Input:
• Tag count file in FASTQ format (.fq) produced by the TagCountToFastqPlugin (or the

MergeMultipleTagCountPlugin with the -t option).

Output:
• Alignment file in SAI (binary) format.

Key Arguments:
bwa aln
-t Number of CPU cores on which to run the program. Speeds up execution on multi-core

computers.

Example command:
bwa aln -t 4 referenceSequence/rice.fa mergedTagCounts/myMasterTags.cnt.fq >
mergedTagCounts/myAlignedMasterTags.sai

Gory Details:
The angle bracket (greater than sign, “>”) here indicates that the output from this program should be stored in the
given filename. Otherwise, BWA prints the output to the console.

As of this writing, our version of BWA (0.5.6), has several options dealing with insertions and deletions that we
have not modified (we use the default settings). For guidance on these or other options, go to http://bio-
bwa.sourceforge.net/bwa.shtml or type “man bwa” on UNIX systems.

Exporting BWA Alignments in SAM Format

Summary:
Converts the BWA-specific binary alignment (.sai) file into a text-based SAM (.sam) file.

Input:
• SAI format alignment (.sai) file produced by the Linux program BWA

Output:
• SAM alignment file that can be read by the SAMConverterPlugin of our GBS pipeline, as well as by MAQ

and other bioinformatics software.

Key Arguments:
bwa samse We use the defaults. Consult http://bio-bwa.sourceforge.net/bwa.shtml for possible

options.

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml

13

Example command:
bwa samse referenceSequence/rice.fa
mergedTagCounts/myAlignedMasterTags.saimergedTagCounts/myMasterTags.cnt.fq
> mergedTagCounts/myAlignedMasterTags.sam

Gory Details:
The last two letters of “samse” stand for “single-ended”. Paired-end read alignment is possible, but not used in
GBS (which produces single end reads).

BWA outputs only one record (one line of text) for each read regardless of how many places it aligns to the
reference. The user cannot specify which alignment is chosen to “represent” a read with multiple mappings.
However, the coordinates of the alternative mappings can be found at the end of the record, prefixed with “XA:”.

Indexing with bowtie2

Summary:
Creates a series of support files needed to operate bowtie2. You must have bowtie2 installed on your computer.
For more details, consult the bowtie2 manual (http://computing.bio.cam.ac.uk/local/doc/bowtie2.html).

Input:
• A FASTA file containing one record for each chromosome or contig in the genome. In order for the

SAMConverterPlugin (see below) to work correctly, the header of each record should contain only a single
integer corresponding to that chromosome or contig’s number. The suffix “chr” prior to the chromosome
number is permissible, but no others. For example, the headers “>1”, “>2”, “>3”, etc. are acceptable, as are
“>chr1”, “>chr2”, “>chr3”, etc.

Output:
• A series of support files with the same name as the output base name but with different suffixes.

Key Arguments:
bowtie2-build
 input fasta files a comma separated list of input fasta files (see above for header information)
output base name output file base name (e.g. ZmB73_RefGen_v2.fa)

Example command:
bowtie2-build
chr1.fasta,chr2.fasta,chr3.fasta,chr4.fasta,chr5.fasta,chr6.fasta,chr7.fasta
,chr8.fasta,chr9.fasta,chr10.fasta,chrPt.fasta,chrMt.fasta,chrUNKNOWN.fasta
ZmB73_RefGen_v2.fa

Gory Details:
This command builds a set of indices from the reference genome. These indices are subsequently used by the
“bowtie2” command for fast alignment of tags. For more details see the bowtie2 manual.

The Tassel3 GBS pipeline can use tag alignments produced either by BWA or by the default (-M) mode of
bowtie2. In our experience, bowtie2 is more sensitive than BWA, and produces results that are more similar to
BLAST. The tradeoff of the greater sensitivity of bowtie2 is that misalignment of tags will occur more often (e.g.,
tags from paralogous loci or from inserted sequences not present in the reference).

http://computing.bio.cam.ac.uk/local/doc/bowtie2.html

14

Alignment with bowtie2

Summary:
Aligns the master set of GBS tags to the reference genome. This input master tag list is stored in the fastq (.fq)
file produced by TagCountToFastqPlugin (or the MergeMultipleTagCountPlugin with the -t option).

Input:
• Tag count file in FASTQ format (.fq) produced by the TagCountToFastqPlugin (or the

MergeMultipleTagCountPlugin with the -t option).

Output:
• SAM alignment file that can be read by the SAMConverterPlugin of our GBS pipeline.

Key Arguments:
bowtie2
-M X The “-M mode” is the default mode of bowtie2, where it “searches for at most X+1

distinct, valid alignments for each read. The search terminates when it can't find
more distinct valid alignments, or when it finds X+1 distinct alignments, whichever
happens first. Only the best alignment is reported” (ties are resolved at random). If
multiple valid alignments are found, the alignment score for the second best
alignment is stored in the XS:i field of the SAM output (alignment info) for that tag.

In bowtie 2.1, this -M flag is deprecated, as it is the default mode. Therefore,
omitting the -M flag should work in the same manner, except that search depth is
now controlled by the -D and -R options (defaults of 15 and 2, respectively).
Consult the bowtie2 manual for more details: http://bowtie-
bio.sourceforge.net/bowtie2/manual.shtml

-p X The number of processors to be used. More is faster.
--very-sensitive-local This sets the sensitivity.
-x The basename of the reference genome index.
-U The input fastq file.
-S The output sam file name.

Example command:
bowtie2 -M 4 -p 15 --very-sensitive-local -x ../zeareference/bowtie2/ -U
AllZeaMasterTags_c10_20120607.fq -S AllZeaMasterTags_c10_20120613.sam

Gory Details:
This plugin performs an alignment of the GBS tags to a reference genome and reports the results in a SAM
formatted file. Consult the bowtie2 manual for more details: http://bowtie-
bio.sourceforge.net/bowtie2/manual.shtml

The output SAM file will be converted to a Tags On Physical Map (TOPM) file in a subsequent step
(SAMConverterPlugin). This subsequent conversion to a TOPM will only work properly if the default -M mode
(“search for multiple alignments, report the best”) of bowtie2 was used here.

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

15

SAMConverterPlugin

Summary:
Converts a SAM format alignment (.sam) file produced by one of the aligners, BWA or bowtie2, into a binary
tagsOnPhysicalMap (.topm) file that can be used by the TagsToSNPByAlignmentPlugin for calling SNPs.

Input:
• SAM format alignment (.sam) file produced by BWA or by the default (-M) mode of bowtie2

Output:
• binary tagsOnPhysicalMap (.topm) file that can be used by the TagsToSNPByAlignmentPlugin for calling

SNPs

Arguments:
SAMConverterPlugin
-i Alignment file in SAM format (.sam) produced by BWA or bowtie2.
-o Output TagsOnPhysicalMap (TOPM) file that can be used by the

TagsToSNPByAlignmentPlugin for calling SNPs (or by the
SeqToTBTHDF5Plugin or FastqToTBTPlugin as a master tag list). We
recommend using the extension “.topm”. In addition to the tags that aligned to a
single best genomic position, tags with either multiple positions or no alignment
are still included in this output TOPM (in other words, all tags that were fed into
BWA or bowtie2 should end up in the TOPM file produced by this plugin,
regardless of whether they could be aligned to the genome or not, or of how many
positions they aligned to).

Example command:
/programs/tassel/run_pipeline.pl -fork1 -SAMConverterPlugin
-i mergedTagCounts/myAlignedMasterTags.sam -o topm/myMasterTags.topm
-endPlugin -runfork1

Gory Details:
In order for this step to work correctly, the chromosome names (sequence headers) in the FASTA reference
genome file used as input to BWA or bowtie2 must be integers, e.g., >1, >2, or >3. We currently do not have
any provision for text names such as >chrom1, >chrom2, >chrom3, etc. The only exception is that we do allow
usage of the prefix “chr” so that >chr1, >chr2, >chr3, etc. are acceptable headers. In the case of non-numerical
chromosome names (X, Y, mt, cp) or polyploid genomes, you will need to rename them as integers (and keep
track of how your new names back-translate).

If you used bowtie2 instead of BWA, in order for this SAMConverterPlugin to work correctly, you must have run
bowtie2 in its default (-M) mode (“search for multiple alignments, report the best”). With bowtie2 output, when
there are multiple valid alignments for a tag and the best two have identical alignment scores, then it is not
possible to know how many different genomic positions are tied for first place. Hence, when there are multiple
ties for best genomic position for a tag in bowtie2, the number of positions is recorded as “99” in the output
TagsOnPhysicalMap (.topm) file for that tag.

FastqToTBTPlugin

Summary:
Generates a TagsByTaxa file for each FASTQ file in the input directory (or in subfolders thereof). One
TagsByTaxa file is produced per FASTQ file. Requires a master list of tags of interest, which may come either
from a tagCount (.cnt) or tagsOnPhysicalMap (.topm) file. If your input files are in QSEQ format, use

16

QseqToTBTPlugin instead (same arguments). To obtain a single TagByTaxa file in HDF5 format, and thus
reduce the amount of disk space required for a large analysis, use the SeqToTBTHDF5Plugin instead of this
FastqToTBTPlugin

Input:
• Directory (folder) containing FASTQ files
• Barcode key file (see example in Appendix 1)
• Master tag list in the form of either a binary tagCount (.cnt) file or a tagsOnPhysicalMap (.topm) file

Output:
• Directory (folder) containing a corresponding tagsByTaxa file for every FASTQ file in the input directory

Arguments:
FastqToTBTPlugin
-i Input directory containing FASTQ files with raw GBS sequence reads.
-k Barcode key file. See Appendix 1 for an example.
-e Enzyme used to create the GBS library (e.g., ApeKI).
-o Output directory.
-c Minimum taxa count within a FASTQ file for a tag to be output. Default: 1
-t Master tagCount (.cnt) file containing the tags of interest. This file must be binary

(.cnt). The -t option is mutually exclusive with the -m option.
-m TagsOnPhysicalMap (.topm) file containing the tags of interest. The -m option is

mutually exclusive with the -t option.
-y Output in TBTByte format (counts from 0-127) instead of TBTBit (0 or 1)

Example command:
/programs/tassel/run_pipeline.pl -fork1 -FastqToTBTPlugin -i fastq -k
myGBSProject_key.txt -e ApeKI -o tbt -y –t mergedTagCounts/myMasterTags.cnt
-endPlugin -runfork1

Gory Details:
Similar to FastqToTagCountPlugin, FastqToTBTPlugin parses FASTQ files containing raw GBS sequence data
for good reads that contain a barcode and cut site remnant and that have no N’s in the first 64 bases after the
barcode, and trims them to 64 bases (not including the barcode). As in FastqToTagCountPlugin,
FastqToTBTPlugin appropriately truncates reads that contain either a full cut site or the beginning of the common
adapter within the first 64 bases, and pads them to 64 bases with polyA. In a given GBS analysis, the same key
file (-k option), containing the names of the taxa corresponding to each barcode in each lane, is used for both
plugins (see Appendix 1 for an example key file).

The difference between FastqToTBTPlugin and FastqToTagCountPlugin is that FastqToTBTPlugin uses the
barcode information to keep track of which taxa each tag of interest is observed in. Each good read in each
FASTQ file is checked for a match against a set of tags of interest. A tagsByTaxa output file is produced for
every FASTQ file in the input directory (and all of its sub-directories) with a matching flowcell and lane in the
key file. Each output file is named after its corresponding input FASTQ file but with “_fastq.txt.gz” or “_fastq.txt”
(etc.) replaced by “.tbt.bin” or “.tbt.byte” (depending on the format selected: tbt.bin by default, tbt.byte if the -y
option is invoked, which we recommend). Each output tagsByTaxa file is in binary format (only readable by our
pipeline), but can be thought of as a grid where the rows are the tags of interest (the actual length in bases of each
tag - not including the polyA padding - is also recorded), the columns headers are taxa (sample) names (including
flowcell, lane and well information) and the cells indicate the number of times a tag was observed in a given
taxon (= read depth of each tag in each taxon).

17

When the -y option is used (recommended), cells have a maximum value of 127 reads per tag per taxon; by
default, they have a value of only 1 or 0 (indicating presence or absence of a tag in a taxon). Storing the number
of reads per tags per taxon (with the -y option) makes it possible to score heterozygotes & homozygotes
quantitatively and thus attempt to distinguish true heterozygotes from apparent heterozygotes resulting from
sequencing error. For example, if one allele at a SNP is observed 20 times in an individual and the other allele is
observed only once, then that individual will be called homozygous at that SNP (the actual SNP calling is
performed by the TagsToSNPByAlignmentPlugin). In contrast, if one allele is observed 12 times and the other 8
times, then that individual will be called heterozygous for the SNP in question.

In the output TBT, each taxon (sample) is named “SampleName:Flowcell:Lane:LibraryPrepID” (or, if the key file
does not contain LibraryPrepIDs, then “SampleName:Flowcell:Lane:Well”). The “short name” of the taxon
(sample) is the “SampleName” part (up to the first colon). The “full name” is
“SampleName:Flowcell:Lane:LibraryPrepID” or “SampleName:Flowcell:Lane:Well”.

The set of tags of interest are those that are present in the input master tagCount file (using the -t option) or
tagsOnPhysicalMap file (using the mutually exclusive -m option). We usually use the -t option, using the
output of TagCountToFastqPlugin (or MergeMultipleTagCountPlugin) as the -t option input file for this
FastqToTBTPlugin step.

If you use the -t option, the input tagCounts file (master tag list) must be binary (.cnt). In other words, if
you use the Linux command head (or less) on this file, it should look like random gibberish, not human-
readable text. If your analysis (discovery build) encompasses only a single lane of raw GBS sequence data, then
the input master tagCount (.cnt) file for this FastqToTBTPlugin will have been produced by the
FastqToTagCountPlugin. On the other hand, if your analysis (discovery build) encompassed more than one lane
of raw GBS sequence data, then the input master tagCount (.cnt) file for this FastqToTBTPlugin will have been
produced by the MergeMultipleTagCountPlugin without the -t option (i.e., a binary .cnt file, not a text fastq [.fq]
file).

The restriction enzymes currently supported by our pipeline (and their corresponding common adapters) are
indicated in the FastqToTagCount section above.

We generally leave the -c option (minimum taxa count within a FASTQ file for a tag to be output) at its default
value of 1. Filtering of tags based upon the number of taxa they appear in would be better performed at the
MergeTagsByTaxaFilesPlugin step, but is not currently implemented (however, filtering of SNPs based upon data
coverage/amount of missing data can be performed with the GBSHapMapFiltersPlugin). With the default -c
option of 1, tags that are in the master tagCount file but are not present in a given FASTQ file will not be output
into the corresponding tagsByTaxa file - this is a good thing, as it saves disk space (no need to store rows
containing nothing but zeros).

