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Introduction 

This document describes the GBS pipeline available in the TASSEL 3 standalone for species with a reference 
genome. If your species does not have a reference genome, we suggest that you try the UNEAK pipeline, which is 
available as part of the TASSEL 3 standalone. Documentation for the UNEAK pipeline is available here: 
http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf 

The reference genome-based GBS analysis pipeline described below is an extension to the Java program TASSEL. 
On Linux, Unix, or Mac operating systems (or Windows machines with perl installed), GBS commands are run as 

http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf
http://www.maizegenetics.net/images/stories/bioinformatics/TASSEL/uneak_pipeline_documentation.pdf
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TASSEL plugins via the command line by calling a perl script (which in turn launches Java) with the following 
syntax: 

run_pipeline.pl -fork1 -PluginName --plugin-option(s) -endPlugin -runfork1 

On a Windows machine without perl installed use run_pipeline.bat instead. Each step of the pipeline is 
specified with a "-fork" command and a number, since TASSEL can run several processes at once, split and 
recombine their results, and use the output of one “fork” as the input to the next.. The fork option is followed by 
the name of the plugin, and any plugin-specific options. “-endPlugin” signals the end of plugin-specific options, 
and “-runfork1” then runs the specified plugin. In all of our examples here for the GBS pipeline, we run only a 
single fork at a time (always “-fork1”). 

All of the GBS plugins will print out their available options/arguments if you call them without any: 
run_pipeline.pl -fork1 -PluginName -endPlugin -runfork1 

Please see http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf for general instructions on how to 
install the TASSEL 3.0 Standalone Build on your computer.  These GBS-specific instructions assume that you 
have unzipped the standalone into the directory (folder): 

/programs 

and then renamed the directory:  
/programs/tassel3.0_standalone 

to: 
/programs/tassel 

If not, you will have to edit the example commands appropriately (e.g., replace “tassel” with 
“tassel3.0_standalone”). 

If you have more memory available on your machine than 1.5GB, then you can increase the amount of memory 
available to TASSEL by opening run_pipeline.pl (or run_pipeline.bat if running on Windows) in a 
text editor and modifying “-Xmx1536m” to (for example) “-Xmx6g” (the -Xmx option controls the maximum 
amount of memory available to the java pipeline). Note that the first step of the pipeline, 
FastqToTagCountsPlugin, required at least 6G of memory in order to run (under the original default value of its -s 
parameter of 200,000,000 good, barcoded reads). Therefore, in order to run the TASSEL GBS pipeline, you 
need a computer with at least 8G of RAM.  Because recent fastq files often contain more than 200,000,000 
good, barcoded reads, we have recently raised the default value of the -s parameter to 300,000,000 -- hence you 
might need more than 8G of RAM to run the pipeline using this default setting (16G should suffice). 

If you are launching the pipeline via the perl script, you can also allocate memory directly in the command line, 
for example: 

run_pipeline.pl -Xmx6g -fork1 -PluginName --plugin-option -endPlugin  
-runfork1 

Many of the GBS commands produce a large amount of console output (“stdout” =  “standard output”).  Although 
we won’t describe this output in detail here, some of it is very informative in tracing bugs or finding problems 
with your input files or command syntax. You will likely find it helpful to either copy and paste it to a text log file 
or, better, to redirect stdout to both the console and a log file. In Linux, this can be done by appending “ | tee 
GBSlogfile20110915.txt” on the end of your pipeline command (rename the log file as you see fit). 

http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf
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How to cite the TASSEL-GBS pipeline 

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES. TASSEL-GBS: A high capacity 
genotyping by sequencing analysis pipeline. PLoS ONE (in press) [manuscript]. 

TASSEL Google Group 

The TASSEL Google Group (https://groups.google.com/group/tassel) provides a forum where TASSEL users in 
general can pose questions to other TASSEL users or the TASSEL developers, browse the answers to previous 
questions, or request new features.  It also provides these functions for users of the TASSEL GBS pipeline.  It is 
always a good first resource if you get stuck:  someone else may have already encountered the same problem. 

TASSEL Source Code is Available on SourceForge 

The most detailed, accurate, and up-to-date documentation of the Tassel GBS Pipeline is the code itself.  So, if 
you are able to understand Java, you can get the source code here: 

Tassel3: http://sourceforge.net/p/tassel/svn/2538/tree/ 
Tassel4 & 5: http://sourceforge.net/p/tassel/code/ci/master/tree/ 

If you both understand Java and are brave, you might even modify/customize the code to better suit your own 
purposes. 

Discovery Pipeline Overview 

The flow chart below shows how the steps of a possible GBS “Discovery Pipeline” analysis link together 
(variations on this approach are possible).  Light blue boxes represent files (or data structures) produced at each 
step of the analysis, and purple boxes represent the processes (Tassel3 plugins) that produced them: 
 

 

http://www.panzea.org/pdf/Glaubitz_etal_PLoS_ONE_(in_press).pdf
https://groups.google.com/group/tassel
http://sourceforge.net/p/tassel/svn/2538/tree/
http://sourceforge.net/p/tassel/code/ci/master/tree/
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Most of the intermediate files are in a binary format. You can convert some of the file types (TagCounts, 
TagsByTaxa, TagsOnPhysicalMap) to human-readable, tab-delimited text format using the BinaryToTextPlugin.  
These text files will often be too large to open in a text editor or Excel. However, in Linux (or with Cygwin on a 
PC) you can use the “head” and “tail” commands to extract a section from the middle of a file.  For example the 
command: 

head -2000000 myLargeFile.txt | tail -10000 > myLargeFileMid10KLines.txt 

will extract lines 1,990,001 to 2,000,000. Excel can usually open a file with 10,000 lines in it quite quickly. 

Once you have genotypes, subsequent possible steps include:  

• MergeDuplicateSNPsPlugin: To merge duplicate SNPs called from overlapping tags on opposite strands. 

• GBSHapMapFiltersPlugin: To filter SNPs based upon (1) amount of missing data, (2) minor allele 
frequency, (3) deviation of observed from expected heterozygosity (FIS = 1-HO/HE), or (4) amount of linkage 
disequilbrium (LD) with nearby markers (if you are working with a population with extensive linkage 
disequilibrium such as a biparental linkage mapping population).  The LD filter works only for highly 
homozygous samples (e.g., RILs). 

• BiParentalErrorCorrectionPlugin: If the samples that you are analyzing include one or (preferably) more 
biparental families, you can use this plugin to remove SNPs with high error rates (i.e., SNPs that are not 
actually segregating 1:1 in one or more of the families but appear to be weakly polymorphic in those families 
because of high error rates) and SNPs that are not in LD with their neighboring SNPs (in families where they 
are actually segregating).  The error detection part of this plugin works only for families with expected 
segregation ratios of 1:1 (e.g., F2 or RILs derived from F2).  The LD filter part works only for highly 
homozygous families (e.g., RILs). 

• MergeIdenticalTaxaPlugin: To merge the genotypes of taxa with identical short names (up to the first 
colon of their full name) but run on different lanes or in the same lane but with different barcodes. 

• FastImputationBitFixedWindowPlugin: If a large proportion of your samples (“taxa”) are inbred lines or 
have very low heterozygosity, you can use this plugin to impute missing data.  This plugin will not be 
documented here.  Imputation is a tricky problem that is the subject of a lot of ongoing research.  We 
recommend that you use the FastImputationBitFixedWindowPlugin only if you are able to read the Java 
code and understand the underlying assumptions. 

If you are working with very large numbers of samples (taxa) in your discovery build (e.g., >10,000 samples), and 
the master TagsByTaxa (TBT) file produced by the MergeTagsByTaxa file is too large, you can use the alternate 
route in the flowchart below (top of next page) to produce a master TBT file in HDF5 format.  The only 
differences in the flowchart below (compared to the one above) is that the SeqToTBTHDF5 and 
ModifyTBTHDF5 plugins are used in place of the FastqToTBT and MergeTagsByTaxaFiles plugins. 

The only drawback with using a TBT HDF5 (instead of a TBTByte) is that it is currently not possible to convert a 
TBT HDF5 to text via the BinaryToTextPlugin.  However, you can use the program HDF5View (available from 
http://www.hdfgroup.org/hdf-java-html/hdfview/) to manually inspect a TBT HDF5 file. 

http://www.hdfgroup.org/hdf-java-html/hdfview/
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Discovery versus Production Pipelines 

The above flow charts and subsequent steps describe a typical Discovery Pipeline.  “Discovery Builds” are 
typically done at the species level with all available GBS sequence data for that species, from multiple lanes.  
Filtering for good GBS SNPs is usually best done at the species level. 

Once you have run a large-scale, species-wide Discovery Pipeline, it is possible to use the knowledge of useful 
variants that you gained from that (stored in the TagsOnPhysicalMap file by using the -mUpd flag during SNP 
calling) to quickly call known SNPs in newly sequenced samples, without re-analyzing all of the samples 
sequenced to date.  We refer to this as the Production Pipeline, which is carried out by the single step 
RawReadsToHapMapPlugin.  The RawReadsToHapMapPlugin (Production Pipeline) can be used to match GBS 
tags found in a single lane of sequence data to those already present in the TagsOnPhysicalMap (TOPM) file 
created and populated with variants during the most recent Discovery Build.  It calls SNPs based on the known 
useful variants stored in the TOPM, producing a HapMap format genotype file just for that single lane of 
sequence data.  More details are provided in the documentation for the RawReadsToHapMapPlugin, below. 

Recommended directory (folder) structure for a GBS analysis 

A dot (.) represents the working directory (folder) for your analysis, which will be your current working directory  
(e.g., /home/myUserName/myGBSstudyName) 

The example commands below for each plugin don’t create the directories (and will fail if the directories don’t 
already exist), so at the start of the analysis, create the following directories inside your working directory: 
 
./fastq OR ./qseq   (original raw data files, one file per flowcell lane) 
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./tagCounts         (for output from FastqToTagCountPlugin) 

./mergedTagCounts   (for output from MergeMultipleTagCountPlugin) 

./topm              (for output from SAMConverterPlugin) 

./tbt               (for output from FastqToTBTPlugin) 

./mergedTBT         (for output from MergeTagsByTaxaFilesPlugin) 

./hapmap 

./hapmap/raw        (for output from TagsToSNPByAlignmentPlugin) 

./hapmap/mergedSNPs (for output from MergeDuplicateSNPsPlugin) 

./hapmap/filt       (for output from GBSHapMapFiltersPlugin) 

./hapmap/bpec       (for output from BiParentalErrorCorrectionPlugin) 

FastqToTagCountPlugin 

Summary: 
Derives a tagCount list for each FASTQ file in the input directory (and all subdirectories thereof).  Keeps only 
good reads having a barcode and a cut site and no N's in the useful part of the sequence.  Trims off the barcodes 
and truncates sequences that (1) have a second cut site, or (2) read into the common adapter. 

Input: 
• Barcode key file (see example in Appendix 1) 
• Directory (folder) containing FASTQ files 

Output: 
• Directory (folder) containing a corresponding tagCount (.cnt) file for every FASTQ file in the input directory 

Arguments: 
FastqToTagCountPlugin  
-i Input directory containing FASTQ text (_fastq.txt) or gzipped FASTQ (_fastq.gz) 

text files.  NOTE: Directory will be searched recursively, and should be written 
without a slash after its name. 