If your sequence data predates CASAVA 1.8 (a version of the Illumina software for generating the sequence files
released in 2011) and you thus have it in both QSEQ and FASTQ format, we recommend using the QSEQ files if
possible because they contain all reads, not just the ones passing Illumina’s quality filters. (CASAVA 1.8 only
provides FASTQ files but these contain all reads.) We have found that perfectly good reads - exactly matching a
64 base tag that we have seen many times - can fail to pass Illumina’s filters. To analyze QSEQ input files
instead of FASTQ, use the QseqToTBTPlugin, which uses exactly the same arguments as this FastqToTBTPlugin.

The multiple tagsByTaxa files produced by this FastqToTBTPlugin can be merged into a single master
tagsByTaxa file in the next step, MergeTagsByTaxaFilesPlugin.

MergeTagsByTaxaFilesPlugin

Summary:
Merges all .tbt.bin and/or (preferably) .tbt.byte files present in the input directory and all of its subdirectories.

18

Input:
• Directory (folder) containing multiple tagsByTaxa (.tbt.byte or .tbt.bin) files (produced by

FastqToTBTPlugin). For the best genotyping results (proper calling of heterozygotes), we recommend
using .tbt.byte files as input (produced by the FastqToTBTPlugin using the -y option)

Output:
• Merged tagsByTaxa file (it is best to send this to a separate directory from the input directory)

Arguments:
MergeTagsByTaxaFilesPlugin
-i Input directory containing multiple tagsByTaxa files (preferably tbt.byte

files).
-o Output file name (should be in a separate directory from the input). Use

extension matching the type of input file (“.tbt.byte” or “.tbt.bin”).
-s Maximum number of tags the TBT can hold while merging (default:

200,000,000). Reduce this only if you run out of memory (omit the
commas).

-x Merges tag counts of taxa with identical short names. Not performed by
default.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -MergeTagsByTaxaFilesPlugin -i tbt
-o mergedTBT/myStudy.tbt.byte -endPlugin -runfork1

Gory Details:
This step merges the separate tagsByTaxa files produced by the FastqToTBTPlugin (and/or QseqToTBTPlugin)
into a single, experiment-wide tagsByTaxa (TBT) file for all of the flow cell lanes in your experiment.

The -s option controls the maximum number of tags that can be stored in the TBT tag list during the merger
process. It defaults to 200,000,000. This is much larger than is needed for most purposes. If you try to run
MergeTagsByTaxaFilesPlugin but run out of memory, invoke this option with a number smaller than 200,000,000.
Use the largest possible number that your memory capacity can handle. This should be at least twice the number
of tags in the master tagCounts (or master tagsOnPhysicalMap) file that you used to generate the individual
tagsByTaxa files (in the FastqToTBTPlugin).

The -x option (off by default) can be invoked to merge the tag counts of taxa with identical short names (i.e., with
the same “SampleName” part of their full name, where the full name is either
“SampleName:Flowcell:Lane:LibraryPrepID” or “SampleName:Flowcell:Lane:Well”). These taxa have the same
SampleName (or DNASampleName) in the key file but were run on different flow cells, lanes or in the same lane
but with different barcodes. However, we recommend that you do not invoke the -x option and thus leave in any
duplicated taxa for now, as they can be used in a later step (GBSHapMapFiltersPlugin,
BiparentalErrorCorrectionPlugin, or MergeIdenticalTaxaPlugin) to check error rates and to verify that there have
been no sample mix-ups among the replicates.

SeqToTBTHDF5Plugin

Summary:
This plugin processes all of the raw GBS sequence files (FASTQ or QSEQ format) in the input directory (and all
of its subdirectories) and generates a “Tags by Taxa” (TBT) data file in HDF5 format. This plugin and the
ModifyTBTHDF5Plugin are newer additions to the pipeline that can be used in place of the FastqToTBTPlugin
and the MergeMultipleTagsByTaxaFilesPlugin (which do not produce HDF5 formatted output). Only reads that

19

match one of the tags in the input master tag list will be recorded in the output TBT HDF5. The input master tag
list can be in the form of either a binary tag count (.cnt) file or a TagsOnPhysicalMap (.topm) file.

Input:
• Directory (folder) containing FASTQ or QSEQ raw GBS sequence files
• Barcode key file (see example in Appendix 1)
• Master tag list in the form of either a binary tagCount (.cnt) file or a tagsOnPhysicalMap (.topm) file

Output:
• A single TagsByTaxa (TBT) file in HDF5 format (*TBT.h5) recording how often each GBS tag in the

master tag list was observed in each taxon (sample) present in the input FASTQ or QSEQ files. A “taxon” in
the output TagsByTaxa file represents an individual DNA sample from a particular flowcell lane that has
been distinguished by a particular barcode.

Arguments:
SeqToTBTHDF5Plugin
-i Input directory containing FASTQ or QSEQ raw GBS sequence files
-k Barcode key file. See Appendix 1 for an example.
-e Enzyme used to create the GBS library (see FastqToTagCountPlugin for list of

available enzymes).
-o Output TagsByTaxa (TBT) file in HDF5 format. Use the extension “.h5”.
-s Max good reads per lane. (Optional. Default is 500,000,000).
-L Output log file
-t Master tagCount (.cnt) file containing the tags of interest. This file must be

binary (.cnt). The -t option is mutually exclusive with the -m option.
-m TagsOnPhysicalMap (.topm) file containing the tags of interest. The -m option

is mutually exclusive with the -t option.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -SeqToTBTHDF5Plugin -i fastq
-k key/AllZea_key.txt -e ApeKI -o tbt/AllZeaTBT.h5 -s 900000000 -L
tbt/AllZeaTBT.log -t mergedTagCounts/AllZeaMasterTags.cnt -endPlugin
-runfork1

Gory Details:
The purpose of the SeqToTBTHDF5Plugin is to produce a TagsByTaxa (TBT) file in HDF5 format recording
how many times each GBS tag of interest was observed in each taxon (sample). It is more recent alternative to
the FastqToTBT and MergeMultipleTagsByTaxaFiles plugins, which (together) also produce a single, master
TBT file, but that TBT file is not in HDF5 format.

The tags of interest are limited to those that appear in either the master tag count file or the TOPM derived from
that master tag list. If you use the -t option, then the tags of interest are those present in the supplied master tag
counts (.cnt) file produced by the MergeMultipleTagsByTaxaPlugin (or, if your experiment encompasses only
one lane of data, by the FastqToTagCountPlugin) which must be a binary file (see the FastqToTBTPlugin for
more explanation of this). Alternatively, if you use the -m option, the master list of tags of interest can be
obtained from a binary TagsOnPhysicalMap (.topm) file.

The information in the key file (flowcell, lane, barcode) is used to assign GBS reads matching one of the tags of
interest to a given sample (taxon). Each taxon is named “SampleName:Flowcell:Lane:LibraryPrepID” in the
output TBT (or, if the key file does not contain LibraryPrepIDs, then “SampleName:Flowcell:Lane:Well”). If the

20

same GBS library (combination of a DNA sample, barcode, and well in GBS library prep plate) was sequenced
multiple times (on different lanes or flowcells) then the TBT HDF5 will contain multiple, replicate entries -- these
can be merged in the next step, ModifyTBTHDF5Plugin, provided that the key file contains LibraryPrepIDs.

The change to the TBT HDF5 format was driven by our need to efficiently process hundreds of flow cell lanes
and tens of thousands of samples. HDF5 is a mature format designed to efficiently work with large data sets (e.g.,
weather data, astronomical data, etc.). The only drawback of the TBT HDF5 format compared to our previous
TBT.byte format (produced by the FastqToTBT and MergeMultipleTagsByTaxaFiles plugins) is that the TBT
HDF5 file cannot be converted to a human-readable text format (i.e., the BinaryToTextPlugin does not work for
TBT HDF5). However, you can use the program HDF5View (available from http://www.hdfgroup.org/hdf-java-
html/hdfview/) to manually inspect a TBT HDF5 file.

Similarly to the tbt.byte format, the HDF5 TBT format holds counts from between 0-127 recording the number of
times each tag of interest was observed in each taxon (= read depths per tag per taxon). Counts larger than 127
are recorded as 127.

ModifyTBTHDF5Plugin

Summary:
This plugin makes changes to a TBT HDF5 file. There are three things that it can do, but it can only do one of
them at a time:

1. Merge two TBT HDF5 files into one, or
2. Merge taxa with identical LibraryPrepIDs, or
3. Transpose the TBT HDF5 into an orientation that is more efficiently used for SNP calling (by allowing

faster access of all the counts across taxa for a particular tag).

Input:
• TBT HDF5 (*TBT.h5) file (one or multiple depending on action)

Output:
• Modified TBT HDF5 (*TBT.h5) file

Arguments:
ModifyTBTHDF5Plugin
-o Target TBT HDF5 (*TBT.h5) file to be modified
One of either: (depending on the modification you wish to make)
 -i TBT HDF5 (*TBT.h5) file containing additional taxa to be added to the target

TBT HDF5 file
 -c Merge taxa with same LibraryPrepID in the target TBT HDF5 file
 -p Pivot (transpose) the target TBT HDF5 file into a tag-optimized orientation

Example commands:

Merging two TBT HDF5 files:
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o
mergedTBT/mergedTBT.h5 -i tbt/part2TBT.h5 -endPlugin -runfork1

Merging taxa with the same LibraryPrepID:
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o
mergedTBT/mergedTBT.h5 -c -endPlugin -runfork1

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/hdf-java-html/hdfview/

21

Pivot (transpose) a TBT HDF5 file:
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o
mergedTBT/mergedTBT.h5 -p pivotedTBT/pivotedTBT.h5 -endPlugin -runfork1

Gory Details:
The gory details for this plugin are organized by the three different functions this plugin can perform:

1) Merging two TBT HDF5 files into one TBT HDF5 file (-i option):
If you are working on a large project, to reduce the total amount of time it takes to create the “master”
TBT HDF5 file, you might chose to run the SeqToTBTHDF5Plugin on multiple computers or processors
and thus create multiple TBT HDF5 files. This will result in multiple TBT HDF5 files which must be
combined into one master file. To use the ModifyTBTHDF5Plugin to merge two TBT HDF5 files, use
the -o option to specify an existing target TBT HDF5 file and the -i option to specify an existing input
TBT HDF5 to be added to the target. In practice, it is best to make a copy of what is to be the initial
target TBT HDF5. This allows the original file to be kept. This plugin is then run repeatedly until all
TBT HDF5 files generated in the SeqToTBTHDF5 step are merged into the target. For example, assume
that the SeqToTBTHDF5Plugin was run in three stages (with each stage working with a different set of
input FASTQ files), and that the output TBT HDF5 files were in a folder named “tbt” and were named

part1TBT.h5,
part2TBT.h5, and
part3TBT.h5.

To merge these three TBT HDF5 files, first, make a copy of part1TBT.h5 named
mergedTBT/mergedTBT.h5:

cp tbt/part1TBT.h5 mergedTBT/mergedTBT.h5
Then, run this ModifyTBTHDF5Plugin with the arguments:

-o mergedTBT/mergedTBT.h5 -i tbt/part2TBT.h5
Then, run it again with the arguments:

-o mergedTBT/mergedTBT.h5 -i tbt/part3TBT.h5
The TBT HDF5 file mergedTBT/mergedTBT.h5 will then be a merger of all three parts.

2) Merging taxa by LibraryPrepID (-c option):
We typically run GBS at 384-plex and, if higher depth of coverage is desired, run the resulting pooled
GBS library in replicate on multiple flow cell lanes (usually on four different lanes, with each lane on a
different flow cell). In addition to increasing depth of coverage, this has the added benefits of spreading
out systematic sequencing errors and of allowing lane effects and sample effects to be distinguished in
statistical analyses of read depth per tag. To identify the replicate runs of each library prep (where a
library prep is a particular combination of sample DNA and barcode in a particular well of a library prep
plate), we assign each library prep a distinct LibraryPrepID which is recorded in the barcode key file (see
Appendix 1). If you have run some of your library preps in replicate in this manner, and have recorded
distinct LibraryPrepIDs in the key file for each Sample/Barcode/libraryPlateWell combination, then you
can use the -c option of the ModifyTBTHDF5Plugin to merge the tag counts of the replicate library preps.
When LibraryPrepIDs are present in the key file, taxa in the TBT files are named as
SampleName:Flowcell:Lane:LibraryPrepID (rather than SampleName:Flowcell:Lane:Well). Replicate
library preps will have the same SampleName and LibraryPrepID but the Flowcell and/or Lane portions
of their name will be different. Using ModifyTBTHDF5Plugin with the -c option will merge the
tagCounts for each set of taxa having the same LibraryPrepID by summing the counts for each tag. The
resulting, merged taxon will be named SampleName:MRG:4:LibraryPrepID, where the 4 indicates that
four replicates with the same LibraryPrepID were merged. The -c option of this plugin operates on only
one file (the target TBT HDF5 file specified by the -o option) and changes that file. It is best to make a
copy of the original TBT HDF5 file before performing this operation.

3) Pivot (transpose) TBT HDF5 into a tag-optimized orientation (-p option):

22

The TBT HDF5 created so far are in a taxon-optimized orientation best suited for operations involving
taxa (adding and merging taxa). In order for the SNP caller (TagsToSNPByAlignmentPlugin) to run
efficiently, the master TBT HDF5 needs to be in a tag-optimized orientation, allowing fast retrieval of the
counts across taxa for a particular tag. You can produce a new, tag-optimized TBT HDF5 by using the -p
option of this plugin. The target TBT HDF5 file (specified by the -o option) will not be changed by this
operation.

TagsToSNPByAlignmentPlugin (the Discovery SNP Caller)

Summary:
Aligns tags from the same physical location against one another, calls SNPs from each alignment, and then
outputs the SNP genotypes to a HapMap format file (one file per chromosome).

Input:
• TagsByTaxa file (.tbt.byte or a tag-optimized TBT.h5) indicating the number of times each tag of interest

was observed in each taxon. Use of a TBTBit (.tbt.bin) file is not recommended.
• TagsOnPhysicalMap file (.topm) containing genomic position of each tag of interest

Output:
• One HapMap format genotype file (.hmp.txt or .hmp.txt.gz) per chromosome.

Arguments:
TagsToSNPByAlignmentPlugin
-i

Input TagsByTaxa (TBT) file. If you are using a TBT in .tbt.byte
format, then use the -y option as well.

-y Indicates that the input TBT specified by the -i option is in TBTByte
(.tbt.byte) format (with counts from 0-127) rather than TBT HDF5
(*TBT.h5) format (also with counts from 0-127) or TBTBit (.tbt.bin)
format (with counts of 0 or 1). Either TBTByte (.tbt.byte) or TBT HDF5
(*TBT.h5) format are recommended. If you use a TBTBit (.tbt.bin), then
heterozygotes will be improperly called at higher coverage SNPs. If you
don’t use the -y option, then the type of TBT input file (TBT HDF5 or
TBTBit) is determined from its file extension (.h5 or .tbt.bin,
respectively)

-m TagsOnPhysicalMap (.topm) file containing genomic position of tags.
-mUpd Update the TOPM file with variants called during SNP calling.
-o Output HapMap genotype file. Use a plus sign (+) as a wildcard

character in place of the chromosome number
(e.g., -o hapmap/raw/myGBSGenos_chr+.hmp.txt). If you use a “.gz”
suffix at the very end of the filename, the output genotype files will be
gzip compressed.

-mxSites Maximum number of sites (SNPs) output per chromosome (default:
200,000).

-mnF Minimum value of F (inbreeding coefficient = 1-Ho/He). Not tested by
default.

23

-p Optional pedigree file containing full sample names & expected
inbreeding coefficient (F) for each. Only taxa (samples) with expected F
>= mnF used to calculate F (= 1-Ho/He) when applying the -mnF filter.
See Appendix 2 for an example pedigree file. Default: use ALL taxa to
calculate F.

-mnMAF Minimum minor allele frequency (default: 0.01). SNPs that pass either
the specified minimum minor allele frequency (mnMAF) or count
(mnMAC) will be output.

-mnMAC Minimum minor allele count (default: 10). SNPs that pass either the
specified minimum minor allele count (mnMAC) or frequency (mnMAF)
will be output.

-mnLCov Minimum locus coverage, i.e., the proportion of taxa (samples) with at
least one tag present from the TagLocus covering a SNP (default: 0.1).

-errRate Average sequencing error rate per base (used to decide between
heterozygous and homozygous calls) (default: 0.01).

-ref Path to reference genome in fasta format. Ensures that a tag from the
reference genome is always included when the tags at a locus are aligned
against each other to call SNPs. The reference allele for each site is then
provided in the output HapMap files, under the taxon name
"REFERENCE_GENOME" (first taxon). DEFAULT: Don't use
reference genome.

-inclRare Include the rare alleles (3rd or 4th states) at sites. These are ignored by
default (genotypes containing rare alleles are set to missing).

-inclGaps Include sites where the major or minor allele is a gap. These sites are
excluded by default.

-callBiSNPsWGap For SNPs where the major and minor alleles are nucleotides, but the third
allele is a gap (-), include the gap alleles in the genotype calls (default:
ignore the gap alleles)

-sC Start chromosome. Must be an integer.
-eC End chromosome. Must be an integer.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -TagsToSNPByAlignmentPlugin -i
mergedTBT/myStudy.tbt.byte -y -m topm/myMasterTags.topm -mUpd
topm/myMasterTagsWithVariants.topm -o hapmap/raw/myGBSGenos_chr+.hmp.txt
-mnF 0.8 -p myPedigreeFile.ped -mnMAF 0.02 -mnMAC 100000 -ref
MyReferenceGenome.fa -sC 1 -eC 10 -endPlugin -runfork1

Gory Details:
In this step, a multiple sequence alignment is created for each “TagLocus” which is defined as a set of tags that
align to the exact same genomic position and strand. The genomic position of a tag is defined by that of the first
base on its barcoded end (after removing the barcode). SNPs are called from each TagLocus alignment. Tags
with multiple or unknown physical genomic positions are not used for SNP calling. The SNP calls from each
TagLocus are written to a genotype file in HapMap format, with one HapMap file produced per chromosome.
With the -o (output file) option, you must provide the relative path and “generic” name of the output HapMap
genotype file. This filename must include the wildcard character ‘+’ in place of the chromosome number. For
example, if you use the argument:

-o hapmap/raw/myGBSGenos_chr+.hmp.txt

24

then the ‘+’ character will be replaced by each chromosome number (from -sC to -eC) in the output files. If you
only want genotypes for one chromosome (e.g., chromosome 9), then the -sC (start chromosome) and -eC (end
chromosome) options should both be the same (e.g., -sC 9 -eC 9). If you use ‘.gz’ as the suffix at the very
end of the output file name, then the output HapMap file will be gzip compressed. Note that *.hmp.txt.gz files
can be directly read by the Tassel GUI (you do not have to decompress them first), or by subsequent steps in the
GBS pipeline (as long as you include the ‘.gz’ in the generic input file name).

If you are working with highly homozygous inbred lines or a selfing species, then be sure to use the -mnF
(minimum F) option (we suggest setting mnF to 0.8 or 0.9), where ‘F’ means ‘inbreeding coefficient’, and is
calculated for each SNP as:

F = 1 - Ho/He,
where Ho = observed heterozygosity, and
He = expected heterozygosity = 2p(1-p), where p = the frequency of the major allele.

SNPs with a calculated F less than -mnF will be removed from the output. In species like maize which contain
abundant paralogs (from ancient chromosomal duplications), this can filter out numerous bad SNPs.

If you are NOT working with inbred lines or a selfing species, then invoke the -mnF option with a low
cutoff such as -0.1 (use double quotes to specify a negative number: -mnF “-0.1”).

If the samples in your study (discovery build) are a mixture of inbred lines and outbred material, then you can use
a pedigree file (-p option) to specify which samples are inbred. In that case, when applying the -mnF cutoff,
only the samples with an expected F in the pedigree file that is greater than or equal to the value specified by the
-mnF (minimum F) option will be used in the calculation of F for each SNP (for comparison to the cutoff set by
-mnF). For more information on the format and content of a pedigree file, see Appendix 2.

The options -mnMAF (minimum minor allele frequency) and -mnMAC (minimum minor allele count) can be
used to filter out SNPs with rare minor alleles that possibly result from sequencing errors. Keep in mind that
SNPs that pass either of these criteria will be output. If you are working with a biparental family with 1:1
segregation you might try a mnMAF of 0.2 and an impossible to reach mnMAC much larger your total number of
taxa, so that it is irrelevant (in that case, only the mnMAF will matter). With unrelated individuals and no
expected range of acceptable minor allele frequencies, you might want to try a mnMAF of 0.02 (and an
impossible to reach mnMAC much larger than your total number of taxa).

The -mnLCov (minimum locus coverage) option can be used to filter out SNPs with very high amounts of
missing data from the output. “Locus Coverage” is the proportion of taxa (samples) that are covered by at least
one of the tags comprising the TagLocus to which a SNP belongs. If the coverage at a TagLocus is less than that
specified by the -mnLCov option, then none of the SNPs in that TagLocus will be output. TagLoci with high
amounts of missing data most likely result from large restriction fragments (>400 bp) that are not amplified as
efficiently in the PCR steps of the GBS protocol. The default value of -mnLCov is 0.1. If you want fewer SNPs,
but those with higher coverage, then increase -mnLCov.

The TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) can work with three different types of TBT input
files, a TBTBit file (.tbt.bin), a TBTByte file (.tbt.byte), or, more recently, a tag-optimized TBT HDF5 file
(*TBT.h5). The input TBT file is specified by the -i option. We started off working with TBTBit files that
simply used 1 or 0 to record the presence or absence of each tag in each taxon. We then realized that at sites
(SNPs) with higher depths of coverage, sequencing errors could result in homozygotes being erroneously called
as heterozygotes (for example, if a TBTBit is used, a taxon covered by 20 reads of a tag for one allele, and 1 read
of a tag for the other allele that actually came from a sequencing error would be stored as 1/1 (present/present) for
each tag and would be called a heterozygote). So, we then adopted the TBTByte (.tbt.byte) format which can
record read depths per tag per taxon ranging from 0-127 (depths >127 are stored as 127), along with a method for
“quantitative” rather than “qualitative” SNP calling (see below). The -y option was then added to the
TagsToSNPByAlignmentPlugin to indicate that the input TBT (specified by the -i option) is in byte format
(.tbt.byte) format, which was preferred over the default of tbt.bin. Later, as explained in the
SeqToTBTHDF5Plugin section above, we needed to develop a TBT HDF5 format in order to be able to expand

25

the capacity of our pipeline to allow processing of tens of thousands of samples. As our TBT HDF5 file names
end with ‘TBT.h5’, we now use the absence of the -y flag and the presence of the “.h5” extension to determine
that the input TBT (-i option) is in TBT HDF5 format. So the moral of the story is:

If you are using a: -y flag File Name Counts Recommended?
TBTByte ON *.tbt.byte 0-127 Yes
TBT HDF5 OFF *TBT.h5 0-127 Yes (for very large studies)
TBTBit OFF *.tbt.bin 0 or 1 NO!!

If you use a TBT HDF5 as the input to the TagsToSNPByAlignmentPlugin, it needs to be in “tag-optimized”
orientation, allowing the fast retrieval of the counts across taxa for a particular tag. The TBT HDF5 created by
the SeqToTBTHDF5Plugin (or by using the -i or -c options of the ModifyTBTHDF5Plugin) is in a taxon-
optimized orientation (good for adding and merging taxa). A TBT HDF5 in a taxon-optimized orientation can be
transposed (pivoted) into to a tag-optimized orientation by using the -p option of the ModifyTBTHDF5Plugin (see
above for more details).

This TagsToSNPByAlignmentPlugin performs quantitative SNP calling based on an expected sequencing error
rate specified by the -errRate option (default of 0.01). Cutoffs are calculated for the minimum number of reads
of the “less tagged allele” needed to call a heterozygote, given the total number of reads across the two most
covered alleles in a SNP in an individual taxon. These cutoffs are the minLessTaggedAlleleCounts such that the
binomial likelihood ratio p(Het)/p(Err) > 1, where p(Het) is the binomial probability of the observed
counts of the two alleles in an individual, assuming that the individual is in fact a heterozygote and that each allele
is equally likely to be sequenced, and p(Err) is the binomial probability of the observed counts assuming that
the individual is in fact a homozygote and all of the reads of less tagged allele result from sequencing errors, and
that sequencing errors to the alternate allele occur at a rate specified by the -errRate option (default of 0.01).
The cutoffs are calculated at the start, before any SNPs are called, and are written to the console output:

Initializing the cutoffs for quantitative SNP calling likelihood ratio
(pHet/pErr) >1

totalReadsForSNPInIndiv minLessTaggedAlleleCountForHet
2 1
3 1
4 1
5 1
6 1
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 3
15 3
16 3
17 3
18 3
19 3
20 3
ETC…

26

From this table (which uses the default -errRate of 0.01), it can be seen that quantitative SNP calling only matters
when a SNP in an individual sample has been covered by at least 7 reads in total. At less than 7 reads, it only
takes one read of the less tagged allele to call a heterozygote. For a genotype covered by 20 reads in total for the
the two most covered nucleotides, in order for a heterozygote to be called, the less tagged allele must be covered
by at least 3 reads.

The multiple sequence alignments produced for each TagLocus sometimes contain gaps. In such cases, if the
expected tag from the reference genome is not present in the alignment, and if the gaps are caused by small
insertions relative to the reference, SNPs downstream of the insertion (toward the common adapter end of the
tags) can end up with slightly wrong chromosomal positions. The expected tag from the reference genome may
not be present either because the reference genome haplotype is not well-represented among your samples, or
because the reference genome has a null allele for that GBS tag. A null allele could occur if the restriction
enzyme cut site is absent, or if the restriction fragment is too large for efficient GBS. To remedy this problem, we
added the -ref (reference genome) option, which ensures that a tag from the corresponding position and strand in
the reference genome is always included in the multiple sequence alignment for each TagLocus. This ensures that
small insertions relative to the reference do not result in slight errors in the positions of SNPs downstream of
those insertions. The argument of the -ref option is the relative path and name of the reference genome file in
FASTA format, including all chromosomes of interest, and where the header lines preceding the sequence of each
chromosome consisting of nothing but “>1”, “>2”, “>3”, etc or “>chr1”, “>chr2”, “>chr3” etc.

We recommend that you DO NOT invoke the -inclRare option, so that 3rd and 4th allelic states (i.e., triallelic and
quadra-allelic SNPs) are ignored (genotypes set to missing). Any 3rd and 4th allelic states are far more likely to
result from sequencing error than biological reality.

Similarly, we recommend that you do not invoke the -inclGaps option, so that small indels are not scored.
Because of alignment issues for small indels (multiple, equally likely alignments), they can end up being
positioned slightly differently in replicate runs of the plugin. Also, because our tags are all 64 bases (or smaller)
in length, small indels in the middle of a tag alignment always result in artifactual, compensatory small indels of
equal size at or near the end of the tag alignment. However, if you are interested in maximizing marker saturation
(for example, for GWAS or for fine-mapping of a QTL), then you might want to invoke inclGaps: there will very
likely be numerous sets of tag alignments that contain no SNPs but do contain a small indel. Note that with
inclGaps invoked, a three base indel (for example) will be output as three consecutive single base gaps in the
HapMap file (plus an additional three artifactual, single base gaps). If the insertion is not present in the reference
genome, the three real gaps will all have the same position (the base in the reference genome immediately
preceding the insertion). Essentially, they are redundant scorings of the same indel.

If you invoke the -callBiSNPsWGap (call biallelic SNPs with a gap) option, then, for SNPs where the major
and minor alleles are both nucleotides (A, C, G, or T) but there is an apparent third allele that is a gap (-), the gap
alleles will be included in the genotype calls (where “-” in the hmp.txt output file represents homozygous for a
gap, and “0” represents a heterozygote for the gap and one of the other nucleotides). Our thinking behind
including this option is related to the problem of imputing missing data. If actual homozygotes for a gap were
scored as missing (the default when -callBiSNPsWGap is NOT invoked), then we will likely end up mis-imputing
a nucleotide where one does not in fact exist. In practice, we have NOT found this option to be very helpful in
maize. Furthermore, Tassel3 still has some issues encoding gaps: 0 = +/- which creates a new “+” allele and we
no longer know whether the + means A, C, G, or T. Therefore we do not recommend invoking this option.

If you plan to use the Production Pipeline (RawReadsToHapMapPlugin) to perform production SNP calling on
raw GBS sequence files (FASTQ files) produced AFTER running the Discovery Pipeline, then you will need to
invoke the -mUpd (update TOPM with variants) option. If you invoke this option, then, for every SNP that is
output to the HapMap (.hmp.txt or .hmp.txt.gz) genotypes file, variants will be added to the corresponding tags in
the TOPM that comprise the TagLocus covering that SNP. Up to eight variants (SNPs) are stored per tag, with
both the relative position of the variant within the tag (VariantPositionOffset) and the particular allele represented
by that tag (VariantDefinition) being recorded for each variant. The same set of variants (VariantPositionOffsets)
are stored for each tag within a TagLocus, but the VariantDefinitions will vary among the tags within a TagLocus,

27

depend on the sequence of each tag. The argument to the -mUpd option is a new name for the modified TOPM
file -- this will be a copy of the input TOPM (from the -m option), but with the variants now recorded. To avoid
overwriting the input TOPM, we recommend that you provide a different name for the -mUpd option than that for
the input TOPM (-m option).

The HapMap genotype files that we generate save disk space and memory by using single letters to represent
phase unknown, diploid genotypes. Heterozygotes are represented by IUPAC nucleotide codes:

A = A/A
C = C/C
G = G/G
T = T/T
M = A/C
R = A/G
W = A/T
S = C/G
Y = C/T
K = G/T
N = missing data

Genotypes from tags matching the minus strand of the reference genome are complemented, so that they are
recorded relative to the plus strand. Hence, all SNPs in the output are relative to the plus strand. For restriction
fragment smaller than 128bp, the (plus and minus strand) reads from opposite ends can overlap and assay the
same SNPs. Hence, the output of TagsToSNPByAlignmentPlugin will contain some duplicate SNPs, each with
different patterns of missing data. These duplicate SNPs can be merged in the next step of the analysis, with the
MergeDuplicateSNPsPlugin.