-k Key file listing barcodes for each sample and plate layout.  See Appendix 1. 
-e Enzyme used to create the GBS library (ApeKI, PstI or several others). 
-s Maximum number of good, barcoded reads per lane.  Default: 300,000,000. 
-c Minimum number of times a tag must be present to be output.  Default: 1 
-o  Output directory to contain ouput .cnt (tag count) files, one per input FASTQ file.  

Defaults to input directory (the default is not recommended - it is best to use a 
separate directory). 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -FastqToTagCountPlugin -i fastq -k 
myGBSProject_key.txt -e ApeKI -o tagCounts -endPlugin -runfork1 

Gory Details: 
This is the initial step of a GBS “Discovery Pipeline” analysis.  It reads a user-supplied key file (-k option) in 
tab-delimited text format which indicates, for each lane of interest from a flowcell, which barcodes are assigned to 
which sample. An example key file is provided in Appendix 1.  Note that you can combine lanes from multiple 
flowcells into a single key file and GBS analysis.  In fact, to take full advantage of the features of our pipeline, we 
encourage you to lump all samples using the same restriction enzyme from multiple lanes/flowcells together into 
a single, species-level analysis. 
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After reading the key file the FastqToTagCountsPlugin then recursively searches the specified input directory (-i 
option) and all of its subdirectories for FASTQ files matching one of the flowcell/lane combinations in the key 
file and with one of the following acceptable file naming conventions: 

FLOWCELL_LANE_fastq.txt (example: 42A87AAXX_2_fastq.txt) 
FLOWCELL_LANE_fastq.txt.gz (example: 42A87AAXX_2_fastq.txt.gz) 
FLOWCELL_LANE_sequence.txt (example: 42A87AAXX_2_sequence.txt) 
FLOWCELL_LANE_sequence.txt.gz (example: 42A87AAXX_2_sequence.txt.gz) 
FLOWCELL_s_LANE_fastq.txt (example: 42A87AAXX_s_2_fastq.txt) 
FLOWCELL_s_LANE_fastq.txt.gz (example: 42A87AAXX_s_2_fastq.txt.gz) 
code_FLOWCELL_s_LANE_fastq.txt (example: 10225395_42A87AAXX_s_2_fastq.txt) 
code_FLOWCELL_s_LANE_fastq.txt.gz (example: 10225395_42A87AAXX_s_2_fastq.txt.gz) 

Note that both compressed (.gz) and uncompressed (.txt) files can be read - we recommend using compressed files 
to save disk storage space.  The “code” part of the latter two file name examples is a numerical tracking code that 
our sequencing center used to generate.  Our GBS pipeline doesn’t actually use this numerical code, so you can 
substitute any text or numbers.  The same thing goes for the “_s_” part: you can substitute any text or numbers 
(but not underscores) for the “s”.  The underscores are essential for correct parsing of the parts of each FASTQ 
file name (only FLOWCELL and LANE are actually used by our pipeline). 

For each FASTQ file that has samples in the key file with a matching flowcell and lane, the 
FastqToTagCountPlugin finds all reads that begin with one of the expected barcodes immediately followed by the 
expected cut site remnant (CAGC or CTGC for ApeKI) and trims them to 64 bases (including the cut site remnant 
but after removing the barcode).  Reads containing N within the first 64 bases after the barcode are rejected.  If a 
read contains either a full cut site (from incomplete digestion or chimera formation) or the beginning of the 
common adapter (from restriction fragments less than 64bp) within the first 64 bases it is truncated appropriately 
and padded to 64 bases with polyA (where “polyA” = “AAAA…”).  The actual length of all reads (64 bases or 
less, if truncated) is recorded.  Once all of the reads in an input FASTQ file have been loaded into memory (or 
when the maximum number of good, barcoded reads specified by the -s option have been read from the file), the 
plugin then sorts all of the reads and collapses identical reads (over the first 64 bases after the barcode) into a 
single tag.  It then writes out this list of tags into an output tagCount file. 

Hence, the output of FastqToTagCountPlugin is a single tagCount file in the specified output directory (-o 
option) for every matching FASTQ file in the input directory.  The tagCount files are named after their 
corresponding FASTQ file, with “_fastq.txt.gz” (or “_fastq.txt”, etc.) replaced by “.cnt”.  The tagCount files are 
binary, and can only be read by our pipeline (you can use the BinaryToTextPlugin to convert them into human 
readable text if you wish).  They contain the 64 base sequence of each observed tag (padded with polyA if 
truncated), the actual length of the tag (either 64 bases or less if it is padded with polyA), and the number of times 
that tag was observed in the corresponding FASTQ file.  The tags are sorted by their sequence. 

In the future (in Tassel4, eventually) we will modify the pipeline to allow the user to retain tags of any desired 
(but fixed) length, not just 64 bases.  But until we make the changes required for that, keep in mind that the 
sequencing error rate tends to rise dramatically after 64 bases, so the extra sequence may not be worth the bother.  
For most purposes, 64 base tags should suffice. 

The restriction enzyme used to create the GBS library is indicated via mandatory option -e.  Currently, our 
pipeline only accepts the enzymes (or pairs of enzymes) in the table below combined with the indicated common 
adapter sequence.  Also provided in the table are the initial cut site remnant(s) expected to occur in each read 
immediately after the barcode, and the full cut sites that are diagnostic of either incomplete restriction digestion or 
chimera formation.  Reads that contain either a full cut site or the beginning of the common adapter sequence are 
truncated appropriately.  The first few bases of the common adapter (not shown in the table) are defined by the 
restriction enzyme “sticky end”.  The “Y-adapter” employed by Poland et al. (2012) as the common (non-
barcoded) adapter ensures unidirectional cloning of doubly digested restriction fragments.  Pairs of restriction 
enzymes are specified in the -e option separated by a hyphen (for example “-e PstI-MspI”). 
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Enzyme or 
Enzyme Pair 

Initial Cut Site 
Remnant(s) 

Full Cut Site(s) Common Adapter 

ApeKI CAGC or CTGC GCAGC or GCTGC Elshire et al. 2011 
ApoI AATTC or AATTT AAATTT, AAATTC, GAATTC or GAATTT Elshire et al. 2011 
BamHI GATCC GGATTC Elshire et al. 2011 
EcoT22I TGCAT ATGCAT Elshire et al. 2011 
HinP1I CGC GCGC Elshire et al. 2011 
HpaII CGG CCGG Elshire et al. 2011 
MseI TAA TTAA Elshire et al. 2011 
MspI CCG CCGG Elshire et al. 2011 
NdeI TATG CATATG Elshire et al. 2011 
PasI CAGGG or CTGGG CCCAGGG or CCCTGGG Elshire et al. 2011 
PstI TGCAG CTGCAG Elshire et al. 2011 
Sau3AI GATC GATC Elshire et al. 2011 
SbfI TGCAGG CCTGCAGG Elshire et al. 2011 
AsiSI-MspI ATCGC CCGG or GCGATCGC Poland et al. 2012 
BssHII-MspI CGCGC CCGG or GCGCGC Poland et al. 2012 
FseI-MspI CCGGCC CCGG or GGCCGGCC Poland et al. 2012 
PaeR7I-HhaI TCGAG GCGC or CTCGAG Poland et al. 2012 
PstI-ApeKI TGCAG GCAGC, GCTGC, or CTGCAG Poland et al. 2012 
PstI-EcoT22I TGCAG or TGCAT CTGCAG or ATGCAT Elshire et al. 2011 
PstI-MspI TGCAG CCGG or CTGCAG Poland et al. 2012 
PstI-TaqI TGCAG TGCA or CTGCAG Poland et al. 2012 
SalI-MspI TCGAC CCGG or GTCGAC Poland et al. 2012 
SbfI-MspI TGCAGG CCGG or CCTGCAGG Poland et al. 2012 

If you would like us to add additional enzymes or enzyme combinations to the pipeline, please post your request 
on the TASSEL Google Group (groups.google.com/group/tassel).  We are also considering adding a feature that 
allows the user to specify all the information needed for any combination of restriction enzymes and common 
adapters (but that has not been implemented yet - a possible problem with this is it will likely lead to a lot of user 
errors). 

The -s option (maximum number of good reads per lane) is used to set an upper limit on memory usage.  Our 
initial default value of the -s option was 200 million, which required 6G of available RAM, allowing the pipeline 
to be run on a computer with a total of 8GB of RAM.  However, as Illumina next gen sequencing technology has 
improved, FASTQ files with more than 200 million good, barcoded reads have become more commonplace.  
Therefore, we have now increased the default value of -s to 300 million, which might require a computer with 
more than 8GB of RAM (a 16GB machine should suffice). 

If the console output of the FastqToTagCountsPlugin indicates that exactly 300 million good, barcoded reads (or 
whatever you set -s to) were found in one or more of the input files, then you should increase the -s parameter, 
provided that your computer has enough memory.  In this case, it is extremely likely that the FASTQ file actually 

https://groups.google.com/group/tassel
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contained more than 300 million good, barcoded reads.  Unlike most of the steps in the GBS pipeline, the 
FastqToTagCounts step will not overwrite pre-existing output tagCount (.cnt) files, so in order to rerun with a 
higher value for the -s option, you will first have to delete (or move) the previously output tagCount (.cnt) files. 

If we are combining the results of multiple lanes in our analysis, we usually keep the -c option (minimum 
number of times a tag must be present in a FASTQ file to be output) at its default value of 1.  In that case, the 
minimum number of times that a tag must be seen across the entire experiment to be retained can instead be 
controlled by the -c option at the next step, MergeMultipleTagCountPlugin.  Tags that occur only once in a given 
flowcell lane (input FASTQ file) might occur multiple times in other lanes, so they might be real (i.e., not from 
sequencing error).  In contrast, if your analysis consists of only a single lane’s worth of data (i.e., a single input 
FASTQ file), then you should consider setting the -c option in the FastqToTagCount step to value higher than its 
default of 1, depending on the lowest allele frequency of interest and expected level of coverage.  The trade-off is 
as follows: the lower is the value of the -c option, the more sequencing errors you will include in your analysis; 
the higher is the value of the -c option, the more rare alleles will be missed.  Keep in mind that tags that contain 
one or more sequencing errors can still be useful to score SNPs at the non-error positions, and to increase the 
depth of coverage at these non-error positions.  The balancing act is to keep the amount of sequencing error down 
to a reasonable level via the -c option, and then to remove most of the remaining error-prone SNPs at subsequent 
steps in the pipeline (GBSHapmapFiltersPlugin and/or the BiParentalErrorCorrectionPlugin; see below for more 
details on these plugins). 

If your sequence data predates CASAVA 1.8 (a version of the Illumina software for generating the sequence files 
released in 2011) and you thus have it in both QSEQ and FASTQ format, we recommend using the QSEQ files if 
possible because they contain all reads, not just the ones passing Illumina’s quality filters.  (CASAVA 1.8 only 
provides FASTQ files but these contain all reads.)  We have found that perfectly good reads - exactly matching a 
64 base tag that we have seen many times - can fail to pass Illumina’s filters.  To analyze QSEQ input files 
instead of FASTQ, use the QseqToTagCountPlugin, which uses exactly the same arguments as the 
FastqToTagCountPlugin. 

MergeMultipleTagCountPlugin 

Summary: 
Merges each tagCount file in the input directory into a single “master” tagCount list.  Only keeps tags with a total 
count (after merger) greater than or equal to that specified by the -c option (minimum number of times a tag 
must be present to be output).  It has two output formats: (1) a binary output format (.cnt) that is used by the 
FastqToTBTPlugin to construct tags by taxa (TBT) files, and (2) a fastq text format (.fq) that is used as an input to 
BWA or bowtie2 to align tags to the reference genome.  For clarity, the latter functionality (conversion of a 
master tagCount list into fastq format) has been made into its own plugin (see TagCountToFastqPlugin below). 