MergeDuplicateSNPsPlugin

Summary:
Finds duplicate SNPs in the input HapMap file, and merges them if they have the same pair of alleles (not
necessarily in the same major/minor order) and if their mismatch rate is no greater than the threshold specified by
-maxMisMat. If -callHets is on, then genotypic disagreements will be called heterozygotes; otherwise they will
be set to missing (callHets is off by default).

Input:
• HapMap genotype files (.hmp.txt or .hmp.txt.gz). Use a plus sign (+) as a wild card character to specify

multiple chromosome numbers (each chromosome in a separate file).

Output:
• HapMap genotype files (.hmp.txt or .hmp.txt.gz) (one per chromosome) in which duplicate SNPs have been

merged

Arguments:
MergeDuplicateSNPsPlugin
-hmp Input HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign (+)

as a wildcard character to specify multiple chromosome numbers (each
chromosome in a separate file).

-o Output HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign
(+) as a wildcard character to specify multiple chromosome numbers (each
chromosome in a separate file). If you use a “.gz” suffix at the very end of
the filename, the output genotype files will be gzip compressed.

28

-misMat Threshold genotypic mismatch rate above which the duplicate SNPs won't be
merged. Default: 0.05

-p Optional pedigree file containing full sample names & expected inbreeding
coefficient (F) for each. Only taxa (samples) with expected F >= 0.8 (i.e., S3
or more) will be used to test if two duplicate SNPs agree with each other.
See Appendix 2 for an example pedigree file. Default: use ALL taxa to
compare duplicate SNPs.

-callHets When two genotypes at a replicate SNP disagree for a taxon, call it a
heterozygote. Defaults to false (=set to missing).

-kpUnmergDups When a pair of duplicate SNPs are not merged (because they have different
alleles, too many mismatches, or the major or minor allele for one of them is
a gap), keep them. Defaults to false (=delete them).

-sC Start chromosome. Must be an integer.
-eC End chromosome. Must be an integer.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -MergeDuplicateSNPsPlugin
-hmp hapmap/raw/myGBSGenos_chr+.hmp.txt -o
hapmap/mergedSNPs/myGBSGenos_mergedSNPs_chr+.hmp.txt -misMat 0.1 -p
myPedigreeFile.ped –callHets -sC 1 -eC 10 -endPlugin -runfork1

Gory Details:
This step is usually run directly after TagsToSNPByAlignmentPlugin, using the HapMap file(s) from that step as
input. Duplicate SNPs arise from overlapping, but separate TagLoci that cover the same SNP. These overlapping
TagLoci are usually on different strands, starting on either end of a restriction fragment that is less than 128 bp in
length.

If the germplasm is not fully inbred, and still contains residual heterozygosity (like the maize NAM or IBM
populations do) then -callHets should be on and -maxMisMat should be set fairly high (0.1 to 0.2, or even higher,
depending on the amount of heterozygosity). Because the sequencing coverage is usually less than 1x, most of
the time only one allele at a heterozygous SNP will be detected (particularly for ApeKI). Hence, duplicate SNPs
genotypes from a true heterozygote may disagree simply because different alleles were sampled by the duplicate
assays. Hence, these disagreements are not necessarily errors, and should not necessarily be used to prevent
duplicate SNPs from being merged (unless your germplasm is highly inbred, with very little residual
heterozygosity).

Indels (gaps) are ignored by this plugin: it makes no attempt to merge apparent duplicate sites with the same
chromosomal position where either the major or minor allele is a gap.

GBSHapMapFiltersPlugin

Summary:
Reads HapMap format genotype files (one per chromosome) and filters out SNPs with low taxon coverage
(missing data at most taxa), high heterozygosity, low (and/or high) minor allele frequency, or that are not in LD
with at least one neighboring SNP. Taxa with low SNP coverage (missing data at most SNPs) can also be
removed. All filters are off by default and all cutoffs are adjustable.

Input:
• HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz)

29

Output:
• HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz) with some SNPs and/or taxa filtered out

Arguments:
GBSHapMapFiltersPlugin
-hmp Input HapMap file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign (+) as a wild

card character to specify multiple chromosome numbers (each chromosome in
a separate file).

-o Output HapMap file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign (+) as a
wildcard character to specify multiple chromosome numbers (each
chromosome in a separate file). If you use a “.gz” suffix at very end of the
filename, the output genotype files will be gzip compressed.

-mnTCov Minimum taxon coverage. The minimum SNP call rate for a taxon to be
included in the output, where call rate is the proportion of the SNP genotypes
for a taxon that are not “N” (where N = missing). Default: no filter.

-mnScov Minimum site coverage. The minimum taxon call rate for a SNP to be
included in the output, where taxon call rate is the proportion of the taxa with
genotypes that are not “N” for that SNP (where N = missing). Default: no
filter

-mnF Minimum value of F (inbreeding coefficient). Not tested by default.
-p Optional pedigree file containing full sample names & expected inbreeding

coefficient (F) for each. Only taxa (samples) with expected F >= mnF used to
calculate F (= 1-Ho/He) when applying the -mnF filter. See Appendix 2 for an
example pedigree file. Default: use ALL taxa to calculate F.

-mnMAF Minimum minor allele frequency Default: 0.0 (no filtering).
-mxMAF Maximum minor allele frequency. Default: 1.0 (no filtering).
-hLD Specifies that SNPs should be filtered for those in statistically significant LD

with at least one neighboring SNP. Default: Off.
-mnR2 Minimum R-square value for the LD filter. Default: 0.01
-mnBonP Minimum Bonferroni-corrected p-value for the LD filter. Default: 0.01
-sC Start chromosome. Must be an integer.
-eC End chromosome. Must be an integer.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -GBSHapMapFiltersPlugin
-hmp hapmap/mergedSNPs/myGBSGenos_mergedSNPs_chr+.hmp.txt -o
hapmap/filt/myGBSGenos_mergedSNPsFilt_chr+.hmp.txt -mnTCov 0.01 -mnSCov 0.2
-mnMAF 0.01 -hLD -mnR2 0.2 -mnBonP 0.005 -sC 1 -eC 10 -endPlugin -runfork1

Gory Details:
The -mnTCov and -mnSCov options allow you to filter out taxa and/or SNPs, respectively, with call rates lower
than the specified cutoffs. These filters are off by default. If the -mnTCov (taxon filter) is invoked, it is applied
first, so that taxa with very low call rates (i.e., blanks and/or failed samples) are removed prior to applying any of
the other filters. Taxa with low call rates are identified based only on the starting chromosome (specified by the
-sC option), and then this same set of low call rate taxa is filtered from the output of all the chromosome. This is
done to avoid the possibility of output genotype files for different chromosomes containing different sets of taxa,
which could happen if some taxa hover above or below the -mnTCov cutoff on different chromosomes.

Filtering based on the -mnF (minimum F) option, and the optional use of the -p (pedigree file) option

30

to specify which samples should be included in the calculation of F, are the same as described above for the
TagsToSNPByAlignmentPlugin.

The -mnMAF and -mxMAF options allow you to select for those SNPs whose minor allele frequencies fall into
an expected range. For example, if you are working in a backcross (or psuedo-testcross) family, with an expected
minor allele frequency (MAF) of 0.25, you might set the -mnMAF at 0.15 and the -mxMAF at 0.35.

If your study samples are from a single, biparental cross (or from another type of population in which LD is fairly
extensive along a chromosome), then the -hLD (high LD) filter (off by default) can be very useful to filter out
bad SNPs with high genotyping error or incorrect physical genomic positions. If you invoke the -hLD filter, the
cutoff minimum R2 and Bonferroni-corrected p-value can be adjusted using the -mnR2 and -mnBonP options
(both of these default to 0.01). To pass through the LD filter, a SNP must be in statistically significant LD
(Bonferroni corrected p-value less than that specified by the -mnBonP option) with at least one SNP that is a
minimum of 128 bp away (i.e., not from the same TagLocus or cut site) but within a window of 50 SNPs on either
side. In Tassel3, the LD filter only works properly for inbred lines (e.g., RILs). This will be fixed in Tassel4,
so that the LD filter can be applied to outbred (highly heterozygous) populations as well.

BiParentalErrorCorrectionPlugin

Summary:
Takes advantage of the presence of biparental families among the germplasm in your discovery build (input
HapMap file) as a powerful aid to filter out SNPs that either display high rates of genotyping error or are not in
linkage disequilibrium with other nearby SNPs on the same chromosome.

Input:
• A HapMap genotype file (.hmp.txt or .hmp.txt.gz) in which a subset of the samples (taxa) belong to one or

more biparental families

Output:
• A HapMap genotype file with SNPs removed (filtered out) that are either (1) error-prone, and/or (2) are not

in LD in the biparental families with surrounding SNPs on the same chromosome.

Arguments:
BiParentalErrorCorrectionPlugin
-hmp Input HapMap file. Use a plus sign (+) as a wildcard character in

place of the chromosome number to allow processing of multiple files
from different chromosomes. File(s) can either be compressed
(.hmp.txt.gz) or uncompressed (.hmp.txt).

-o Output HapMap file. Use a plus sign (+) as a wild card character in
place of the chromosome number to allow processing of multiple files
from different chromosomes. File(s) can either be compressed
(.hmp.txt.gz) or uncompressed (.hmp.txt).

-mxE Maximum error rate (default: 0.05)
-mnD Minimum segregation distortion factor (default: 2.5)
-mnPLD Minimum median population LD (R^2) (default: -1.0 = don’t test for

LD)

One of -popM, -popF, or -pedF

31

 -popM Population mask: a regular expression specifying the biparental
family-specific prefixes (or suffixes) in the names of samples that are
part of a biparental population.

 -popF Population file: the name of a file containing the biparental family-
specific prefixes (or suffixes) in the names of samples that are part of
a biparental population. One population prefix per line.

 -pedF Pedigree file: the name of a file that lists the population (family)
names, the full samples names, parents, parental contributions and the
expected F for each taxon (sample) in the input Hapmap file. Taxa
that are not part of a biparental family have “NA” as their family
name. See Appendix 2 for more details.

-sC Start chromosome. Must be an integer. Ignored if -hmp and -o
arguments do not contain ‘+’.

-eC End chromosome. Must be an integer. Ignored if -hmp and -o
arguments do not contain ‘+’.

-kpUT Keep SNPs that could not be tested for high error rate (off by default
= remove them)

Example command:
/programs/tassel/run_pipeline.pl -fork1 -BiParentalErrorCorrectionPlugin
-hmp myMaizeGenosIncludingNAM_chr+.hmp.txt.gz -o
myMaizeGenosIncludingNAM_bpec_chr+.hmp.txt.gz -mxE 0.03 -mnD 2.0 -mnPLD 0.2
-popM Z[0-9]{3} -sC 1 -eC 10 -endPlugin -runfork1

Gory Details:
The BiParentalErrorCorrectionPlugin takes advantage of the presence of biparental families (populations) among
the germplasm in your discovery build (experiment) as a powerful aid to filter out SNPs that either display high
rates of genotyping error or are not in linkage disequilibrium with other nearby SNPs on the same chromosome.
To use this plugin, not all of the samples in the input hapmap genotype file need to belong to a biparental
population, and the presence of multiple biparental populations is accommodated for and taken advantage of.
Currently, the expected segregation ratio of these biparental families is hard coded as 1:1 (e.g., F2 progeny or
RILs derived therefrom).

Specifying which samples belong to which biparental families
There are three (mutually exclusive) ways to indicate which samples in the input hapmap genotypes file belong to
which biparental families, by using either (1) the -popM, or “population mask” option, (2) the -popF, or
“population file” option, or (3) the -pedF, or “pedigree file” option.

If the taxa (samples) that belong to each biparental population all have a unique prefix (or suffix) in their short
names that indicates which population they belong to, then you can use the -popM (“population mask”) option
to provide a regular expression that will match these prefixes (or suffixes). For example, our maize discovery
builds always contain the 25 biparental families that make up the maize Nested Association Mapping population
(5000 RILs in total). The 200 RILs in each family are named Z###E####, where the Z### part indicates the
particular biparental family (from Z001 to Z025) and the E#### part indicates the particular RIL (“entry”) within
that family (from E0001 to E0200). An example sample name for a NAM RIL is Z011E0099, which is the 99th
RIL in the 11th NAM family. Samples belong to the NAM population can thus be classified by the
BiParentalErrorCorrectionPlugin to their particular NAM family by using the following population mask:

-popM Z[0-9]{3}

This regular expression (“Z[0-9]{3}”) matches the prefixes Z001 through Z025 in the sample names (it looks
for a “Z” followed by three numerical digits). The plugin then keeps track of which family each RIL belongs to
(e.g., Z011E0099 belongs to family Z011). Regular expressions are quite powerful, so, if you have particular

32

prefixes (or suffixes) in your sample names that indicate which family each sample belongs to, it is likely that you
will be able to supply a regular expression to match them (Google “regular expression” for more info).

A second way to indicate which samples belong to which biparental family is by using the -popF (“population
file”) option to provide the name of a text file containing all of the prefixes (or suffixes) for each biparental
family, with one prefix (or suffix) per line. Using the above example of the NAM population, the corresponding
population file would consist of 25 lines, as follows:

Z001
Z002
…
Z025

The third alternative, and most flexible, method to specify which samples are part of a biparental family is to use
the -pedF (“pedigree file”) option to indicate the name of a pedigree file in tab-delimited text format. See
Appendix 2 for a description and example of the pedigree file.

Filtering of SNPs based on linkage disequilibrium
If your biparental families consist of predominantly homozygous RILs, then you can take advantage of the ability
of the BiParentalErrorCorrectionPlugin to filter out SNPs that do not exhibit linkage disequilibrium (LD) in those
families with surrounding SNPs on the same chromosome. Families consisting of highly heterozygous progeny
should not be used for LD filtering, however, because the manner in which LD is calculated in Tassel3 assumes
that the samples are inbred lines (this assumption has been lifted in Tassel4).

If your biparental families do consist of RILs, then you can invoke the LD filtering function of the
BiParentalErrorCorrectionPlugin by setting the -mnPLD (Minimum median population LD (R2)) parameter to
something larger than 0.0 but less than 1.0 (it is -1.0 by default = no LD-based filtering). The higher the value of
the -mnPLD parameter, the more stringent is the LD filtering. For our maize discovery builds, which include the
maize NAM set of biparental families, we typically set -mnPLD to 0.1. If LD filtering is invoked, then LD (R2) is
calculated for every SNP in every biparental family, provided that there are at least 10 non-missing genotypes for
the SNP in that family, and that the minor allele frequency in that family is at least 0.15. If these criteria are met
for a SNP in a particular family, then R2 is calculated in that family for that SNP versus the 5% of the remaining
SNPs from the same chromosome that most closely flank the SNP being tested, excluding SNPs that are within
100Kb of the site being tested. (This 100Kb exclusion is designed to prevent SNPs that fall within local mis-
assemblies of the genome [or paralagous regions] from internally reinforcing one another.) If from among those
flanking SNPs there are at least 5 that can be tested for LD versus the target SNP, then the median (within family)
R2 of those valid tests is recorded. Across multiple families, the median of the median within-family R2 value is
then determined. SNPs for which this median population R2 (across families) is less than the value of the
-mnPLD parameter will then be filtered from the output HapMap genotypes file. Note that SNPs that did not
have valid within-family median R2 values for any of the families (e.g., SNPs that did not segregate with a MAF
>= 0.15 in any of the families) are considered as “untested for LD” but are not removed from the output HapMap
genotypes file.

Unlike the error detection portion of the BiParentalErrorCorrectionPlugin (see below), the LD filtering portion
does not require expected segregation ratios of 1:1 in the biparental families, but only requires that there is some
level of LD present with each biparental family at the local chromosomal scale, and that the population-specific
minor allele frequency is at least 0.15. However, as mentioned above, the LD filtering does require that the
progeny are predominantly homozygous RILs.

Detection of Error-Prone SNPs
For detection of error-prone SNPs, these requirements are reversed: the progeny need not be predominantly
homozygous RILs, but the expected segregation ratio for each biparental families should be 1:1. Hence, the error
detection part of the BiParentalErrorCorrectionPlugin can be used on either F2 families or families consisting of
F2-derived RILs.

33

To detect and filter out error-prone SNPs, each SNP is tested in each biparental family for highly significant
deviation (p<0.001) from the expected 1:1 segregation pattern using a binomial test. If you use a pedigree file
(-pedF option) to denote the biparental families, only families where the expected parental contributions are 50%
will be used for this test. Alternatively, if you use the -popM or -popF option to denote biparental families, this
error detection part of the plugin will assume that all the families have expected segregation ratios of 1:1. Each
SNP is only tested in a family if the number of non-missing allele calls for that SNP in the family is at least 19
(with homozygotes counted once and heterozygotes counted twice) -- this is to ensure adequate power for
detection of significant (p<0.001) deviation from 1:1 segregation. Hence, depending on the amount of missing
data, small biparental families (say, with fewer than 40 progeny) may not be useful for this error-detection part of
the plugin. If a SNP is found to (1) significantly deviate from 1:1 segregation at p<0.001 in a family, and (2) to
display a degree of segregation distortion such that the family-specific minor allele frequency is less than
expSegregation/minDistortionRatio (where expSegregation is 0.5 and minDistortionRatio is the
value set by the -minD parameter [default: 2.5]), then the number of allele calls for the family-specific minor
allele and the total number of allele calls in that family are included in the calculation of an overall error rate
across the families for each SNP. Essentially, if a SNP is polymorphic in a biparental family but deviates very
strongly from the expected segregation ratio, then it is very likely that the family-specific minor allele calls result
from sequencing errors (or other errors, such as alignment errors). Note that SNPs that do not segregate (are
monomorphic) in a family (i.e., no errors detected) are still included in the calculation of the overall error rate
across families, as long as the number of non-missing genotype calls for that SNP in the family is at least 19.

Once all SNPs have been tested in each biparental family for highly significant segregation distortion, and overall
error rates tallied across all of the families for each SNP, then the SNPs with an overall error rate greater than the
maxErrorRate set by the -mxE parameter (default: 0.05) are filtered from the output HapMap genotype file.
In addition, unless the -kpUT (“keepUnTested for Error”) option is invoked (off by default), all SNPs for
which the number of non-missing allele calls (with homozygotes counted once and heterozygotes counted twice)
is less than 19 in all of the biparental families will be removed from the output HapMap genotype file (these are
SNPs with undefined overall error rates because of very high amounts of missing data).

For SNPs that were not removed from the output, but that displayed high error rates (i.e., severe segregation
distortion) in particular biparental families, the apparent polymorphisms in those particular families are corrected,
providing that the likelihood ratio probErr/probSegDist >= 1 for the corresponding SNP in that family,
where probErr is the binomial likelihood of the observed number of apparently erroneous allele calls in that
family, based on the overall error rate, and probSegDist is binomial likelihood of the observed degree of
segregation distortion, assuming an expected segregation ratio of 1:1. To correct the genotypes in such families,
homozygotes for the family-specific minor alleles are set to missing, and heterozygotes are set to homozygous for
the family-specific major allele, so that the SNP in question is no longer polymorphic in the family in question.
Genotypes in taxa that are not part of a specific biparental family displaying high error rates for a SNP are not
affected by this step.

Note that, in contrast to the LD filtering function of the BiParentalErrorCorrectionPlugin, which requires that the
progeny of the biparental populations are predominantly homozygous RILs, the error detection part of this plugin
should work even if the progeny in the biparental families are highly heterozygous, provided that the expected
segregation ratio is 1:1 (e.g., an F2 family). Although multiple biparental families are preferred, the error
detection portion should also work even if there is only one biparental family amongst your samples (as should
the LD filter).

MergeIdenticalTaxaPlugin

Summary:
Merges the genotypes of samples (“taxa”) with identical short names (up to the first colon of their full name).

34

Input:
• A hapmap format genotype file (.hmp.txt or .hmp.txt.gz) containing replicate taxa

Output:
• A hapmap format genotype file in which the replicate taxa have been merged

Arguments:
MergeIdenticalTaxaPlugin
-hmp Input HapMap file. Use a plus sign (+) as a wildcard character in place of the

chromosome number to allow processing of multiple files from different
chromosomes. File(s) can either be compressed (.hmp.txt.gz) or
uncompressed (.hmp.txt).

-o Output HapMap file. Use a plus sign (+) as a wild card character in place of
the chromosome number to allow processing of multiple files from different
chromosomes. File(s) can either be compressed (.hmp.txt.gz) or
uncompressed (.hmp.txt).

-xHet Exclude heterozygote calls (default: false = call hets)

-hetFreq Cutoff frequency between het vs. homozygote calls (default: 0.8)
-sC Start chromosome. Must be an integer. Ignored if -hmp and -o arguments do

not contain ‘+’.
-eC End chromosome. Must be an integer. Ignored if -hmp and -o arguments do

not contain ‘+’.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -MergeIdenticalTaxaPlugin
-hmp myGenos_chr+.hmp.txt.gz -o myGenos_taxaMerged_chr+.hmp.txt.gz -hetFreq
0.75 -sC 1 -eC 10 -endPlugin -runfork

Gory Details:
The MergeIdenticalTaxaPlugin merges all sets of two or more samples (“taxa”) in the input hapmap genotypes
file with the same short name (up to the first colon of the full name). For this plugin to work correctly, the
remainder of the full sample names (after the first colon) need to be unique (i.e., different flowcell:lane:well) for
each replicate sample. For example, three samples in the input hapmap genotype file with the full names
“B73:42A87AAXX:2:A01”, “B73:42A87AAXX:2:E12”, and “B73:58C95AAXX:7:G10” will be merged in the
output file, and the merged sample will be named “B73:MERGE”.
 Invoking the -xHet (“Exclude heterozygote calls”) option sets apparently heterozygous genotypes in merged
samples to missing. Invoke this option only if you are highly confident that all of your replicate samples are fully
inbred with no heterozygosity whatsoever. Since this is rarely the case, most users will leave the -xHet option off
(the default), so that apparent heterozygous sites in a merged sample are called as such. Note that the -xHet option,
if invoked, will have no effect on the genotypes of non-replicate samples that are not merged with any others (i.e.,
existing heterozygote calls in unique samples that are not merged with any other samples will not be set to
missing even if -xHet is invoked). The -xHet option only affects the genotypes of merged samples.

The -hetFreq option is used to control the cutoff allele frequency between heterozygous and homozygous calls
with respect to the most frequently observed allele among the replicate individuals to be merged. The value
assigned to the -hetFreq parameter is used in the following manner to call heterozygotes in merged samples:

if ((nMajGenos+nHetGenos)/(nMajGenos+nMinGenos+2*nHetGenos) > hetFreq)
 geno = homMajor;
else if ((nMinGenos+nHetGenos)/(nMajGenos+nMinGenos+2*nHetGenos) > hetFreq)

35

 geno = homMinor;
else if (xHet)
 geno = missing;
else
 geno = heterozygous;

Where:
nMajGenos = the number of homozygous major allele genotypes observed among the replicate samples to be
merged,
nHetGenos = the number of heterozygous genotypes, and
nMinGenos = the number of homozygous minor allele genotypes.

This algorithm assumes low coverage (~1x or less), so that, if a homozygote was called for a SNP in an individual
sample (prior to merging), most of the time it would have been called on the basis of only a single read. In other
words, homozygotes are counted only once toward their respective allele frequency, regardless of the actual
number of reads behind the SNP call in the individual replicate sample (prior to merging).

Here is an example of the application of this algorithm. If you have 10 replicate samples (“taxa”), 8 of which
have genotypes of A/A at a particular SNP, 2 with A/C (=“M”), and 0 with C/C, and use the default value of
-hetFreq of 0.8, then the genotype of the SNP in the merged sample will be A/A (coded as “A” in the hapmap
output), since (8+2)/(8+0+2*2) = 0.833 which is > 0.8.

In contrast, if 7 have a genotype of A/A, 2 have a genotype of A/C (“M”) and 1 has a genotype of C/C, then,
provided that the -xHet is not invoked, the merged genotype will be called A/C (“M”), since (7+2)/(7+1+2*2) =
0.75 which is <= 0.8. However, if -xHet (exclude heterozygotes) is invoked, then the merged genotype would be
called N/N (=N).

RawReadsToHapMapPlugin (the Production SNP Caller)

Summary:
The RawReadsToHapMapPlugin is the “Production Pipeline”. You can use this plugin if you have already
performed a large-scale “Discovery Build” in your species and have, since then, obtained GBS raw sequence data
(FASTQ files) for some new samples that were not included in the Discovery Build. The
RawReadsToHapMapPlugin allows you to quickly call genotypes in these new samples without having to redo a
whole new Discovery Build, by using information on all the SNPs ascertained in the Discovery Build. This
information, regarding which SNP alleles are represented by each tag, needs to have been made available in a
“Production-ready” TagsOnPhysicalMap (Production TOPM) by the using the -mUpd option of the
TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”).

Input:
• FASTQ or QSEQ sequence files
• Barcode key file
• Production TOPM created by the TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) through use of

the -mUpd flag

Output:
• HapMap genotype (.hmp.txt) files. One per chromosome per input sequence file.

Arguments:
RawReadsToHapMapPlugin
-i Input directory containing FASTQ and/or QSEQ files
-k Barcode key file (see example in Appendix 1)

36

-e Enzyme used to create the GBS library
-m TagsOnPhysicalMap (.topm) file containing genomic positions of all of

the tags of interest as well as which alleles each useful tag represents for
the useful SNPs (variants) covered by that tag. This “Production
TOPM” should have been populated with variants by using the -mUpd
option at the TagsToSNPByAlignment (Discovery SNP calling) step.

-o Output directory to contain output HapMap genotype (.hmp.txt) files.
One output genotype file per chromosome is created per input raw GBS
sequence file.

Example command:
/programs/tassel/run_pipeline.pl -fork1 -RawReadsToHapMapPlugin -i fastq -k
NewSamples_key.txt -e ApeKI -m topm/myProduction.topm -o hapmap/production
-endPlugin -runfork1

Gory Details:
The RawReadsToHapMapPlugin (“Production Pipeline”) allows you to quickly generate genotypes for new
samples without having to perform an entirely new “Discovery Build” from scratch. The drawback of this is that
any novel tags and associated novel SNPs present in your new samples, but not in the Discovery Build, will not
be scored. Hence, it makes the most sense to run the RawReadsToHapMapPlugin (rather than performing a new
Discovery Build from scratch that encompasses all samples to date) if the samples in your new raw GBS sequence
(FASTQ) files are not expected to contain much novel genetic diversity relative to the samples run in your last
Discovery Build, and if your last Discovery Build contained a large number (thousands) of samples. The
majority of users probably do not need to run the Production Pipeline (RawReadsToHapMapPlugin).
Furthermore, the GBS Production Pipeline is more mature in Tassel4 than in Tassel3.

The list of available restriction enzymes (-e option) is the same as that provided in the FastqToTagCountPlugin
section, above.

To run the RawReadsToHapMapPlugin, you need to have created a “Production TOPM” out of the TOPM used
in your last Discovery Build. This should have been done by invoking the -mUpd option at the
TagsToSNPByAlignmentPlugin (Discovery SNP Calling) step. This would have resulted in a copy of the input
TOPM being produced in which variants were recorded for each useful SNP in each useful tag. See the above
section on the TagsToSNPByAlignmentPlugin for more details. In the RawReadsToHapMapPlugin, the
Production TOPM is specified by the -m option.

One issue that is not resolved in the Tassel3 GBS pipeline is that the Production TOPM produced by the -mUpd
option of the TagsToSNPByAlignmentPlugin contains all of the SNPs called at that step. If you subsequently
used either the GBSHapMapFiltersPlugin or the BiParentalErrorCorrectionPlugin to filter out “bad” SNPs, the
only way to remove them from the Production TOPM is by using the KeepSpecifiedSitesInTOPMPlugin from
Tassel4. As is the case for any Tassel plugin, if you call the Tassel4 KeepSpecifiedSitesInTOPMPlugin without
any options, the options will be provided:

The options for the KeepSpecifiedSitesInTOPMPlugin are:
 -input Input directory containing Site List files
 -orig Original TOPM
 -result Output, site-filtered TOPM

Here, the “Original TOPM” (-orig option) is the Production TOPM produced by the -mUpd option of the Tassel3
TagsToSNPByAlignmentPlugin, containing all the SNPs output by that step, the “Output, site-filtered TOPM” (-
result option) is a Production TOPM with only the sites (SNPs) of interest retained, and the “Input directory
containing Site List files” (-input option) specifies a folder that contains one file per chromosome specifying
which sites you want to keep in the Production TOPM (i.e., which sites passed through the filters applied by the

37

GBSHapMapFiltersPlugin and/or BiParentalErrorCorrectionPlugin). These Site List files are tab-delimited text
(.txt) files with only two columns: the first specifies the chromosome, and the second the site to be retained. The
Site List files can be easily generated from the final .hmp.txt files produced after running the
GBSHapMapFiltersPlugin or the BiParentalErrorCorrectionPlugin during the Discovery Build.

Another shortcoming of the RawReadsToHapMapPlugin in Tassel3 is that SNP calling is “qualitative” rather than
“quantitative”. This means that the read depth for each allele within each sample (taxon) is not taken into
consideration when calling genotypes. Therefore, an individual sample with, for example, 20 reads of one allele
and only 1 read of the alternate allele will be called a heterozygote. This is in contrast with the
TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) (see above), where SNP calling is quantitative (as long
as a TBTByte or TBT HDF5 is used instead of a TBTBit). This shortcoming is resolved in the Tassel4 GBS
pipeline, where the Production SNP Caller (aptly named the ProductionSNPCallerPlugin!) performs quantitative
SNP calling.