Input: 
• Input directory (folder) containing tagCount (.cnt) files 

Output: 
• Merged tagCount file (it is best to send this to a separate directory from the input directory) 

Arguments: 
MergeMultipleTagCountPlugin  
-i Input directory containing tagCount (.cnt) files. 
-o Output file name (should be in a separate directory from the input). 
-c Minimum number of times a tag must be present to be output.  Default: 1 
-t Specifies that reads should be output in FASTQ text format (for use as 

input to either BWA or bowtie2 for alignment to the reference genome). 
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Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeMultipleTagCountPlugin -i 
tagCounts -o mergedTagCounts/myMasterGBSTags.cnt -c 5 -endPlugin -runfork1 

Gory Details: 
The MergeMultipleTagCountPlugin step merges multiple tagCount files produced by the FastqToTagCountPlugin 
step (from multiple lanes and/or flowcells) into a single “master” tagCount file.  (For a description of the 
tagCount file format, see FastqToTagCountPlugin.)  All binary tagCount (.cnt) files in the specified input 
directory (argument -i) are merged into a single, output tagCount file. 

To remove rare or singleton tags that possibly result from sequencing errors, we use the -c option (minimum 
number of times a tag must be present to be output).  A -c option setting between 5 and 20 is typical, but when 
deciding on an appropriate cutoff, you should consider the number of individuals in your analysis, the expected 
coverage (currently about 0.3-0.5x for maize with ApeKI at 384 plex), the expected segregation ratio, minimum 
minor allele frequency of interest, etc.  The trade-off is as follows: the lower is the value of the -c option, the more 
sequencing errors you will include in your analysis; the higher is the value of the -c option, the more rare alleles 
will be missed.  Keep in mind that tags that contain one or more sequencing errors can still be useful to score 
SNPs at the non-error positions, and to increase the depth of coverage at these non-error positions.  The balancing 
act is to keep the amount of sequencing error down to a reasonable level via the -c option, and then to remove 
most of the remaining error-prone SNPs at subsequent steps in the pipeline (GBSHapmapFiltersPlugin and/or the 
BiParentalErrorCorrectionPlugin; see below for more details on these plugins). 

The merged tagCount output file is used as a master tag list for two subsequent steps: alignment to the reference 
genome (via BWA or bowtie2) and/or the FastqToTBTPlugin step.  The output of the 
MergeMultipleTagCountPlugin is, by default, in binary tagCount (.cnt) format, which serves as the input format 
for the FastqToTBTPlugin step. 

Alignment to the reference genome is performed with external software: BWA and bowtie2 are currently 
supported by our pipeline.  To obtain a master tagCount file in FASTQ format for use as input to BWA or 
bowtie2, invoke the -t option.  Omitting this option produces a binary tag count file (the default).  However, 
output binary master tag count (.cnt) file can be directly converted to a FASTQ file for input to BWA or bowtie2 
using the TagCountToFastqPlugin described immediately below. 

Note that, instead of using the binary master tag list tagCount (.cnt) file as the input Master Tags List specified in 
the  -t option of the FastqToTBTPlugin, you may alternatively use the TagsOnPhysicalMap (TOPM) file 
produced by the SAMConverterPlugin.  More details are provided in the FastqToTBTPlugin section. 

TagCountToFastqPlugin 

Summary: 
Converts a master tagCount file containing all the tags of interest for your species/experiment (i.e., all of the tags 
with a minimum count greater than the -c parameter used in the MergeMultipleTagCountPlugin) from binary 
(.cnt) format into a FASTQ format file (.fq) that can then be used as input to one of the aligners BWA or bowtie2.  

Input: 
• A binary tag count (.cnt) file containing all tags of interest (= master tag list). 

Output: 
• The master tag list in FASTQ format (.fq).  Can be used as input to BWA or bowtie2.   
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Arguments: 
TagCountToFastqPlugin  
-i Input binary tag count (.cnt) file 
-o Output FASTQ file to use as input for BWA or bowtie2. 
-c Minimum count of reads for a tag to be output (default: 1) 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -TagCountToFastqPlugin -i 
myMasterGBSTags.cnt -o myMasterGBSTags.fq -c 5 -endPlugin -runfork1 

Gory Details: 
If you have already run MergeMultipleTagCountPlugin with the -t option and with your desired minimum tag 
count (-c), then there is no need to run this TagCountToFastqPlugin.  However, if you did not use the -t option 
when you ran the MergeMultipleTagCountPlugin, or if you have only a single lane of GBS sequence data that you 
are working with, and a single corresponding tagCount (.cnt) file, then you can use this TagCountToFastqPlugin 
to convert from binary, tagCount (.cnt) format to FASTQ (.fq) format.  The FASTQ output file will contain all the 
tags present in the input tagCount (.cnt) file, and can be used as an input to BWA or bowtie2 to try to align all of 
the tags against the index reference genome.  The quality string for each tag is given the arbitrary value of 
“fffffff…” (all f), corresponding to an arbitrary, and very high, Phred score of 69 at all positions. 

Indexing with BWA 

Summary: 
Creates a series of support files needed to operate BWA.   You must have BWA installed on your computer: 
http://bio-bwa.sourceforge.net.  For more details, consult the BWA manual: 
http://bio-bwa.sourceforge.net/bwa.shtml 

Input: 
• A FASTA file containing one record for each chromosome or contig in the genome.  In order for the 

SAMConverterPlugin (see below) to work correctly, the header of each record should contain only a single 
integer corresponding to that chromosome or contig’s number.  The suffix “chr” prior to the chromosome 
number is permissible, but no others.  For example, the headers “>1”, “>2”, “>3”, etc. are acceptable, as are 
“>chr1”, “>chr2”, “>chr3”, etc. 

Output: 
• A series of support files with the same name as the FASTA file and different suffixes 

(.sa, .rsa, .rpac, .rbwt, .pac, .bwt, .ann, .amb). 

Key Arguments: 
bwa index  
-a Indexing algorithm: “is” or “bwtsw”. 

Example command: 
bwa index -a bwtsw referenceSequence/rice.fa 

Gory Details: 
In order to quickly align short reads, BWA needs to go through an initial, time-consuming, indexing step that 
generates a series of lookup tables from the input genome sequence.   There are two alternative algorithms 
available.  The default, “is”, does not work with genomes larger than 2GB, but has no lower limit on genome size, 
and is the fastest option.  The alternative, “bwtsw”, is slower and cannot be used for genomes under 20MB, but it 
is capable of indexing human, bovine, maize, or other large genomes. 

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/bwa.shtml
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The Tassel3 GBS pipeline can use tag alignments produced either by BWA or by the default (-M) mode of 
bowtie2.  In our experience, bowtie2 is more sensitive than BWA, and produces results that are more similar to 
BLAST.  The tradeoff of the greater sensitivity of bowtie2 is that misalignment of tags will occur more often (e.g., 
tags from paralogous loci or from inserted sequences not present in the reference). 

Alignment with BWA 

Summary: 
Aligns the master set of GBS tags to the reference genome.  This input master tag list is stored in the fastq (.fq) 
file produced by TagCountToFastqPlugin (or the MergeMultipleTagCountPlugin with the -t option).  You must 
have BWA installed on your computer: http://bio-bwa.sourceforge.net. 

Input: 
• Tag count file in FASTQ format (.fq) produced by the TagCountToFastqPlugin (or the 

MergeMultipleTagCountPlugin with the -t option). 

Output: 
• Alignment file in SAI (binary) format. 

Key Arguments: 
bwa aln  
-t Number of CPU cores on which to run the program.  Speeds up execution on multi-core 

computers. 

Example command: 
bwa aln -t 4 referenceSequence/rice.fa mergedTagCounts/myMasterTags.cnt.fq > 
mergedTagCounts/myAlignedMasterTags.sai 

Gory Details: 
The angle bracket (greater than sign, “>”) here indicates that the output from this program should be stored in the 
given filename.  Otherwise, BWA prints the output to the console. 

As of this writing, our version of BWA  (0.5.6), has several options dealing with insertions and deletions that we 
have not modified (we use the default settings).  For guidance on these or other options, go to http://bio-
bwa.sourceforge.net/bwa.shtml or type “man bwa” on UNIX systems. 

Exporting BWA Alignments in SAM Format 

Summary: 
Converts the BWA-specific binary alignment (.sai) file into a text-based SAM (.sam) file.  

Input: 
• SAI format alignment (.sai) file produced by the Linux program BWA 

Output: 
• SAM alignment file that can be read by the SAMConverterPlugin of our GBS pipeline, as well as by MAQ 

and other bioinformatics software. 

Key Arguments: 
bwa samse We use the defaults.  Consult http://bio-bwa.sourceforge.net/bwa.shtml for possible 

options. 

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml
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Example command: 
bwa samse referenceSequence/rice.fa 
mergedTagCounts/myAlignedMasterTags.saimergedTagCounts/myMasterTags.cnt.fq  
> mergedTagCounts/myAlignedMasterTags.sam 

Gory Details: 
The last two letters of “samse” stand for “single-ended”.  Paired-end read alignment is possible, but not used in 
GBS (which produces single end reads).   

BWA outputs only one record (one line of text) for each read regardless of how many places it aligns to the 
reference.  The user cannot specify which alignment is chosen to “represent” a read with multiple mappings.  
However, the coordinates of the alternative mappings can be found at the end of the record, prefixed with “XA:”. 

Indexing with bowtie2  

Summary: 
Creates a series of support files needed to operate bowtie2. You must have bowtie2 installed on your computer.  
For more details, consult the bowtie2 manual (http://computing.bio.cam.ac.uk/local/doc/bowtie2.html). 

Input: 
• A FASTA file containing one record for each chromosome or contig in the genome.  In order for the 

SAMConverterPlugin (see below) to work correctly, the header of each record should contain only a single 
integer corresponding to that chromosome or contig’s number.  The suffix “chr” prior to the chromosome 
number is permissible, but no others.  For example, the headers “>1”, “>2”, “>3”, etc. are acceptable, as are 
“>chr1”, “>chr2”, “>chr3”, etc. 

Output: 
• A series of support files with the same name as the output base name but with different suffixes. 

Key Arguments: 
bowtie2-build   
 input fasta files  a comma separated list of input fasta files (see above for header information) 
output base name output file base name (e.g. ZmB73_RefGen_v2.fa) 

Example command: 
bowtie2-build 
chr1.fasta,chr2.fasta,chr3.fasta,chr4.fasta,chr5.fasta,chr6.fasta,chr7.fasta
,chr8.fasta,chr9.fasta,chr10.fasta,chrPt.fasta,chrMt.fasta,chrUNKNOWN.fasta 
ZmB73_RefGen_v2.fa 

Gory Details: 
This command builds a set of indices from the reference genome.  These indices are subsequently used by the 
“bowtie2” command for fast alignment of tags.  For more details see the bowtie2 manual. 

The Tassel3 GBS pipeline can use tag alignments produced either by BWA or by the default (-M) mode of 
bowtie2.  In our experience, bowtie2 is more sensitive than BWA, and produces results that are more similar to 
BLAST.  The tradeoff of the greater sensitivity of bowtie2 is that misalignment of tags will occur more often (e.g., 
tags from paralogous loci or from inserted sequences not present in the reference). 

http://computing.bio.cam.ac.uk/local/doc/bowtie2.html
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Alignment with bowtie2  

Summary: 
Aligns the master set of GBS tags to the reference genome.  This input master tag list is stored in the fastq (.fq) 
file produced by TagCountToFastqPlugin (or the MergeMultipleTagCountPlugin with the -t option).  

Input: 
• Tag count file in FASTQ format (.fq) produced by the TagCountToFastqPlugin (or the 

MergeMultipleTagCountPlugin with the -t option). 

Output: 
• SAM alignment file that can be read by the SAMConverterPlugin of our GBS pipeline. 

Key Arguments: 
bowtie2  
-M X The “-M mode” is the default mode of bowtie2, where it “searches for at most X+1 

distinct, valid alignments for each read. The search terminates when it can't find 
more distinct valid alignments, or when it finds X+1 distinct alignments, whichever 
happens first. Only the best alignment is reported” (ties are resolved at random). If 
multiple valid alignments are found, the alignment score for the second best 
alignment is stored in the XS:i field of the SAM output (alignment info) for that tag. 
 
In bowtie 2.1, this -M flag is deprecated, as it is the default mode.  Therefore, 
omitting the -M flag should work in the same manner, except that search depth is 
now controlled by the -D and -R options (defaults of 15 and 2, respectively).  
Consult the bowtie2 manual for more details: http://bowtie-
bio.sourceforge.net/bowtie2/manual.shtml  

-p X The number of processors to be used. More is faster. 
--very-sensitive-local This sets the sensitivity. 
-x  The basename of the reference genome index. 
-U  The input fastq file. 
-S The output sam file name. 

Example command: 
bowtie2 -M 4 -p 15 --very-sensitive-local -x ../zeareference/bowtie2/ -U 
AllZeaMasterTags_c10_20120607.fq -S AllZeaMasterTags_c10_20120613.sam 

Gory Details: 
This plugin performs an alignment of the GBS tags to a reference genome and reports the results in a SAM 
formatted file.  Consult the bowtie2 manual for more details: http://bowtie-
bio.sourceforge.net/bowtie2/manual.shtml  

The output SAM file will be converted to a Tags On Physical Map (TOPM) file in a subsequent step 
(SAMConverterPlugin).  This subsequent conversion to a TOPM will only work properly if the default -M mode 
(“search for multiple alignments, report the best”) of bowtie2 was used here. 

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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SAMConverterPlugin 

Summary: 
Converts a SAM format alignment (.sam) file produced by one of the aligners, BWA or bowtie2, into a binary 
tagsOnPhysicalMap (.topm) file that can be used by the TagsToSNPByAlignmentPlugin for calling SNPs.  

Input: 
• SAM format alignment (.sam) file produced by BWA or by the default (-M) mode of bowtie2 

Output: 
• binary tagsOnPhysicalMap (.topm) file that can be used by the TagsToSNPByAlignmentPlugin for calling 

SNPs 

Arguments: 
SAMConverterPlugin  
-i Alignment file in SAM format (.sam) produced by BWA or bowtie2. 
-o Output TagsOnPhysicalMap (TOPM) file that can be used by the 

TagsToSNPByAlignmentPlugin for calling SNPs (or by the 
SeqToTBTHDF5Plugin or FastqToTBTPlugin as a master tag list).  We 
recommend using the extension “.topm”.  In addition to the tags that aligned to a 
single best genomic position, tags with either multiple positions or no alignment 
are still included in this output TOPM (in other words, all tags that were fed into 
BWA or bowtie2 should end up in the TOPM file produced by this plugin, 
regardless of whether they could be aligned to the genome or not, or of how many 
positions they aligned to). 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -SAMConverterPlugin  
-i mergedTagCounts/myAlignedMasterTags.sam -o topm/myMasterTags.topm  
-endPlugin -runfork1 

Gory Details: 
In order for this step to work correctly, the chromosome names (sequence headers) in the FASTA reference 
genome file used as input to BWA or bowtie2 must be integers, e.g.,  >1,  >2,  or >3.  We currently do not have 
any provision for text names such as  >chrom1,  >chrom2,  >chrom3, etc.  The only exception is that we do allow 
usage of the prefix “chr” so that  >chr1, >chr2, >chr3, etc. are acceptable headers.  In the case of non-numerical 
chromosome names (X, Y, mt, cp) or polyploid genomes, you will need to rename them as integers (and keep 
track of how your new names back-translate).  

If you used bowtie2 instead of BWA, in order for this SAMConverterPlugin to work correctly, you must have run 
bowtie2 in its default (-M) mode (“search for multiple alignments, report the best”).  With bowtie2 output, when 
there are multiple valid alignments for a tag and the best two have identical alignment scores, then it is not 
possible to know how many different genomic positions are tied for first place.  Hence, when there are multiple 
ties for best genomic position for a tag in bowtie2, the number of positions is recorded as “99” in the output 
TagsOnPhysicalMap (.topm) file for that tag. 

FastqToTBTPlugin 

Summary: 
Generates a TagsByTaxa file for each FASTQ file in the input directory (or in subfolders thereof).  One 
TagsByTaxa file is produced per FASTQ file.  Requires a master list of tags of interest, which may come either 
from a tagCount (.cnt) or tagsOnPhysicalMap (.topm) file.  If your input files are in QSEQ format, use 
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QseqToTBTPlugin instead (same arguments).  To obtain a single TagByTaxa file in HDF5 format, and thus 
reduce the amount of disk space required for a large analysis, use the SeqToTBTHDF5Plugin instead of this 
FastqToTBTPlugin 

Input: 
• Directory (folder) containing FASTQ files 
• Barcode key file (see example in Appendix 1) 
• Master tag list in the form of either a binary tagCount (.cnt) file or a tagsOnPhysicalMap (.topm) file 

Output: 
• Directory (folder) containing a corresponding tagsByTaxa file for every FASTQ file in the input directory 

Arguments: 
FastqToTBTPlugin  
-i Input directory containing FASTQ files with raw GBS sequence reads. 
-k Barcode key file.  See Appendix 1 for an example. 
-e Enzyme used to create the GBS library (e.g., ApeKI). 
-o Output directory. 
-c Minimum taxa count within a FASTQ file for a tag to be output.  Default: 1 
-t Master tagCount (.cnt) file containing the tags of interest. This file must be binary 

(.cnt). The -t option is mutually exclusive with the -m option. 
-m TagsOnPhysicalMap (.topm) file containing the tags of interest. The -m option is 

mutually exclusive with the -t option. 
-y Output in TBTByte format (counts from 0-127) instead of TBTBit (0 or 1) 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -FastqToTBTPlugin -i fastq -k 
myGBSProject_key.txt -e ApeKI -o tbt -y –t mergedTagCounts/myMasterTags.cnt 
-endPlugin -runfork1 

Gory Details: 
Similar to FastqToTagCountPlugin, FastqToTBTPlugin parses FASTQ files containing raw GBS sequence data 
for good reads that contain a barcode and cut site remnant and that have no N’s in the first 64 bases after the 
barcode, and trims them to 64 bases (not including the barcode).  As in FastqToTagCountPlugin, 
FastqToTBTPlugin appropriately truncates reads that contain either a full cut site or the beginning of the common 
adapter within the first 64 bases, and pads them to 64 bases with polyA.  In a given GBS analysis, the same key 
file (-k option), containing the names of the taxa corresponding to each barcode in each lane, is used for both 
plugins (see Appendix 1 for an example key file). 

The difference between FastqToTBTPlugin and FastqToTagCountPlugin is that FastqToTBTPlugin uses the 
barcode information to keep track of which taxa each tag of interest is observed in.  Each good read in each 
FASTQ file is checked for a match against a set of tags of interest.  A tagsByTaxa output file is produced for 
every FASTQ file in the input directory (and all of its sub-directories) with a matching flowcell and lane in the 
key file.  Each output file is named after its corresponding input FASTQ file but with “_fastq.txt.gz” or “_fastq.txt” 
(etc.) replaced by “.tbt.bin” or “.tbt.byte” (depending on the format selected: tbt.bin by default, tbt.byte if the -y 
option is invoked, which we recommend).  Each output tagsByTaxa file is in binary format (only readable by our 
pipeline), but can be thought of as a grid where the rows are the tags of interest (the actual length in bases of each 
tag - not including the polyA padding - is also recorded), the columns headers are taxa (sample) names (including 
flowcell, lane and well information) and the cells indicate the number of times a tag was observed in a given 
taxon (= read depth of each tag in each taxon). 
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When the -y option is used (recommended), cells have a maximum value of 127 reads per tag per taxon; by 
default, they have a value of only 1 or 0 (indicating presence or absence of a tag in a taxon).  Storing the number 
of reads per tags per taxon (with the -y option) makes it possible to score heterozygotes & homozygotes 
quantitatively and thus attempt to distinguish true heterozygotes from apparent heterozygotes resulting from 
sequencing error.  For example, if one allele at a SNP is observed 20 times in an individual and the other allele is 
observed only once, then that individual will be called homozygous at that SNP (the actual SNP calling is 
performed by the TagsToSNPByAlignmentPlugin).  In contrast, if one allele is observed 12 times and the other 8 
times, then that individual will be called heterozygous for the SNP in question. 

In the output TBT, each taxon (sample) is named “SampleName:Flowcell:Lane:LibraryPrepID” (or, if the key file 
does not contain LibraryPrepIDs, then “SampleName:Flowcell:Lane:Well”). The “short name” of the taxon 
(sample) is the “SampleName” part (up to the first colon).  The “full name” is 
“SampleName:Flowcell:Lane:LibraryPrepID” or “SampleName:Flowcell:Lane:Well”. 

The set of tags of interest are those that are present in the input master tagCount file (using the -t option) or 
tagsOnPhysicalMap file (using the mutually exclusive -m option).  We usually use the -t option, using the 
output of TagCountToFastqPlugin (or MergeMultipleTagCountPlugin) as the -t option input file for this 
FastqToTBTPlugin step. 

If you use the -t option, the input tagCounts file (master tag list) must be binary (.cnt).  In other words, if 
you use the Linux command head (or less) on this file, it should look like random gibberish, not human-
readable text.  If your analysis (discovery build) encompasses only a single lane of raw GBS sequence data, then 
the input master tagCount (.cnt) file for this FastqToTBTPlugin will have been produced by the 
FastqToTagCountPlugin.  On the other hand, if your analysis (discovery build) encompassed more than one lane 
of raw GBS sequence data, then the input master tagCount (.cnt) file for this FastqToTBTPlugin will have been 
produced by the MergeMultipleTagCountPlugin without the -t option (i.e., a binary .cnt file, not a text fastq [.fq] 
file). 

The restriction enzymes currently supported by our pipeline (and their corresponding common adapters) are 
indicated in the FastqToTagCount section above. 

We generally leave the -c option (minimum taxa count within a FASTQ file for a tag to be output) at its default 
value of 1.  Filtering of tags based upon the number of taxa they appear in would be better performed at the 
MergeTagsByTaxaFilesPlugin step, but is not currently implemented (however, filtering of SNPs based upon data 
coverage/amount of missing data can be performed with the GBSHapMapFiltersPlugin).  With the default -c 
option of 1, tags that are in the master tagCount file but are not present in a given FASTQ file will not be output 
into the corresponding tagsByTaxa file - this is a good thing, as it saves disk space (no need to store rows 
containing nothing but zeros). 