The output HapMap genotype (.hmp.txt) files are named after each input FASTQ (or QSEQ) file, with the ending
“_fastq.gz” part of the name (or acceptable variant thereof) being replaced by “_chr#.hmp.txt”, where # stands for
an integer representing the chromosome number. One output genotype file is produced per chromosome per input
FASTQ (or QSEQ) file.

Since the RawReadsToHapMapPlugin produces separate HapMap genotype files for each input FASTQ file (and
for each chromosome), if your new samples are spread across multiple lanes, you will very likely need to merge
the output genotype files. This is another area where Tassel3 is not “up to snuff”. Merging multiple genotype
files (called “Alignments” in Tassel jargon) is best performed with Tassel4. To do this with the Tassel4 GUI
(Graphical User Interface), first load the genotype files to be merged (with Data|Load), then select them under the
Sequence folder, and then use Data|Merge Alignments. To merge genotype files with the Tassel4 command line
consult the following document:
http://www.maizegenetics.net/tassel/docs/Tassel4MergeAlignments.pdf

BinaryToTextPlugin

Summary:
Reads a binary GBS file and outputs the equivalent text file.

Input:
• Binary File

Output:
• Text File

Arguments:
BinaryToTextPlugin
-i <filename> Input binary file name.
-o <filename> Output text file name.
-t <type> Type of input file (TagCounts, TBTBit, TBTByte, TOPM). Does not work

with TBT HDF5 files.

Example commands:
/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin
-i tagCounts/rice.cnt -o tagCounts/rice_cnt.txt -t TagCounts
-endPlugin -runfork1

http://www.maizegenetics.net/tassel/docs/Tassel4MergeAlignments.pdf

38

/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin
-i tbt/rice.tbt.byte -o tbt/rice_tbt.txt -t TBTByte
-endPlugin -runfork1

/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin
-i topm/rice.topm -o topm/rice_topm.txt -t TOPM
-endPlugin -runfork1

TextToBinaryPlugin

Summary:
Reads a Text GBS File and outputs the equivalent binary file.

Input:
• Text File

Output:
• Binary File

Arguments:
TextToBinaryPlugin
-i <filename> Input text file name.
-o <filename> Output binary file name.
-t <type> Type of file (TagCounts, TBTBit, TBTByte, TOPM).

Example commands:
/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin
-i tagCounts/rice_tagCounts.txt -o tagCounts/rice.cnt -t TagCounts
-endPlugin -runfork1

/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin
-i tbt/rice.tbt.txt -o tbt/rice_tbt.bin -t TBTBit
-endPlugin -runfork1

/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin
-i topm/rice.topm.txt -o topm/rice.topm -t TOPM
-endPlugin -runfork1

39

Appendix 1: Key file example

The barcode key file is formatted as tab-delimited text. You can create it from Excel if you save it as tab-
delimited text. In the example key below there are two lanes, each at 96 plex. The barcodes correspond to our
original 96-plex ApeKI layout (we now work with 384-plex). You can combine lanes from multiple flow cells in
a single key file and GBS analysis if you wish (we recommend analyzing all of your samples together for
discovery builds). Note that there is a “Blank” in each plate, in different positions (G10 and H03 in the example).
This facilitates diagnosis of accidental plate swaps. Since well H12 is overused for this, we recommend putting
your blanks in wells other than H12.

Only the first seven columns (A-G) are mandatory. If there is an eighth column present (column H) and it
contains integers, these will be interpreted as LibraryPrepID’s, which should be unique for every
Sample/Barcode/Well combination (where Well = Row+Column). These LibraryPrepID’s are used to facilitate
merging of the TagsByTaxa counts from replicate runs of the same library preps (on multiple flow cell lanes).
For more information on merging of TagsByTaxa counts based upon LibraryPrepIDs, see the
ModifyTBTHDF5Plugin (-c option) above.

You can add additional columns to the key file as you see fit -- these will be ignored by the pipeline (but may be
useful to you). However, if you do not have LibraryPrepID’s in Column H (the eighth column), then make sure
that none of the cells in column H contain integers.

The key file must not contain spaces or colons (‘:’). However, it is OK to include dashes, parentheses, or
underscores: - () _

Flowcell Lane Barcode Sample PlateName Row Column LibraryPrepID
ABC12AAXX 1 CTCC MySample001 MyPlate1 A 1 1234567
ABC12AAXX 1 TGCA MySample002 MyPlate1 A 2 1234568
ABC12AAXX 1 ACTA MySample003 MyPlate1 A 3 1234569
ABC12AAXX 1 CAGA MySample004 MyPlate1 A 4 1234570
ABC12AAXX 1 AACT MySample005 MyPlate1 A 5 1234571
ABC12AAXX 1 GCGT MySample006 MyPlate1 A 6 1234572
ABC12AAXX 1 TGCGA MySample007 MyPlate1 A 7 1234573
ABC12AAXX 1 CGAT MySample008 MyPlate1 A 8 1234574
ABC12AAXX 1 CGCTT MySample009 MyPlate1 A 9 1234575
ABC12AAXX 1 TCACC MySample010 MyPlate1 A 10 1234576
ABC12AAXX 1 CTAGC MySample011 MyPlate1 A 11 1234577
ABC12AAXX 1 ACAAA MySample012 MyPlate1 A 12 1234578
ABC12AAXX 1 TTCTC MySample013 MyPlate1 B 1 1234579
ABC12AAXX 1 AGCCC MySample014 MyPlate1 B 2 1234580
ABC12AAXX 1 GTATT MySample015 MyPlate1 B 3 1234581
ABC12AAXX 1 CTGTA MySample016 MyPlate1 B 4 1234582
ABC12AAXX 1 ACCGT MySample017 MyPlate1 B 5 1234583
ABC12AAXX 1 GTAA MySample018 MyPlate1 B 6 1234584
ABC12AAXX 1 GGTTGT MySample019 MyPlate1 B 7 1234585
ABC12AAXX 1 CCAGCT MySample020 MyPlate1 B 8 1234586
ABC12AAXX 1 TTCAGA MySample021 MyPlate1 B 9 1234587
ABC12AAXX 1 TAGGAA MySample022 MyPlate1 B 10 1234588
ABC12AAXX 1 GCTCTA MySample023 MyPlate1 B 11 1234589
ABC12AAXX 1 CCACAA MySample024 MyPlate1 B 12 1234590
ABC12AAXX 1 GCTTA MySample025 MyPlate1 C 1 1234591
ABC12AAXX 1 CTTCCA MySample026 MyPlate1 C 2 1234592
ABC12AAXX 1 GAGATA MySample027 MyPlate1 C 3 1234593
ABC12AAXX 1 ATGCCT MySample028 MyPlate1 C 4 1234594

40

ABC12AAXX 1 TATTTTT MySample029 MyPlate1 C 5 1234595
ABC12AAXX 1 CTTGCTT MySample030 MyPlate1 C 6 1234596
ABC12AAXX 1 ATGAAAC MySample031 MyPlate1 C 7 1234597
ABC12AAXX 1 AAAAGTT MySample032 MyPlate1 C 8 1234598
ABC12AAXX 1 GAATTCA MySample033 MyPlate1 C 9 1234599
ABC12AAXX 1 GAACTTC MySample034 MyPlate1 C 10 1234600
ABC12AAXX 1 GGACCTA MySample035 MyPlate1 C 11 1234601
ABC12AAXX 1 GTCGATT MySample036 MyPlate1 C 12 1234602
ABC12AAXX 1 AACGCCT MySample037 MyPlate1 D 1 1234603
ABC12AAXX 1 AATATGC MySample038 MyPlate1 D 2 1234604
ABC12AAXX 1 ACGACTAC MySample039 MyPlate1 D 3 1234605
ABC12AAXX 1 GGTGT MySample040 MyPlate1 D 4 1234606
ABC12AAXX 1 TAGCATGC MySample041 MyPlate1 D 5 1234607
ABC12AAXX 1 AGTGGA MySample042 MyPlate1 D 6 1234608
ABC12AAXX 1 TAGGCCAT MySample043 MyPlate1 D 7 1234609
ABC12AAXX 1 TGCAAGGA MySample044 MyPlate1 D 8 1234610
ABC12AAXX 1 TGGTACGT MySample045 MyPlate1 D 9 1234611
ABC12AAXX 1 TCTCAGTC MySample046 MyPlate1 D 10 1234612
ABC12AAXX 1 CCGGATAT MySample047 MyPlate1 D 11 1234613
ABC12AAXX 1 CGCCTTAT MySample048 MyPlate1 D 12 1234614
ABC12AAXX 1 AGGC MySample049 MyPlate1 E 1 1234615
ABC12AAXX 1 GATC MySample050 MyPlate1 E 2 1234616
ABC12AAXX 1 TCAC MySample051 MyPlate1 E 3 1234617
ABC12AAXX 1 AGGAT MySample052 MyPlate1 E 4 1234618
ABC12AAXX 1 ATTGA MySample053 MyPlate1 E 5 1234619
ABC12AAXX 1 CATCT MySample054 MyPlate1 E 6 1234620
ABC12AAXX 1 CCTAC MySample055 MyPlate1 E 7 1234621
ABC12AAXX 1 GAGGA MySample056 MyPlate1 E 8 1234622
ABC12AAXX 1 GGAAC MySample057 MyPlate1 E 9 1234623
ABC12AAXX 1 GTCAA MySample058 MyPlate1 E 10 1234624
ABC12AAXX 1 TAATA MySample059 MyPlate1 E 11 1234625
ABC12AAXX 1 TACAT MySample060 MyPlate1 E 12 1234626
ABC12AAXX 1 TCGTT MySample061 MyPlate1 F 1 1234627
ABC12AAXX 1 ACCTAA MySample062 MyPlate1 F 2 1234628
ABC12AAXX 1 ATATGT MySample063 MyPlate1 F 3 1234629
ABC12AAXX 1 ATCGTA MySample064 MyPlate1 F 4 1234630
ABC12AAXX 1 CATCGT MySample065 MyPlate1 F 5 1234631
ABC12AAXX 1 CGCGGT MySample066 MyPlate1 F 6 1234632
ABC12AAXX 1 CTATTA MySample067 MyPlate1 F 7 1234633
ABC12AAXX 1 GCCAGT MySample068 MyPlate1 F 8 1234634
ABC12AAXX 1 GGAAGA MySample069 MyPlate1 F 9 1234635
ABC12AAXX 1 GTACTT MySample070 MyPlate1 F 10 1234636
ABC12AAXX 1 GTTGAA MySample071 MyPlate1 F 11 1234637
ABC12AAXX 1 TAACGA MySample072 MyPlate1 F 12 1234638
ABC12AAXX 1 TGGCTA MySample073 MyPlate1 G 1 1234639
ABC12AAXX 1 ACGTGTT MySample074 MyPlate1 G 2 1234640
ABC12AAXX 1 ATTAATT MySample075 MyPlate1 G 3 1234641
ABC12AAXX 1 ATTGGAT MySample076 MyPlate1 G 4 1234642
ABC12AAXX 1 CATAAGT MySample077 MyPlate1 G 5 1234643
ABC12AAXX 1 CGCTGAT MySample078 MyPlate1 G 6 1234644
ABC12AAXX 1 CGGTAGA MySample079 MyPlate1 G 7 1234645
ABC12AAXX 1 CTACGGA MySample080 MyPlate1 G 8 1234646
ABC12AAXX 1 GCGGAAT MySample081 MyPlate1 G 9 1234647
ABC12AAXX 1 TAGCGGA Blank MyPlate1 G 10 1234648
ABC12AAXX 1 TCGAAGA MySample082 MyPlate1 G 11 1234649

41

ABC12AAXX 1 TCTGTGA MySample083 MyPlate1 G 12 1234650
ABC12AAXX 1 TGCTGGA MySample084 MyPlate1 H 1 1234651
ABC12AAXX 1 AACCGAGA MySample085 MyPlate1 H 2 1234652
ABC12AAXX 1 ACAGGGAA MySample086 MyPlate1 H 3 1234653
ABC12AAXX 1 ACGTGGTA MySample087 MyPlate1 H 4 1234654
ABC12AAXX 1 CCATGGGT MySample088 MyPlate1 H 5 1234655
ABC12AAXX 1 CGCGGAGA MySample089 MyPlate1 H 6 1234656
ABC12AAXX 1 CGTGTGGT MySample090 MyPlate1 H 7 1234657
ABC12AAXX 1 GCTGTGGA MySample091 MyPlate1 H 8 1234658
ABC12AAXX 1 GGATTGGT MySample092 MyPlate1 H 9 1234659
ABC12AAXX 1 GTGAGGGT MySample093 MyPlate1 H 10 1234660
ABC12AAXX 1 TATCGGGA MySample094 MyPlate1 H 11 1234661
ABC12AAXX 1 TTCCTGGA MySample095 MyPlate1 H 12 1234662
ABC12AAXX 2 CTCC MySample096 MyPlate2 A 1 1234663
ABC12AAXX 2 TGCA MySample097 MyPlate2 A 2 1234664
ABC12AAXX 2 ACTA MySample098 MyPlate2 A 3 1234665
ABC12AAXX 2 CAGA MySample099 MyPlate2 A 4 1234666
ABC12AAXX 2 AACT MySample100 MyPlate2 A 5 1234667
ABC12AAXX 2 GCGT MySample101 MyPlate2 A 6 1234668
ABC12AAXX 2 TGCGA MySample102 MyPlate2 A 7 1234669
ABC12AAXX 2 CGAT MySample103 MyPlate2 A 8 1234670
ABC12AAXX 2 CGCTT MySample104 MyPlate2 A 9 1234671
ABC12AAXX 2 TCACC MySample105 MyPlate2 A 10 1234672
ABC12AAXX 2 CTAGC MySample106 MyPlate2 A 11 1234673
ABC12AAXX 2 ACAAA MySample107 MyPlate2 A 12 1234674
ABC12AAXX 2 TTCTC MySample108 MyPlate2 B 1 1234675
ABC12AAXX 2 AGCCC MySample109 MyPlate2 B 2 1234676
ABC12AAXX 2 GTATT MySample110 MyPlate2 B 3 1234677
ABC12AAXX 2 CTGTA MySample111 MyPlate2 B 4 1234678
ABC12AAXX 2 ACCGT MySample112 MyPlate2 B 5 1234679
ABC12AAXX 2 GTAA MySample113 MyPlate2 B 6 1234680
ABC12AAXX 2 GGTTGT MySample114 MyPlate2 B 7 1234681
ABC12AAXX 2 CCAGCT MySample115 MyPlate2 B 8 1234682
ABC12AAXX 2 TTCAGA MySample116 MyPlate2 B 9 1234683
ABC12AAXX 2 TAGGAA MySample117 MyPlate2 B 10 1234684
ABC12AAXX 2 GCTCTA MySample118 MyPlate2 B 11 1234685
ABC12AAXX 2 CCACAA MySample119 MyPlate2 B 12 1234686
ABC12AAXX 2 GCTTA MySample120 MyPlate2 C 1 1234687
ABC12AAXX 2 CTTCCA MySample121 MyPlate2 C 2 1234688
ABC12AAXX 2 GAGATA MySample122 MyPlate2 C 3 1234689
ABC12AAXX 2 ATGCCT MySample123 MyPlate2 C 4 1234690
ABC12AAXX 2 TATTTTT MySample124 MyPlate2 C 5 1234691
ABC12AAXX 2 CTTGCTT MySample125 MyPlate2 C 6 1234692
ABC12AAXX 2 ATGAAAC MySample126 MyPlate2 C 7 1234693
ABC12AAXX 2 AAAAGTT MySample127 MyPlate2 C 8 1234694
ABC12AAXX 2 GAATTCA MySample128 MyPlate2 C 9 1234695
ABC12AAXX 2 GAACTTC MySample129 MyPlate2 C 10 1234696
ABC12AAXX 2 GGACCTA MySample130 MyPlate2 C 11 1234697
ABC12AAXX 2 GTCGATT MySample131 MyPlate2 C 12 1234698
ABC12AAXX 2 AACGCCT MySample132 MyPlate2 D 1 1234699
ABC12AAXX 2 AATATGC MySample133 MyPlate2 D 2 1234700
ABC12AAXX 2 ACGACTAC MySample134 MyPlate2 D 3 1234701
ABC12AAXX 2 GGTGT MySample135 MyPlate2 D 4 1234702
ABC12AAXX 2 TAGCATGC MySample136 MyPlate2 D 5 1234703
ABC12AAXX 2 AGTGGA MySample137 MyPlate2 D 6 1234704