If your sequence data predates CASAVA 1.8 (a version of the Illumina software for generating the sequence files 
released in 2011) and you thus have it in both QSEQ and FASTQ format, we recommend using the QSEQ files if 
possible because they contain all reads, not just the ones passing Illumina’s quality filters.  (CASAVA 1.8 only 
provides FASTQ files but these contain all reads.)  We have found that perfectly good reads - exactly matching a 
64 base tag that we have seen many times - can fail to pass Illumina’s filters.  To analyze QSEQ input files 
instead of FASTQ, use the QseqToTBTPlugin, which uses exactly the same arguments as this FastqToTBTPlugin. 

The multiple tagsByTaxa files produced by this FastqToTBTPlugin can be merged into a single master 
tagsByTaxa file in the next step, MergeTagsByTaxaFilesPlugin. 

MergeTagsByTaxaFilesPlugin 

Summary: 
Merges all .tbt.bin and/or (preferably) .tbt.byte files present in the input directory and all of its subdirectories.  
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Input: 
• Directory (folder) containing multiple tagsByTaxa (.tbt.byte or .tbt.bin) files (produced by 

FastqToTBTPlugin).  For the best genotyping results (proper calling of heterozygotes), we recommend 
using .tbt.byte files as input (produced by the FastqToTBTPlugin using the -y option) 

Output: 
• Merged tagsByTaxa file (it is best to send this to a separate directory from the input directory) 

Arguments: 
MergeTagsByTaxaFilesPlugin  
-i Input directory containing multiple tagsByTaxa files (preferably tbt.byte 

files). 
-o Output file name (should be in a separate directory from the input). Use 

extension matching the type of input file (“.tbt.byte” or “.tbt.bin”). 
-s Maximum number of tags the TBT can hold while merging (default: 

200,000,000).  Reduce this only if you run out of memory (omit the 
commas). 

-x Merges tag counts of taxa with identical short names.  Not performed by 
default. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeTagsByTaxaFilesPlugin -i tbt  
-o mergedTBT/myStudy.tbt.byte -endPlugin -runfork1 

Gory Details: 
This step merges the separate tagsByTaxa files produced by the FastqToTBTPlugin (and/or QseqToTBTPlugin) 
into a single, experiment-wide tagsByTaxa (TBT) file for all of the flow cell lanes in your experiment. 

The -s option controls the maximum number of tags that can be stored in the TBT tag list during the merger 
process.  It defaults to 200,000,000.  This is much larger than is needed for most purposes.  If you try to run 
MergeTagsByTaxaFilesPlugin but run out of memory, invoke this option with a number smaller than 200,000,000.  
Use the largest possible number that your memory capacity can handle.  This should be at least twice the number 
of tags in the master tagCounts (or master tagsOnPhysicalMap) file that you used to generate the individual 
tagsByTaxa files (in the FastqToTBTPlugin). 

The -x option (off by default) can be invoked to merge the tag counts of taxa with identical short names (i.e., with 
the same “SampleName” part of their full name,  where the full name is either 
“SampleName:Flowcell:Lane:LibraryPrepID” or “SampleName:Flowcell:Lane:Well”). These taxa have the same 
SampleName (or DNASampleName) in the key file but were run on different flow cells, lanes or in the same lane 
but with different barcodes.  However, we recommend that you do not invoke the -x option and thus leave in any 
duplicated taxa for now, as they can be used in a later step (GBSHapMapFiltersPlugin, 
BiparentalErrorCorrectionPlugin, or MergeIdenticalTaxaPlugin) to check error rates and to verify that there have 
been no sample mix-ups among the replicates. 

SeqToTBTHDF5Plugin 

Summary: 
This plugin processes all of the raw GBS sequence files (FASTQ or QSEQ format) in the input directory (and all 
of its subdirectories) and generates a “Tags by Taxa” (TBT) data file in HDF5 format.  This plugin and the 
ModifyTBTHDF5Plugin are newer additions to the pipeline that can be used in place of the FastqToTBTPlugin 
and the MergeMultipleTagsByTaxaFilesPlugin (which do not produce HDF5 formatted output).  Only reads that 
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match one of the tags in the input master tag list will be recorded in the output TBT HDF5.  The input master tag 
list can be in the form of either a binary tag count (.cnt) file or a TagsOnPhysicalMap (.topm) file. 

Input: 
• Directory (folder) containing FASTQ or QSEQ raw GBS sequence files 
• Barcode key file (see example in Appendix 1) 
• Master tag list in the form of either a binary tagCount (.cnt) file or a tagsOnPhysicalMap (.topm) file 

Output: 
• A single TagsByTaxa (TBT) file in HDF5 format (*TBT.h5) recording how often each GBS tag in the 

master tag list was observed in each taxon (sample) present in the input FASTQ or QSEQ files.  A “taxon” in 
the output TagsByTaxa file represents an individual DNA sample from a particular flowcell lane that has 
been distinguished by a particular barcode. 

Arguments: 
SeqToTBTHDF5Plugin  
-i Input directory containing FASTQ or QSEQ raw GBS sequence files 
-k Barcode key file.  See Appendix 1 for an example. 
-e Enzyme used to create the GBS library (see FastqToTagCountPlugin for list of 

available enzymes). 
-o Output TagsByTaxa (TBT) file in HDF5 format. Use the extension “.h5”. 
-s Max good reads per lane. (Optional. Default is 500,000,000). 
-L Output log file 
-t Master tagCount (.cnt) file containing the tags of interest. This file must be 

binary (.cnt). The -t option is mutually exclusive with the -m option. 
-m TagsOnPhysicalMap (.topm) file containing the tags of interest. The -m option 

is mutually exclusive with the -t option.  

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -SeqToTBTHDF5Plugin -i fastq  
-k key/AllZea_key.txt -e ApeKI -o tbt/AllZeaTBT.h5 -s 900000000 -L 
tbt/AllZeaTBT.log -t mergedTagCounts/AllZeaMasterTags.cnt -endPlugin  
-runfork1 

Gory Details: 
The purpose of the SeqToTBTHDF5Plugin is to produce a TagsByTaxa (TBT) file in HDF5 format recording 
how many times each GBS tag of interest was observed in each taxon (sample).  It is more recent alternative to 
the FastqToTBT and MergeMultipleTagsByTaxaFiles plugins, which (together) also produce a single, master 
TBT file, but that TBT file is not in HDF5 format. 

The tags of interest are limited to those that appear in either the master tag count file or the TOPM derived from 
that master tag list.  If you use the -t option, then the tags of interest are those present in the supplied master tag 
counts (.cnt) file produced by the MergeMultipleTagsByTaxaPlugin (or, if your experiment encompasses only 
one lane of data, by the FastqToTagCountPlugin) which must be a binary file (see the FastqToTBTPlugin for 
more explanation of this).  Alternatively, if you use the -m option, the master list of tags of interest can be 
obtained from a binary TagsOnPhysicalMap (.topm) file.   

The information in the key file (flowcell, lane, barcode) is used to assign GBS reads matching one of the tags of 
interest to a given sample (taxon).  Each taxon is named “SampleName:Flowcell:Lane:LibraryPrepID” in the 
output TBT (or, if the key file does not contain LibraryPrepIDs, then “SampleName:Flowcell:Lane:Well”).  If the 
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same GBS library (combination of a DNA sample, barcode, and well in GBS library prep plate) was sequenced 
multiple times (on different lanes or flowcells) then the TBT HDF5 will contain multiple, replicate entries -- these 
can be merged in the next step, ModifyTBTHDF5Plugin, provided that the key file contains LibraryPrepIDs. 

The change to the TBT HDF5 format was driven by our need to efficiently process hundreds of flow cell lanes 
and tens of thousands of samples.  HDF5 is a mature format designed to efficiently work with large data sets (e.g., 
weather data, astronomical data, etc.).  The only drawback of the TBT HDF5 format compared to our previous 
TBT.byte format (produced by the FastqToTBT and MergeMultipleTagsByTaxaFiles plugins) is that the TBT 
HDF5 file cannot be converted to a human-readable text format (i.e., the BinaryToTextPlugin does not work for 
TBT HDF5).  However, you can use the program HDF5View (available from http://www.hdfgroup.org/hdf-java-
html/hdfview/) to manually inspect a TBT HDF5 file. 

Similarly to the tbt.byte format, the HDF5 TBT format holds counts from between 0-127 recording the number of 
times each tag of interest was observed in each taxon (= read depths per tag per taxon).  Counts larger than 127 
are recorded as 127. 

ModifyTBTHDF5Plugin 

Summary: 
This plugin makes changes to a TBT HDF5 file.  There are three things that it can do, but it can only do one of 
them at a time:  

1. Merge two TBT HDF5 files into one, or 
2. Merge taxa with identical LibraryPrepIDs, or  
3. Transpose the TBT HDF5 into an orientation that is more efficiently used for SNP calling (by allowing 

faster access of all the counts across taxa for a particular tag). 

Input: 
• TBT HDF5 (*TBT.h5) file (one or multiple depending on action) 

Output: 
• Modified TBT HDF5 (*TBT.h5) file 

Arguments: 
ModifyTBTHDF5Plugin  
-o Target TBT HDF5 (*TBT.h5) file to be modified 
One of either: (depending on the modification you wish to make) 
        -i TBT HDF5 (*TBT.h5) file containing additional taxa to be added to the target 

TBT HDF5 file 
        -c Merge taxa with same LibraryPrepID in the target TBT HDF5 file 
        -p Pivot (transpose) the target TBT HDF5 file into a tag-optimized orientation 

Example commands: 

Merging two TBT HDF5 files: 
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o 
mergedTBT/mergedTBT.h5 -i tbt/part2TBT.h5 -endPlugin -runfork1 

Merging taxa with the same LibraryPrepID: 
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o 
mergedTBT/mergedTBT.h5 -c -endPlugin -runfork1 

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/hdf-java-html/hdfview/
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Pivot (transpose) a TBT HDF5 file: 
/programs/tassel/run_pipeline.pl -fork1 -ModifyTBTHDF5Plugin -o 
mergedTBT/mergedTBT.h5 -p pivotedTBT/pivotedTBT.h5 -endPlugin -runfork1 

Gory Details: 
The gory details for this plugin are organized by the three different functions this plugin can perform: 

1) Merging two TBT HDF5 files into one TBT HDF5 file (-i option):  
If you are working on a large project, to reduce the total amount of time it takes to create the “master” 
TBT HDF5 file, you might chose to run the SeqToTBTHDF5Plugin on multiple computers or processors 
and thus create multiple TBT HDF5 files.  This will result in multiple TBT HDF5 files which must be 
combined into one master file.  To use the ModifyTBTHDF5Plugin to merge two TBT HDF5 files, use 
the -o option to specify an existing target TBT HDF5 file and the -i option to specify an existing input 
TBT HDF5 to be added to the target.  In practice, it is best to make a copy of what is to be the initial 
target TBT HDF5.  This allows the original file to be kept.  This plugin is then run repeatedly until all 
TBT HDF5 files generated in the SeqToTBTHDF5 step are merged into the target.  For example, assume 
that the SeqToTBTHDF5Plugin was run in three stages (with each stage working with a different set of 
input FASTQ files), and that the output TBT HDF5 files were in a folder named “tbt” and were named 

part1TBT.h5,  
part2TBT.h5, and  
part3TBT.h5.   

To merge these three TBT HDF5 files, first, make a copy of part1TBT.h5 named 
mergedTBT/mergedTBT.h5: 

cp tbt/part1TBT.h5 mergedTBT/mergedTBT.h5 
Then, run this ModifyTBTHDF5Plugin with the arguments: 

-o mergedTBT/mergedTBT.h5 -i tbt/part2TBT.h5 
Then, run it again with the arguments: 

-o mergedTBT/mergedTBT.h5 -i tbt/part3TBT.h5 
The TBT HDF5 file mergedTBT/mergedTBT.h5 will then be a merger of all three parts. 