42

ABC12AAXX 2 TAGGCCAT MySample138 MyPlate2 D 7 1234705
ABC12AAXX 2 TGCAAGGA MySample139 MyPlate2 D 8 1234706
ABC12AAXX 2 TGGTACGT MySample140 MyPlate2 D 9 1234707
ABC12AAXX 2 TCTCAGTC MySample141 MyPlate2 D 10 1234708
ABC12AAXX 2 CCGGATAT MySample142 MyPlate2 D 11 1234709
ABC12AAXX 2 CGCCTTAT MySample143 MyPlate2 D 12 1234710
ABC12AAXX 2 AGGC MySample144 MyPlate2 E 1 1234711
ABC12AAXX 2 GATC MySample145 MyPlate2 E 2 1234712
ABC12AAXX 2 TCAC MySample146 MyPlate2 E 3 1234713
ABC12AAXX 2 AGGAT MySample147 MyPlate2 E 4 1234714
ABC12AAXX 2 ATTGA MySample148 MyPlate2 E 5 1234715
ABC12AAXX 2 CATCT MySample149 MyPlate2 E 6 1234716
ABC12AAXX 2 CCTAC MySample150 MyPlate2 E 7 1234717
ABC12AAXX 2 GAGGA MySample151 MyPlate2 E 8 1234718
ABC12AAXX 2 GGAAC MySample152 MyPlate2 E 9 1234719
ABC12AAXX 2 GTCAA MySample153 MyPlate2 E 10 1234720
ABC12AAXX 2 TAATA MySample154 MyPlate2 E 11 1234721
ABC12AAXX 2 TACAT MySample155 MyPlate2 E 12 1234722
ABC12AAXX 2 TCGTT MySample156 MyPlate2 F 1 1234723
ABC12AAXX 2 ACCTAA MySample157 MyPlate2 F 2 1234724
ABC12AAXX 2 ATATGT MySample158 MyPlate2 F 3 1234725
ABC12AAXX 2 ATCGTA MySample159 MyPlate2 F 4 1234726
ABC12AAXX 2 CATCGT MySample160 MyPlate2 F 5 1234727
ABC12AAXX 2 CGCGGT MySample161 MyPlate2 F 6 1234728
ABC12AAXX 2 CTATTA MySample162 MyPlate2 F 7 1234729
ABC12AAXX 2 GCCAGT MySample163 MyPlate2 F 8 1234730
ABC12AAXX 2 GGAAGA MySample164 MyPlate2 F 9 1234731
ABC12AAXX 2 GTACTT MySample165 MyPlate2 F 10 1234732
ABC12AAXX 2 GTTGAA MySample166 MyPlate2 F 11 1234733
ABC12AAXX 2 TAACGA MySample167 MyPlate2 F 12 1234734
ABC12AAXX 2 TGGCTA MySample168 MyPlate2 G 1 1234735
ABC12AAXX 2 ACGTGTT MySample169 MyPlate2 G 2 1234736
ABC12AAXX 2 ATTAATT MySample170 MyPlate2 G 3 1234737
ABC12AAXX 2 ATTGGAT MySample171 MyPlate2 G 4 1234738
ABC12AAXX 2 CATAAGT MySample172 MyPlate2 G 5 1234739
ABC12AAXX 2 CGCTGAT MySample173 MyPlate2 G 6 1234740
ABC12AAXX 2 CGGTAGA MySample174 MyPlate2 G 7 1234741
ABC12AAXX 2 CTACGGA MySample175 MyPlate2 G 8 1234742
ABC12AAXX 2 GCGGAAT MySample176 MyPlate2 G 9 1234743
ABC12AAXX 2 TAGCGGA MySample177 MyPlate2 G 10 1234744
ABC12AAXX 2 TCGAAGA MySample178 MyPlate2 G 11 1234745
ABC12AAXX 2 TCTGTGA MySample179 MyPlate2 G 12 1234746
ABC12AAXX 2 TGCTGGA MySample180 MyPlate2 H 1 1234747
ABC12AAXX 2 AACCGAGA MySample181 MyPlate2 H 2 1234748
ABC12AAXX 2 ACAGGGAA Blank MyPlate2 H 3 1234749
ABC12AAXX 2 ACGTGGTA MySample182 MyPlate2 H 4 1234750
ABC12AAXX 2 CCATGGGT MySample183 MyPlate2 H 5 1234751
ABC12AAXX 2 CGCGGAGA MySample184 MyPlate2 H 6 1234752
ABC12AAXX 2 CGTGTGGT MySample185 MyPlate2 H 7 1234753
ABC12AAXX 2 GCTGTGGA MySample186 MyPlate2 H 8 1234754
ABC12AAXX 2 GGATTGGT MySample187 MyPlate2 H 9 1234755
ABC12AAXX 2 GTGAGGGT MySample188 MyPlate2 H 10 1234756
ABC12AAXX 2 TATCGGGA MySample189 MyPlate2 H 11 1234757
ABC12AAXX 2 TTCCTGGA MySample190 MyPlate2 H 12 1234758

43

Appendix 2: Pedigree file example

A pedigree file contains the following columns:

Family = name of the family to which the sample belongs (use “NA” if it is not part of a family)
Name = full name of the sample (e.g., “Z002E0001:61VBRAAXX:6:250021377”)
Parent1 = short name of the first parent (e.g., “B73”)
Parent2 = short name of the second parent (e.g., “CML103”)
Contribution1 = the expected genetic contribution of Parent1 (e.g., 0.5 for an F2-derived RIL)
Contribution2 = the expected genetic contribution of Parent2 (e.g., 0.5 for an F2-derived RIL)
f = an estimate of the inbreeding coefficient of the sample (e.g., 0.75 for an S3)
Comments = any comments about that sample for your own purposes (e.g. “sample mix-up?”)

The pedigree file must contain an entry (row) for every sample (taxon) in the input hapmap genotype file. If a
particular sample is not part of a biparental family, enter “NA” for Family, Parent1, Parent2, Contribution1, and
Contribution2. If you do not know (or trust) the level of inbreeding of one or more of your samples, then set the
value for f as “NA”. For 1:1 segregation (e.g., F2 progeny or RILs derived therefrom), both Contribution1 and
Contribution2 should be set at 0.5 (= expected allele frequency). For a backcross or pseudo-testcross,
Contribution1 and Contribution2 should be 0.75 and 0.25 respectively. For a BC2 family (or BC2-derived RILs),
Contribution1 and Contribution2 should be 0.875 and 0.125 respectively.

The example pedigree file below contains, for illustrative purposes, the 26 inbred founders of the maize Nested
Association Mapping (NAM) population, along with 5 RILs per NAM family. The full NAM population actually
consists of 5000 RILs (200 RILs per family).

Family Name Parent1 Parent2 Contribution1 Contribution2 f Comments
NA B73:MRG:2:250040143 B73 NA 1 0 0.9 inbred
NA B97:MRG:2:250039795 B97 NA 1 0 0.9 inbred
NA CML103:MRG:4:250056356 CML103 NA 1 0 0.9 inbred
NA CML228:MRG:4:250056512 CML228 NA 1 0 0.9 inbred
NA CML247:MRG:4:250056531 CML247 NA 1 0 0.9 inbred
NA CML277:MRG:4:250057053 CML277 NA 1 0 0.9 inbred
NA CML322:MRG:4:250056637 CML322 NA 1 0 0.9 inbred
NA CML333:MRG:4:250056648 CML333 NA 1 0 0.9 inbred
NA CML52:MRG:4:250056274 CML52 NA 1 0 0.9 inbred
NA CML69:MRG:4:250056291 CML69 NA 1 0 0.9 inbred
NA HP301:MRG:2:250040193 HP301 NA 1 0 0.9 inbred
NA Il14H:MRG:2:250040130 IL14H NA 1 0 0.9 inbred
NA Ki11:MRG:2:250039815 Ki11 NA 1 0 0.9 inbred
NA Ki3:MRG:2:250040211 Ki3 NA 1 0 0.9 inbred
NA Ky21:MRG:2:250040003 Ky21 NA 1 0 0.9 inbred
NA M162W:MRG:2:250040157 M162W NA 1 0 0.9 inbred
NA M37W:MRG:2:250040142 M37W NA 1 0 0.9 inbred
NA Mo18W:MRG:2:250040011 Mo18W NA 1 0 0.9 Inbred
NA MS71:MRG:2:250040020 MS71 NA 1 0 0.9 Inbred
NA NC350:MRG:2:250040135 NC350 NA 1 0 0.9 inbred
NA NC358:MRG:2:250040063 NC358 NA 1 0 0.9 inbred
NA Oh43:MRG:2:250040141 Oh43 NA 1 0 0.9 inbred
NA OH7B:MRG:2:250040208 OH7B NA 1 0 0.9 inbred
NA P39:MRG:2:250040161 PI587133 NA 1 0 0.9 inbred
NA Tx303:MRG:2:250040016 Tx303 NA 1 0 0.9 inbred
NA Tzi8:MRG:2:250040137 Tzi8 NA 1 0 0.9 inbred
NAM_B97 Z001E0001:628NHAAXX:1:250021125 B73 B97 0.5 0.5 0.9 RIL
NAM_B97 Z001E0002:628NHAAXX:1:250021137 B73 B97 0.5 0.5 0.9 RIL

44

NAM_B97 Z001E0003:628NHAAXX:1:250021149 B73 B97 0.5 0.5 0.9 RIL
NAM_B97 Z001E0004:628NHAAXX:2:250021176 B73 B97 0.5 0.5 0.9 RIL
NAM_B97 Z001E0005:628NHAAXX:2:250021188 B73 B97 0.5 0.5 0.9 RIL
NAM_CML103 Z002E0001:61VBRAAXX:6:250021377 B73 CML103 0.5 0.5 0.9 RIL
NAM_CML103 Z002E0002:61VBRAAXX:6:250021389 B73 CML103 0.5 0.5 0.9 RIL
NAM_CML103 Z002E0003:61VBRAAXX:6:250021401 B73 CML103 0.5 0.5 0.9 RIL
NAM_CML103 Z002E0004:61VBRAAXX:7:250021428 B73 CML103 0.5 0.5 0.9 RIL
NAM_CML103 Z002E0005:61VBRAAXX:7:250021440 B73 CML103 0.5 0.5 0.9 RIL
NAM_CML228 Z003E0001:705VVAAXX:1:250021629 B73 CML228 0.5 0.5 0.9 RIL
NAM_CML228 Z003E0002:705VVAAXX:1:250021641 B73 CML228 0.5 0.5 0.9 RIL
NAM_CML228 Z003E0003:705VVAAXX:1:250021653 B73 CML228 0.5 0.5 0.9 RIL
NAM_CML228 Z003E0004:705VVAAXX:2:250021680 B73 CML228 0.5 0.5 0.9 RIL
NAM_CML228 Z003E0005:705VVAAXX:2:250021692 B73 CML228 0.5 0.5 0.9 RIL
NAM_CML247 Z004E0001:705VVAAXX:5:250021881 B73 CML247 0.5 0.5 0.9 RIL
NAM_CML247 Z004E0002:705VVAAXX:5:250021893 B73 CML247 0.5 0.5 0.9 RIL
NAM_CML247 Z004E0003:705VVAAXX:5:250021905 B73 CML247 0.5 0.5 0.9 RIL
NAM_CML247 Z004E0004:705VVAAXX:6:250021932 B73 CML247 0.5 0.5 0.9 RIL
NAM_CML247 Z004E0005:705VVAAXX:6:250021944 B73 CML247 0.5 0.5 0.9 RIL
NAM_CML277 Z005E0001:61VBPAAXX:1:250022133 B73 CML277 0.5 0.5 0.9 RIL
NAM_CML277 Z005E0003:61VBPAAXX:1:250022145 B73 CML277 0.5 0.5 0.9 RIL
NAM_CML277 Z005E0004:61VBPAAXX:1:250022157 B73 CML277 0.5 0.5 0.9 RIL
NAM_CML277 Z005E0005:61VBPAAXX:2:250022184 B73 CML277 0.5 0.5 0.9 RIL
NAM_CML322 Z006E0001:61VE7AAXX:1:250022385 B73 CML322 0.5 0.5 0.9 RIL
NAM_CML322 Z006E0002:61VE7AAXX:1:250022397 B73 CML322 0.5 0.5 0.9 RIL
NAM_CML322 Z006E0003:61VE7AAXX:1:250022409 B73 CML322 0.5 0.5 0.9 RIL
NAM_CML322 Z006E0005:61VE7AAXX:2:250022436 B73 CML322 0.5 0.5 0.9 RIL
NAM_CML333 Z007E0001:61VE7AAXX:5:250022637 B73 CML333 0.5 0.5 0.9 RIL
NAM_CML333 Z007E0002:62P7LAAXX:6:250028327 B73 CML333 0.5 0.5 0.9 RIL
NAM_CML333 Z007E0003:61VE7AAXX:5:250022661 B73 CML333 0.5 0.5 0.9 RIL
NAM_CML333 Z007E0004:61VE7AAXX:6:250022688 B73 CML333 0.5 0.5 0.9 RIL
NAM_CML333 Z007E0005:62P7LAAXX:6:250028339 B73 CML333 0.5 0.5 0.9 RIL
NAM_CML52 Z008E0001:61VBPAAXX:5:250022889 B73 CML52 0.5 0.5 0.9 RIL
NAM_CML52 Z008E0002:61VBPAAXX:5:250022901 B73 CML52 0.5 0.5 0.9 RIL
NAM_CML52 Z008E0003:61VBPAAXX:5:250022913 B73 CML52 0.5 0.5 0.9 RIL
NAM_CML52 Z008E0004:61VBPAAXX:6:250022940 B73 CML52 0.5 0.5 0.9 RIL
NAM_CML52 Z008E0005:61VBPAAXX:6:250022952 B73 CML52 0.5 0.5 0.9 RIL
NAM_CML69 Z009E0001:61VE9AAXX:1:250023141 B73 CML69 0.5 0.5 0.9 RIL
NAM_CML69 Z009E0002:61VE9AAXX:1:250023153 B73 CML69 0.5 0.5 0.9 RIL
NAM_CML69 Z009E0003:61VE9AAXX:1:250023165 B73 CML69 0.5 0.5 0.9 RIL
NAM_CML69 Z009E0004:61VE9AAXX:2:250023192 B73 CML69 0.5 0.5 0.9 RIL
NAM_CML69 Z009E0005:61VE9AAXX:2:250023204 B73 CML69 0.5 0.5 0.9 RIL
NAM_Hp301 Z010E0001:627C3AAXX:3:250028523 B73 Hp301 0.5 0.5 0.9 RIL
NAM_Hp301 Z010E0002:628NVAAXX:6:250023405 B73 Hp301 0.5 0.5 0.9 RIL
NAM_Hp301 Z010E0003:628NVAAXX:6:250023417 B73 Hp301 0.5 0.5 0.9 RIL
NAM_Hp301 Z010E0004:628NVAAXX:7:250023444 B73 Hp301 0.5 0.5 0.9 RIL
NAM_Il14H Z011E0001:61VE9AAXX:3:250028900 B73 Il14H 0.5 0.5 0.9 RIL
NAM_Il14H Z011E0002:61VE9AAXX:3:250028912 B73 Il14H 0.5 0.5 0.9 RIL
NAM_Il14H Z011E0003:61VE9AAXX:3:250028924 B73 Il14H 0.5 0.5 0.9 RIL
NAM_Il14H Z011E0004:61VE9AAXX:4:250024075 B73 Il14H 0.5 0.5 0.9 RIL
NAM_Il14H Z011E0005:61VE9AAXX:4:250024087 B73 Il14H 0.5 0.5 0.9 RIL
NAM_Ki11 Z012E0001:628DJAAXX:3:250024276 B73 Ki11 0.5 0.5 0.9 RIL
NAM_Ki11 Z012E0002:628DJAAXX:3:250024288 B73 Ki11 0.5 0.5 0.9 RIL
NAM_Ki11 Z012E0003:628DJAAXX:3:250024300 B73 Ki11 0.5 0.5 0.9 RIL
NAM_Ki11 Z012E0004:627C3AAXX:4:250028711 B73 Ki11 0.5 0.5 0.9 RIL
NAM_Ki11 Z012E0005:628DJAAXX:4:250024339 B73 Ki11 0.5 0.5 0.9 RIL

45

NAM_Ki3 Z013E0001:628DJAAXX:7:250024528 B73 Ki3 0.5 0.5 0.9 RIL
NAM_Ki3 Z013E0002:628DJAAXX:7:250024540 B73 Ki3 0.5 0.5 0.9 RIL
NAM_Ki3 Z013E0003:628NJAAXX:4:250024659 B73 Ki3 0.5 0.5 0.9 RIL
NAM_Ki3 Z013E0004:628NJAAXX:3:250024579 B73 Ki3 0.5 0.5 0.9 RIL
NAM_Ki3 Z013E0005:628NJAAXX:3:250024591 B73 Ki3 0.5 0.5 0.9 RIL
NAM_Ky21 Z014E0001:628NJAAXX:6:250024780 B73 Ky21 0.5 0.5 0.9 RIL
NAM_Ky21 Z014E0002:628NJAAXX:4:250024676 B73 Ky21 0.5 0.5 0.9 RIL
NAM_Ky21 Z014E0003:628NJAAXX:6:250024804 B73 Ky21 0.5 0.5 0.9 RIL
NAM_Ky21 Z014E0004:628NJAAXX:7:250024894 B73 Ky21 0.5 0.5 0.9 RIL
NAM_Ky21 Z014E0005:628NJAAXX:7:250024906 B73 Ky21 0.5 0.5 0.9 RIL
NAM_M162W Z015E0001:62P7LAAXX:6:250028289 B73 M162W 0.5 0.5 0.9 RIL
NAM_M162W Z015E0002:62P7LAAXX:6:250028311 B73 M162W 0.5 0.5 0.9 RIL
NAM_M162W Z015E0003:62P7LAAXX:6:250028323 B73 M162W 0.5 0.5 0.9 RIL
NAM_M162W Z015E0004:62P7LAAXX:6:250028335 B73 M162W 0.5 0.5 0.9 RIL
NAM_M162W Z015E0005:62P7LAAXX:6:250028347 B73 M162W 0.5 0.5 0.9 RIL
NAM_M37W Z016E0001:61VE9AAXX:5:250025347 B73 M37W 0.5 0.5 0.9 RIL
NAM_M37W Z016E0002:61VE9AAXX:5:250025359 B73 M37W 0.5 0.5 0.9 RIL
NAM_M37W Z016E0003:61VE9AAXX:5:250025371 B73 M37W 0.5 0.5 0.9 RIL
NAM_M37W Z016E0004:61VE9AAXX:6:250025398 B73 M37W 0.5 0.5 0.9 RIL
NAM_M37W Z016E0005:61VE9AAXX:6:250025410 B73 M37W 0.5 0.5 0.9 RIL
NAM_Mo18W Z018E0001:628AGAAXX:2:250025721 B73 Mo18W 0.5 0.5 0.9 RIL
NAM_Mo18W Z018E0002:628AGAAXX:2:250025758 B73 Mo18W 0.5 0.5 0.9 RIL
NAM_Mo18W Z018E0003:628AGAAXX:2:250025741 B73 Mo18W 0.5 0.5 0.9 RIL
NAM_Mo18W Z018E0004:628AGAAXX:2:250025761 B73 Mo18W 0.5 0.5 0.9 RIL
NAM_Mo18W Z018E0005:628AGAAXX:2:250025773 B73 Mo18W 0.5 0.5 0.9 RIL
NAM_MS71 Z019E0002:709G4AAXX:2:250025848 B73 MS71 0.5 0.5 0.9 RIL
NAM_MS71 Z019E0003:709G4AAXX:2:250025885 B73 MS71 0.5 0.5 0.9 RIL
NAM_MS71 Z019E0004:709G4AAXX:2:250025868 B73 MS71 0.5 0.5 0.9 RIL
NAM_MS71 Z019E0005:709G4AAXX:2:250025888 B73 MS71 0.5 0.5 0.9 RIL
NAM_NC350 Z020E0001:628NJAAXX:2:250026102 B73 NC350 0.5 0.5 0.9 RIL
NAM_NC350 Z020E0002:628NJAAXX:2:250026139 B73 NC350 0.5 0.5 0.9 RIL
NAM_NC350 Z020E0003:628NJAAXX:2:250026122 B73 NC350 0.5 0.5 0.9 RIL
NAM_NC350 Z020E0004:628NJAAXX:2:250026142 B73 NC350 0.5 0.5 0.9 RIL
NAM_NC350 Z020E0005:627C3AAXX:2:250028422 B73 NC350 0.5 0.5 0.9 RIL
NAM_NC358 Z021E0001:709G4AAXX:3:250026356 B73 NC358 0.5 0.5 0.9 RIL
NAM_NC358 Z021E0002:709G4AAXX:3:250026393 B73 NC358 0.5 0.5 0.9 RIL
NAM_NC358 Z021E0003:709G4AAXX:3:250026376 B73 NC358 0.5 0.5 0.9 RIL
NAM_NC358 Z021E0004:709G4AAXX:3:250026396 B73 NC358 0.5 0.5 0.9 RIL
NAM_NC358 Z021E0005:709G4AAXX:3:250026408 B73 NC358 0.5 0.5 0.9 RIL
NAM_Oh43 Z022E0001:709G4AAXX:5:250026610 B73 Oh43 0.5 0.5 0.9 RIL
NAM_Oh43 Z022E0002:709G4AAXX:5:250026647 B73 Oh43 0.5 0.5 0.9 RIL
NAM_Oh43 Z022E0003:709G4AAXX:5:250026630 B73 Oh43 0.5 0.5 0.9 RIL
NAM_Oh43 Z022E0004:709G4AAXX:5:250026650 B73 Oh43 0.5 0.5 0.9 RIL
NAM_Oh43 Z022E0005:709G4AAXX:5:250026662 B73 Oh43 0.5 0.5 0.9 RIL
NAM_Oh7B Z023E0001:709G4AAXX:7:250026864 B73 Oh7B 0.5 0.5 0.9 RIL
NAM_Oh7B Z023E0003:709G4AAXX:7:250026901 B73 Oh7B 0.5 0.5 0.9 RIL
NAM_Oh7B Z023E0004:709G4AAXX:7:250026884 B73 Oh7B 0.5 0.5 0.9 RIL
NAM_P39 Z024E0001:MRG:2:250027118 B73 P39 0.5 0.5 0.9 RIL
NAM_P39 Z024E0002:627C3AAXX:4:250028702 B73 P39 0.5 0.5 0.9 RIL
NAM_P39 Z024E0004:MRG:2:250027138 B73 P39 0.5 0.5 0.9 RIL
NAM_P39 Z024E0005:MRG:2:250027158 B73 P39 0.5 0.5 0.9 RIL
NAM_Tx303 Z025E0001:70980AAXX:4:250028959 B73 Tx303 0.5 0.5 0.9 RIL
NAM_Tx303 Z025E0002:70980AAXX:4:250028996 B73 Tx303 0.5 0.5 0.9 RIL
NAM_Tx303 Z025E0003:70980AAXX:4:250028979 B73 Tx303 0.5 0.5 0.9 RIL
NAM_Tx303 Z025E0004:70980AAXX:4:250028999 B73 Tx303 0.5 0.5 0.9 RIL

46

NAM_Tx303 Z025E0005:70980AAXX:4:250029011 B73 Tx303 0.5 0.5 0.9 RIL
NAM_Tzi8 Z026E0001:MRG:2:250027626 B73 Tzi8 0.5 0.5 0.9 RIL
NAM_Tzi8 Z026E0002:MRG:2:250027663 B73 Tzi8 0.5 0.5 0.9 RIL
NAM_Tzi8 Z026E0003:MRG:2:250027646 B73 Tzi8 0.5 0.5 0.9 RIL
NAM_Tzi8 Z026E0004:MRG:2:250027666 B73 Tzi8 0.5 0.5 0.9 RIL
NAM_Tzi8 Z026E0005:MRG:2:250027678 B73 Tzi8 0.5 0.5 0.9 RIL

47

Appendix 3: Contents of a TagsOnPhysicalMap (TOPM) file

Although a TagsOnPhysicalMap (.topm or .topm.bin) file is binary, if you want to have a look “under the hood” it
is possible to convert it to a human-readable, tab-delimited text format by using the BinaryToTextPlugin. If the
resulting .topm.txt file is too large to open in Excel (or a text editor), you can look at part of it by using the “head”
command in Linux (or a combination of head and tail -- see the Introduction). This Appendix is provided to
answer the question that comes next: “What am I looking at?”

The first line of a .topm.txt file consists of three numbers:
1. tagNum: the total number of tags contained in the TOPM
2. tagLengthInLong: how long is each tag in multiples of 32 bases. Typically 2 (= 64 bases)
3. maxVariants: the maximum number of variants (SNPs) that can be stored for each tag. These are

populated by the -mUpd option of the TagsToSNPByAlignmentPlugin.

Each subsequent line (row) of a .topm.txt file consists of the record for each tag, with the lines (rows) sorted by
the sequence of each tag. Because they are sorted by tag sequence rather than by chromosome, start position, and
strand, it is possible that tags that align to the same start position and strand (i.e., that together comprise a
TagLocus) will not be adjacent in the .topm.txt file. Each tag row contains the following information:

1. tagLength: the actual length of the tag (before padding with polyA). This is always less than or equal to
the tagLengthInLong × 32 bases.

2. multimaps: the number of equally good, optimal chromosomal positions reported by the sequence
aligner (BWA or bowtie2). If you used bowtie2 to align your tags to the reference genome, then tags with
two or more equally good chromosomal positions will have “99” for the value of multimaps (because
bowtie2 does report the total number). A “*” character indicates that no good alignments were found.

3. chromosome: If multimaps = 1, the chromosome number of the unique best alignment for the tag.
Otherwise, a “*” = undefined (in that case, all remaining fields are undefined too).

4. strand: the strand to which the tag aligns (“1” = plus strand, “-1” = minus strand, “*” = undefined).
5. startPosition: the chromosomal position of the first base of the tag (barcoded end). “*” = undefined.
6. endPostion: the chromosomal position of the last base of the tag. “*” = undefined.
7. divergence: the edit distance to the reference genome of the unique best alignment of that tag. “*” =

undefined.
8. For each variant up to maxVariants, a pair of integers consisting of the following (these are all “*” if the

tag does not have a unique best alignment or if there are no variants recorded for the tag):
a. variantPosOff: the position (offset) of the variant (SNP) relative to the startPosition of the tag.
b. variantDef: the allele represented by the tag at that position, in decimal ASCII code, where 65 =

“A”, 67 = “C”, 71 = “G”, 84 = “T”, 45 = “-” (gap), and 78 = “N”.
9. dcoP: placeholder for a p-value from a binomial test of the genetic mapping support for the chromosome

and startPosition. Genetic testing of physical positions (obtained by sequence alignment) is not part of
the standard pipeline (it requires custom code), so this is usually undefined (*).

10. mapP: placeholder for a p-value from a linkage disequilibrium test of the genetic mapping support for
the chromosome and startPosition. Genetic testing of physical positions (obtained by sequence
alignment) is not part of the standard pipeline (it requires custom code), so this is usually undefined (*).

	Table of Contents
	Introduction
	How to cite the TASSEL-GBS pipeline
	TASSEL Google Group
	TASSEL Source Code is Available on SourceForge
	Discovery Pipeline Overview
	Discovery versus Production Pipelines
	Recommended directory (folder) structure for a GBS analysis
	FastqToTagCountPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeMultipleTagCountPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	TagCountToFastqPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	Indexing with BWA
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Alignment with BWA
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Exporting BWA Alignments in SAM Format
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Indexing with bowtie2
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Alignment with bowtie2
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	SAMConverterPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	FastqToTBTPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeTagsByTaxaFilesPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	SeqToTBTHDF5Plugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	ModifyTBTHDF5Plugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:
	Merging two TBT HDF5 files:
	Merging taxa with the same LibraryPrepID:
	Pivot (transpose) a TBT HDF5 file:

	Gory Details:

	TagsToSNPByAlignmentPlugin (the Discovery SNP Caller)
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeDuplicateSNPsPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	GBSHapMapFiltersPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	BiParentalErrorCorrectionPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:
	Specifying which samples belong to which biparental families
	Filtering of SNPs based on linkage disequilibrium
	Detection of Error-Prone SNPs

	MergeIdenticalTaxaPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	RawReadsToHapMapPlugin (the Production SNP Caller)
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	BinaryToTextPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:

	TextToBinaryPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:

	Appendix 1: Key file example
	Appendix 2: Pedigree file example
	Appendix 3: Contents of a TagsOnPhysicalMap (TOPM) file