2) Merging taxa by LibraryPrepID (-c option): 
We typically run GBS at 384-plex and, if higher depth of coverage is desired, run the resulting pooled 
GBS library in replicate on multiple flow cell lanes (usually on four different lanes, with each lane on a 
different flow cell).  In addition to increasing depth of coverage, this has the added benefits of spreading 
out systematic sequencing errors and of allowing lane effects and sample effects to be distinguished in 
statistical analyses of read depth per tag.  To identify the replicate runs of each library prep (where a 
library prep is a particular combination of sample DNA and barcode in a particular well of a library prep 
plate), we assign each library prep a distinct LibraryPrepID which is recorded in the barcode key file (see 
Appendix 1).  If you have run some of your library preps in replicate in this manner, and have recorded 
distinct LibraryPrepIDs in the key file for each Sample/Barcode/libraryPlateWell combination, then you 
can use the -c option of the ModifyTBTHDF5Plugin to merge the tag counts of the replicate library preps.  
When LibraryPrepIDs are present in the key file, taxa in the TBT files are named as 
SampleName:Flowcell:Lane:LibraryPrepID (rather than SampleName:Flowcell:Lane:Well).  Replicate 
library preps will have the same SampleName and LibraryPrepID but the Flowcell and/or Lane portions 
of their name will be different.  Using ModifyTBTHDF5Plugin with the -c option will merge the 
tagCounts for each set of taxa having the same LibraryPrepID by summing the counts for each tag.  The 
resulting, merged taxon will be named SampleName:MRG:4:LibraryPrepID, where the 4 indicates that 
four replicates with the same LibraryPrepID were merged.  The -c option of this plugin operates on only 
one file (the target TBT HDF5 file specified by the -o option) and changes that file.  It is best to make a 
copy of the original  TBT HDF5 file before performing this operation. 

3) Pivot (transpose) TBT HDF5 into a tag-optimized orientation (-p option):  
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The TBT HDF5 created so far are in a taxon-optimized orientation best suited for operations involving 
taxa (adding and merging taxa).  In order for the SNP caller (TagsToSNPByAlignmentPlugin) to run 
efficiently, the master TBT HDF5 needs to be in a tag-optimized orientation, allowing fast retrieval of the 
counts across taxa for a particular tag.  You can produce a new, tag-optimized TBT HDF5 by using the -p 
option of this plugin.  The target TBT HDF5 file (specified by the -o option) will not be changed by this 
operation. 

TagsToSNPByAlignmentPlugin (the Discovery SNP Caller) 

Summary: 
Aligns tags from the same physical location against one another, calls SNPs from each alignment, and then 
outputs the SNP genotypes to a HapMap format file (one file per chromosome).  

Input: 
• TagsByTaxa file (.tbt.byte or a tag-optimized TBT.h5) indicating the number of times each tag of interest 

was observed in each taxon.  Use of a TBTBit (.tbt.bin) file is not recommended. 
• TagsOnPhysicalMap file (.topm) containing genomic position of each tag of interest 

Output: 
• One HapMap format genotype file (.hmp.txt or .hmp.txt.gz) per chromosome. 

Arguments: 
TagsToSNPByAlignmentPlugin  
-i 
 

Input TagsByTaxa (TBT) file.  If you are using a TBT in .tbt.byte 
format, then use the -y option as well. 

-y Indicates that the input TBT specified by the -i option is in TBTByte 
(.tbt.byte) format (with counts from 0-127) rather than TBT HDF5 
(*TBT.h5) format (also with counts from 0-127) or TBTBit (.tbt.bin) 
format (with counts of 0 or 1).  Either TBTByte (.tbt.byte) or TBT HDF5 
(*TBT.h5) format are recommended.  If you use a TBTBit (.tbt.bin), then 
heterozygotes will be improperly called at higher coverage SNPs.  If you 
don’t use the -y option, then the type of TBT input file (TBT HDF5 or 
TBTBit) is determined from its file extension (.h5 or .tbt.bin, 
respectively) 

-m TagsOnPhysicalMap (.topm) file containing genomic position of tags. 
-mUpd Update the TOPM file with variants called during SNP calling. 
-o Output HapMap genotype file. Use a plus sign (+) as a wildcard 

character in place of the chromosome number 
(e.g., -o hapmap/raw/myGBSGenos_chr+.hmp.txt).  If you use a “.gz” 
suffix at the very end of the filename, the output genotype files will be 
gzip compressed. 

-mxSites Maximum number of sites (SNPs) output per chromosome (default: 
200,000). 

-mnF Minimum value of F (inbreeding coefficient = 1-Ho/He).  Not tested by 
default. 
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-p Optional pedigree file containing full sample names & expected 
inbreeding coefficient (F) for each.  Only taxa (samples) with expected F 
>= mnF used to calculate F (= 1-Ho/He) when applying the -mnF filter.  
See Appendix 2 for an example pedigree file.  Default: use ALL taxa to 
calculate F. 

-mnMAF Minimum minor allele frequency (default: 0.01).  SNPs that pass either 
the specified minimum minor allele frequency (mnMAF) or count 
(mnMAC) will be output. 

-mnMAC Minimum minor allele count (default: 10).  SNPs that pass either the 
specified minimum minor allele count (mnMAC) or frequency (mnMAF) 
will be output. 

-mnLCov Minimum locus coverage, i.e., the proportion of taxa (samples) with at 
least one tag present from the TagLocus covering a SNP (default: 0.1). 

-errRate Average sequencing error rate per base (used to decide between 
heterozygous and homozygous calls) (default: 0.01). 

-ref Path to reference genome in fasta format. Ensures that a tag from the 
reference genome is always included when the tags at a locus are aligned 
against each other to call SNPs. The reference allele for each site is then 
provided in the output HapMap files, under the taxon name 
"REFERENCE_GENOME" (first taxon). DEFAULT: Don't use 
reference genome. 

-inclRare Include the rare alleles (3rd or 4th states) at sites.  These are ignored by 
default (genotypes containing rare alleles are set to missing). 

-inclGaps Include sites where the major or minor allele is a gap.  These sites are 
excluded by default. 

-callBiSNPsWGap For SNPs where the major and minor alleles are nucleotides, but the third 
allele is a gap (-), include the gap alleles in the genotype calls (default: 
ignore the gap alleles) 

-sC Start chromosome.  Must be an integer. 
-eC End chromosome.  Must be an integer. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -TagsToSNPByAlignmentPlugin -i 
mergedTBT/myStudy.tbt.byte -y -m topm/myMasterTags.topm -mUpd 
topm/myMasterTagsWithVariants.topm -o hapmap/raw/myGBSGenos_chr+.hmp.txt  
-mnF 0.8 -p myPedigreeFile.ped -mnMAF 0.02 -mnMAC 100000 -ref 
MyReferenceGenome.fa -sC 1 -eC 10 -endPlugin -runfork1 

Gory Details: 
In this step, a multiple sequence alignment is created for each “TagLocus” which is defined as a set of tags that 
align to the exact same genomic position and strand.  The genomic position of a tag is defined by that of the first 
base on its barcoded end (after removing the barcode).  SNPs are called from each TagLocus alignment.  Tags 
with multiple or unknown physical genomic positions are not used for SNP calling.  The SNP calls from each 
TagLocus are written to a genotype file in HapMap format, with one HapMap file produced per chromosome.   
With the -o (output file) option, you must provide the relative path and “generic” name of the output HapMap 
genotype file.  This filename must include the wildcard character ‘+’ in place of the chromosome number.  For 
example, if you use the argument: 

-o hapmap/raw/myGBSGenos_chr+.hmp.txt 
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then the ‘+’ character will be replaced by each chromosome number (from -sC to -eC) in the output files.  If you 
only want genotypes for one chromosome (e.g., chromosome 9), then the -sC (start chromosome) and -eC (end 
chromosome) options should both be the same (e.g., -sC 9 -eC 9).  If you use ‘.gz’ as the suffix at the very 
end of the output file name, then the output HapMap file will be gzip compressed.  Note that *.hmp.txt.gz files 
can be directly read by the Tassel GUI (you do not have to decompress them first), or by subsequent steps in the 
GBS pipeline (as long as you include the ‘.gz’ in the generic input file name). 

If you are working with highly homozygous inbred lines or a selfing species, then be sure to use the -mnF 
(minimum F) option (we suggest setting mnF to 0.8 or 0.9), where ‘F’ means ‘inbreeding coefficient’, and is 
calculated for each SNP as: 

F = 1 - Ho/He, 
where Ho = observed heterozygosity, and  
He = expected heterozygosity = 2p(1-p), where p = the frequency of the major allele. 

SNPs with a calculated F less than -mnF will be removed from the output.  In species like maize which contain 
abundant paralogs (from ancient chromosomal duplications), this can filter out numerous bad SNPs. 

If you are NOT working with inbred lines or a selfing species, then invoke the -mnF option with a low 
cutoff such as -0.1 (use double quotes to specify a negative number:  -mnF “-0.1”). 

If the samples in your study (discovery build) are a mixture of inbred lines and outbred material, then you can use 
a pedigree file (-p option) to specify which samples are inbred.  In that case, when applying the -mnF cutoff, 
only the samples with an expected F in the pedigree file that is greater than or equal to the value specified by the  
-mnF (minimum F) option will be used in the calculation of F for each SNP (for comparison to the cutoff set by  
-mnF).  For more information on the format and content of a pedigree file, see Appendix 2. 

The options -mnMAF (minimum minor allele frequency) and -mnMAC (minimum minor allele count) can be 
used to filter out SNPs with rare minor alleles that possibly result from sequencing errors.  Keep in mind that 
SNPs that pass either of these criteria will be output.  If you are working with a biparental family with 1:1 
segregation you might try a mnMAF of 0.2 and an impossible to reach mnMAC much larger your total number of 
taxa, so that it is irrelevant (in that case, only the mnMAF will matter).  With unrelated individuals and no 
expected range of acceptable minor allele frequencies, you might want to try a mnMAF of 0.02 (and an 
impossible to reach mnMAC much larger than your total number of taxa). 

The -mnLCov (minimum locus coverage) option can be used to filter out SNPs with very high amounts of 
missing data from the output.  “Locus Coverage” is the proportion of taxa (samples) that are covered by at least 
one of the tags comprising the TagLocus to which a SNP belongs.  If the coverage at a TagLocus is less than that 
specified by the -mnLCov option, then none of the SNPs in that TagLocus will be output.  TagLoci with high 
amounts of missing data most likely result from large restriction fragments (>400 bp) that are not amplified as 
efficiently in the PCR steps of the GBS protocol.  The default value of -mnLCov is 0.1.  If you want fewer SNPs, 
but those with higher coverage, then increase -mnLCov. 

The TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) can work with three different types of TBT input 
files, a TBTBit file (.tbt.bin),  a TBTByte file (.tbt.byte), or, more recently, a tag-optimized TBT HDF5 file 
(*TBT.h5).  The input TBT file is specified by the -i option.  We started off working with TBTBit files that 
simply used 1 or 0 to record the presence or absence of each tag in each taxon.  We then realized that at sites 
(SNPs) with higher depths of coverage, sequencing errors could result in homozygotes being erroneously called 
as heterozygotes (for example, if a TBTBit is used, a taxon covered by 20 reads of a tag for one allele, and 1 read 
of a tag for the other allele that actually came from a sequencing error would be stored as 1/1 (present/present) for 
each tag and would be called a heterozygote).  So, we then adopted the TBTByte (.tbt.byte) format which can 
record read depths per tag per taxon ranging from 0-127 (depths >127 are stored as 127), along with a method for 
“quantitative” rather than “qualitative” SNP calling (see below).  The -y option was then added to the 
TagsToSNPByAlignmentPlugin to indicate that the input TBT (specified by the -i option) is in byte format 
(.tbt.byte) format, which was preferred over the default of tbt.bin.  Later, as explained in the 
SeqToTBTHDF5Plugin section above, we needed to develop a TBT HDF5 format in order to be able to expand 
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the capacity of our pipeline to allow processing of tens of thousands of samples.  As our TBT HDF5 file names 
end with ‘TBT.h5’, we now use the absence of the -y flag and the presence of the “.h5” extension to determine 
that the input TBT (-i option) is in TBT HDF5 format.  So the moral of the story is: 
 
If you are using a: -y flag File Name Counts Recommended? 
TBTByte ON *.tbt.byte 0-127 Yes 
TBT HDF5 OFF *TBT.h5 0-127 Yes (for very large studies) 
TBTBit OFF *.tbt.bin 0 or 1 NO!! 

If you use a TBT HDF5 as the input to the TagsToSNPByAlignmentPlugin, it needs to be in “tag-optimized” 
orientation, allowing the fast retrieval of the counts across taxa for a particular tag.  The TBT HDF5 created by 
the SeqToTBTHDF5Plugin (or by using the -i or -c options of the ModifyTBTHDF5Plugin) is in a taxon-
optimized orientation (good for adding and merging taxa).  A TBT HDF5 in a taxon-optimized orientation can be 
transposed (pivoted) into to a tag-optimized orientation by using the -p option of the ModifyTBTHDF5Plugin (see 
above for more details). 

This TagsToSNPByAlignmentPlugin performs quantitative SNP calling based on an expected sequencing error 
rate specified by the -errRate option (default of 0.01).  Cutoffs are calculated for the minimum number of reads 
of the “less tagged allele” needed to call a heterozygote, given the total number of reads across the two most 
covered alleles in a SNP in an individual taxon.  These cutoffs are the minLessTaggedAlleleCounts such that the 
binomial likelihood ratio p(Het)/p(Err) > 1, where p(Het) is the binomial probability of the observed 
counts of the two alleles in an individual, assuming that the individual is in fact a heterozygote and that each allele 
is equally likely to be sequenced, and p(Err) is the binomial probability of the observed counts assuming that 
the individual is in fact a homozygote and all of the reads of less tagged allele result from sequencing errors, and 
that sequencing errors to the alternate allele occur at a rate specified by the -errRate option (default of 0.01).  
The cutoffs are calculated at the start, before any SNPs are called, and are written to the console output: 
 
Initializing the cutoffs for quantitative SNP calling likelihood ratio 
(pHet/pErr) >1 

  
totalReadsForSNPInIndiv  minLessTaggedAlleleCountForHet 
2                        1 
3                        1 
4                        1 
5                        1 
6                        1 
7                        2 
8                        2 
9                        2 
10                       2 
11                       2 
12                       2 
13                       2 
14                       3 
15                       3 
16                       3 
17                       3 
18                       3 
19                       3 
20                       3 
ETC… 
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From this table (which uses the default -errRate of 0.01), it can be seen that quantitative SNP calling only matters 
when a SNP in an individual sample has been covered by at least 7 reads in total.  At less than 7 reads, it only 
takes one read of the less tagged allele to call a heterozygote.  For a genotype covered by 20 reads in total for the 
the two most covered nucleotides, in order for a heterozygote to be called, the less tagged allele must be covered 
by at least 3 reads. 

The multiple sequence alignments produced for each TagLocus sometimes contain gaps.  In such cases, if the 
expected tag from the reference genome is not present in the alignment, and if the gaps are caused by small 
insertions relative to the reference, SNPs downstream of the insertion (toward the common adapter end of the 
tags) can end up with slightly wrong chromosomal positions.  The expected tag from the reference genome may 
not be present either because the reference genome haplotype is not well-represented among your samples, or 
because the reference genome has a null allele for that GBS tag.  A null allele could occur if the restriction 
enzyme cut site is absent, or if the restriction fragment is too large for efficient GBS.  To remedy this problem, we 
added the -ref (reference genome) option, which ensures that a tag from the corresponding position and strand in 
the reference genome is always included in the multiple sequence alignment for each TagLocus.  This ensures that 
small insertions relative to the reference do not result in slight errors in the positions of SNPs downstream of 
those insertions.  The argument of the -ref option is the relative path and name of the reference genome file in 
FASTA format, including all chromosomes of interest, and where the header lines preceding the sequence of each 
chromosome consisting of nothing but “>1”, “>2”, “>3”, etc or “>chr1”, “>chr2”, “>chr3” etc. 

We recommend that you DO NOT invoke the -inclRare option, so that 3rd and 4th allelic states (i.e., triallelic and 
quadra-allelic SNPs) are ignored (genotypes set to missing).  Any 3rd and 4th allelic states are far more likely to 
result from sequencing error than biological reality. 

Similarly, we recommend that you do not invoke the -inclGaps option, so that small indels are not scored.  
Because of alignment issues for small indels (multiple, equally likely alignments), they can end up being 
positioned slightly differently in replicate runs of the plugin.  Also, because our tags are all 64 bases (or smaller) 
in length, small indels in the middle of a tag alignment always result in artifactual, compensatory small indels of 
equal size at or near the end of the tag alignment.  However, if you are interested in maximizing marker saturation 
(for example, for GWAS or for fine-mapping of a QTL), then you might want to invoke inclGaps: there will very 
likely be numerous sets of tag alignments that contain no SNPs but do contain a small indel.  Note that with 
inclGaps invoked, a three base indel (for example) will be output as three consecutive single base gaps in the 
HapMap file (plus an additional three artifactual, single base gaps).  If the insertion is not present in the reference 
genome, the three real gaps will all have the same position (the base in the reference genome immediately 
preceding the insertion).  Essentially, they are redundant scorings of the same indel. 

If you invoke the -callBiSNPsWGap (call biallelic SNPs with a gap) option, then, for SNPs where the major 
and minor alleles are both nucleotides (A, C, G, or T) but there is an apparent third allele that is a gap (-), the gap 
alleles will be included in the genotype calls (where “-” in the hmp.txt output file represents homozygous for a 
gap, and “0” represents a heterozygote for the gap and one of the other nucleotides).  Our thinking behind 
including this option is related to the problem of imputing missing data.  If actual homozygotes for a gap were 
scored as missing (the default when -callBiSNPsWGap is NOT invoked), then we will likely end up mis-imputing 
a nucleotide where one does not in fact exist.  In practice, we have NOT found this option to be very helpful in 
maize.  Furthermore, Tassel3 still has some issues encoding gaps: 0 = +/- which creates a new “+” allele and we 
no longer know whether the + means A, C, G, or T.  Therefore we do not recommend invoking this option. 

If you plan to use the Production Pipeline (RawReadsToHapMapPlugin) to perform production SNP calling on 
raw GBS sequence files (FASTQ files) produced AFTER running the Discovery Pipeline, then you will need to 
invoke the -mUpd (update TOPM with variants) option.  If you invoke this option, then, for every SNP that is 
output to the HapMap (.hmp.txt or .hmp.txt.gz) genotypes file, variants will be added to the corresponding tags in 
the TOPM that comprise the TagLocus covering that SNP.  Up to eight variants (SNPs) are stored per tag, with 
both the relative position of the variant within the tag (VariantPositionOffset) and the particular allele represented 
by that tag (VariantDefinition) being recorded for each variant.  The same set of variants (VariantPositionOffsets) 
are stored for each tag within a TagLocus, but the VariantDefinitions will vary among the tags within a TagLocus, 
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depend on the sequence of each tag.  The argument to the -mUpd option is a new name for the modified TOPM 
file -- this will be a copy of the input TOPM (from the -m option), but with the variants now recorded.  To avoid 
overwriting the input TOPM, we recommend that you provide a different name for the -mUpd option than that for 
the input TOPM (-m option). 

The HapMap genotype files that we generate save disk space and memory by using single letters to represent 
phase unknown, diploid genotypes.  Heterozygotes are represented by IUPAC nucleotide codes: 

A = A/A 
C = C/C 
G = G/G 
T = T/T 
M = A/C 
R = A/G 
W = A/T 
S = C/G 
Y = C/T 
K = G/T 
N = missing data 

Genotypes from tags matching the minus strand of the reference genome are complemented, so that they are 
recorded relative to the plus strand.  Hence, all SNPs in the output are relative to the plus strand.  For restriction 
fragment smaller than 128bp, the (plus and minus strand) reads from opposite ends can overlap and assay the 
same SNPs.  Hence, the output of TagsToSNPByAlignmentPlugin will contain some duplicate SNPs, each with 
different patterns of missing data.  These duplicate SNPs can be merged in the next step of the analysis, with the 
MergeDuplicateSNPsPlugin. 

MergeDuplicateSNPsPlugin 

Summary: 
Finds duplicate SNPs in the input HapMap file, and merges them if they have the same pair of alleles (not 
necessarily in the same major/minor order) and if their mismatch rate is no greater than the threshold specified by 
-maxMisMat.  If -callHets is on, then genotypic disagreements will be called heterozygotes; otherwise they will 
be set to missing (callHets is off by default). 

Input: 
• HapMap genotype files (.hmp.txt or .hmp.txt.gz).  Use a plus sign (+) as a wild card character to specify 

multiple chromosome numbers (each chromosome in a separate file). 

Output: 
• HapMap genotype files (.hmp.txt or .hmp.txt.gz) (one per chromosome) in which duplicate SNPs have been 

merged 

Arguments: 
MergeDuplicateSNPsPlugin  
-hmp Input HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz).  Use a plus sign (+) 

as a wildcard character to specify multiple chromosome numbers (each 
chromosome in a separate file). 

-o Output HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz).  Use a plus sign 
(+) as a wildcard character to specify multiple chromosome numbers (each 
chromosome in a separate file).  If you use a “.gz” suffix at the very end of 
the filename, the output genotype files will be gzip compressed. 
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-misMat Threshold genotypic mismatch rate above which the duplicate SNPs won't be 
merged.  Default: 0.05 

-p Optional pedigree file containing full sample names & expected inbreeding 
coefficient (F) for each.  Only taxa (samples) with expected F >= 0.8 (i.e., S3 
or more) will be used to test if two duplicate SNPs agree with each other.  
See Appendix 2 for an example pedigree file.  Default: use ALL taxa to 
compare duplicate SNPs. 

-callHets When two genotypes at a replicate SNP disagree for a taxon, call it a 
heterozygote.  Defaults to false (=set to missing). 

-kpUnmergDups When a pair of duplicate SNPs are not merged (because they have different 
alleles, too many mismatches, or the major or minor allele for one of them is 
a gap), keep them.  Defaults to false (=delete them). 

-sC Start chromosome.  Must be an integer. 
-eC End chromosome.  Must be an integer. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeDuplicateSNPsPlugin  
-hmp hapmap/raw/myGBSGenos_chr+.hmp.txt -o 
hapmap/mergedSNPs/myGBSGenos_mergedSNPs_chr+.hmp.txt -misMat 0.1 -p 
myPedigreeFile.ped –callHets -sC 1 -eC 10 -endPlugin -runfork1 

Gory Details: 
This step is usually run directly after TagsToSNPByAlignmentPlugin, using the HapMap file(s) from that step as 
input.  Duplicate SNPs arise from overlapping, but separate TagLoci that cover the same SNP.  These overlapping 
TagLoci are usually on different strands, starting on either end of a restriction fragment that is less than 128 bp in 
length. 

If the germplasm is not fully inbred, and still contains residual heterozygosity (like the maize NAM or IBM 
populations do) then -callHets should be on and -maxMisMat should be set fairly high (0.1 to 0.2, or even higher, 
depending on the amount of heterozygosity).  Because the sequencing coverage is usually less than 1x, most of 
the time only one allele at a heterozygous SNP will be detected (particularly for ApeKI).  Hence, duplicate SNPs 
genotypes from a true heterozygote may disagree simply because different alleles were sampled by the duplicate 
assays.  Hence, these disagreements are not necessarily errors, and should not necessarily be used to prevent 
duplicate SNPs from being merged (unless your germplasm is highly inbred, with very little residual 
heterozygosity). 

Indels (gaps) are ignored by this plugin: it makes no attempt to merge apparent duplicate sites with the same 
chromosomal position where either the major or minor allele is a gap. 

GBSHapMapFiltersPlugin 

Summary: 
Reads HapMap format genotype files (one per chromosome) and filters out SNPs with low taxon coverage 
(missing data at most taxa), high heterozygosity, low (and/or high) minor allele frequency, or that are not in LD 
with at least one neighboring SNP.  Taxa with low SNP coverage (missing data at most SNPs) can also be 
removed.  All filters are off by default and all cutoffs are adjustable. 

Input: 
• HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz) 
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Output: 
• HapMap genotype file(s) (.hmp.txt or .hmp.txt.gz) with some SNPs and/or taxa filtered out 

Arguments: 
GBSHapMapFiltersPlugin  
-hmp Input HapMap file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign (+) as a wild 

card character to specify multiple chromosome numbers (each chromosome in 
a separate file). 

-o Output HapMap file(s) (.hmp.txt or .hmp.txt.gz). Use a plus sign (+) as a 
wildcard character to specify multiple chromosome numbers (each 
chromosome in a separate file).  If you use a “.gz” suffix at very end of the 
filename, the output genotype files will be gzip compressed. 

-mnTCov Minimum taxon coverage. The minimum SNP call rate for a taxon to be 
included in the output, where call rate is the proportion of the SNP genotypes 
for a taxon that are not “N” (where N = missing).  Default: no filter. 

-mnScov Minimum site coverage.  The minimum taxon call rate for a SNP to be 
included in the output, where taxon call rate is the proportion of the taxa with 
genotypes that are not “N” for that SNP (where N = missing).  Default: no 
filter 

-mnF Minimum value of F (inbreeding coefficient).  Not tested by default. 
-p Optional pedigree file containing full sample names & expected inbreeding 

coefficient (F) for each.  Only taxa (samples) with expected F >= mnF used to 
calculate F (= 1-Ho/He) when applying the -mnF filter.  See Appendix 2 for an 
example pedigree file.  Default: use ALL taxa to calculate F. 

-mnMAF Minimum minor allele frequency Default: 0.0 (no filtering). 
-mxMAF Maximum minor allele frequency.  Default: 1.0 (no filtering). 
-hLD Specifies that SNPs should be filtered for those in statistically significant  LD 

with at least one neighboring SNP.  Default: Off. 
-mnR2 Minimum R-square value for the LD filter.  Default: 0.01 
-mnBonP Minimum Bonferroni-corrected p-value for the LD filter.  Default: 0.01 
-sC Start chromosome.  Must be an integer. 
-eC End chromosome.  Must be an integer. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -GBSHapMapFiltersPlugin  
-hmp hapmap/mergedSNPs/myGBSGenos_mergedSNPs_chr+.hmp.txt -o 
hapmap/filt/myGBSGenos_mergedSNPsFilt_chr+.hmp.txt -mnTCov 0.01 -mnSCov 0.2 
-mnMAF 0.01 -hLD -mnR2 0.2 -mnBonP 0.005 -sC 1 -eC 10 -endPlugin -runfork1 

Gory Details: 
The -mnTCov and -mnSCov options allow you to filter out taxa and/or SNPs, respectively, with call rates lower 
than the specified cutoffs.  These filters are off by default.  If the -mnTCov (taxon filter) is invoked, it is applied 
first, so that taxa with very low call rates (i.e., blanks and/or failed samples) are removed prior to applying any of 
the other filters.  Taxa with low call rates are identified based only on the starting chromosome (specified by the   
-sC option), and then this same set of low call rate taxa is filtered from the output of all the chromosome.  This is 
done to avoid the possibility of output genotype files for different chromosomes containing different sets of taxa, 
which could happen if some taxa hover above or below the -mnTCov cutoff on different chromosomes.  

Filtering based on the -mnF (minimum F) option, and the optional use of the -p (pedigree file) option 
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to specify which samples should be included in the calculation of F, are the same as described above for the 
TagsToSNPByAlignmentPlugin. 

The -mnMAF and -mxMAF options allow you to select for those SNPs whose minor allele frequencies fall into 
an expected range.  For example, if you are working in a backcross (or psuedo-testcross) family, with an expected 
minor allele frequency (MAF) of 0.25, you might set the -mnMAF at 0.15 and the -mxMAF at 0.35. 

If your study samples are from a single, biparental cross (or from another type of population in which LD is fairly 
extensive along a chromosome), then the -hLD (high LD) filter (off by default) can be very useful to filter out 
bad SNPs with high genotyping error or incorrect physical genomic positions.  If you invoke the -hLD filter, the 
cutoff minimum R2 and Bonferroni-corrected p-value can be adjusted using the -mnR2 and -mnBonP options 
(both of these default to 0.01).   To pass through the LD filter, a SNP must be in statistically significant LD 
(Bonferroni corrected p-value less than that specified by the -mnBonP option) with at least one SNP that is a 
minimum of 128 bp away (i.e., not from the same TagLocus or cut site) but within a window of 50 SNPs on either 
side.  In Tassel3, the LD filter only works properly for inbred lines (e.g., RILs).  This will be fixed in Tassel4, 
so that the LD filter can be applied to outbred (highly heterozygous) populations as well. 

BiParentalErrorCorrectionPlugin 

Summary: 
Takes advantage of the presence of biparental families among the germplasm in your discovery build (input 
HapMap file) as a powerful aid to filter out SNPs that either display high rates of genotyping error or are not in 
linkage disequilibrium with other nearby SNPs on the same chromosome.  

Input: 
• A HapMap genotype file (.hmp.txt or .hmp.txt.gz) in which a subset of the samples (taxa) belong to one or 

more biparental families 

Output: 
• A HapMap genotype file with SNPs removed (filtered out) that are either (1) error-prone, and/or (2) are not 

in LD in the biparental families with surrounding SNPs on the same chromosome. 

Arguments: 
BiParentalErrorCorrectionPlugin  
-hmp Input HapMap file. Use a plus sign (+) as a wildcard character in 

place of the chromosome number to allow processing of multiple files 
from different chromosomes. File(s) can either be compressed 
(.hmp.txt.gz) or uncompressed (.hmp.txt). 

-o Output HapMap file. Use a plus sign (+) as a wild card character in 
place of the chromosome number to allow processing of multiple files 
from different chromosomes. File(s) can either be compressed 
(.hmp.txt.gz) or uncompressed (.hmp.txt). 

-mxE Maximum error rate (default: 0.05) 
-mnD Minimum segregation distortion factor (default: 2.5) 
-mnPLD Minimum median population LD (R^2) (default: -1.0 = don’t test for 

LD) 

One of -popM, -popF, or -pedF 
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     -popM Population mask: a regular expression specifying the biparental 
family-specific prefixes (or suffixes) in the names of samples that are 
part of a biparental population. 

     -popF Population file: the name of a file containing the biparental family-
specific prefixes (or suffixes) in the names of samples that are part of 
a biparental population.  One population prefix per line. 

     -pedF Pedigree file: the name of a file that lists the population (family) 
names, the full samples names, parents, parental contributions and the 
expected F for each taxon (sample) in the input Hapmap file. Taxa 
that are not part of a biparental family have “NA” as their family 
name. See Appendix 2 for more details. 

-sC Start chromosome.  Must be an integer.  Ignored if -hmp and -o 
arguments do not contain ‘+’. 

-eC End chromosome.  Must be an integer.  Ignored if -hmp and -o 
arguments do not contain ‘+’. 

-kpUT Keep SNPs that could not be tested for high error rate (off by default 
= remove them) 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -BiParentalErrorCorrectionPlugin  
-hmp myMaizeGenosIncludingNAM_chr+.hmp.txt.gz -o 
myMaizeGenosIncludingNAM_bpec_chr+.hmp.txt.gz -mxE 0.03 -mnD 2.0 -mnPLD 0.2 
-popM Z[0-9]{3} -sC 1 -eC 10 -endPlugin -runfork1 

Gory Details: 
The BiParentalErrorCorrectionPlugin takes advantage of the presence of biparental families (populations) among 
the germplasm in your discovery build (experiment) as a powerful aid to filter out SNPs that either display high 
rates of genotyping error or are not in linkage disequilibrium with other nearby SNPs on the same chromosome.  
To use this plugin, not all of the samples in the input hapmap genotype file need to belong to a biparental 
population, and the presence of multiple biparental populations is accommodated for and taken advantage of.  
Currently, the expected segregation ratio of these biparental families is hard coded as 1:1 (e.g., F2 progeny or 
RILs derived therefrom). 

Specifying which samples belong to which biparental families 
There are three (mutually exclusive) ways to indicate which samples in the input hapmap genotypes file belong to 
which biparental families, by using either (1) the -popM, or “population mask” option, (2) the -popF, or 
“population file” option, or (3) the -pedF, or “pedigree file” option. 

If the taxa (samples) that belong to each biparental population all have a unique prefix (or suffix) in their short 
names that indicates which population they belong to, then you can use the -popM (“population mask”) option 
to provide a regular expression that will match these prefixes (or suffixes).  For example, our maize discovery 
builds always contain the 25 biparental families that make up the maize Nested Association Mapping population 
(5000 RILs in total).  The 200 RILs in each family are named Z###E####, where the Z### part indicates the 
particular biparental family (from Z001 to Z025) and the E#### part indicates the particular RIL (“entry”) within 
that family (from E0001 to E0200).  An example sample name for a NAM RIL is Z011E0099, which is the 99th 
RIL in the 11th NAM family.  Samples belong to the NAM population can thus be classified by the 
BiParentalErrorCorrectionPlugin to their particular NAM family by using the following population mask: 

-popM Z[0-9]{3} 

This regular expression (“Z[0-9]{3}”) matches the prefixes Z001 through Z025 in the sample names (it looks 
for a “Z” followed by three numerical digits).  The plugin then keeps track of which family each RIL belongs to 
(e.g., Z011E0099 belongs to family Z011).  Regular expressions are quite powerful, so, if you have particular 
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prefixes (or suffixes) in your sample names that indicate which family each sample belongs to, it is likely that you 
will be able to supply a regular expression to match them (Google “regular expression” for more info). 

A second way to indicate which samples belong to which biparental family is by using the -popF (“population 
file”) option to provide the name of a text file containing all of the prefixes (or suffixes) for each biparental 
family, with one prefix (or suffix) per line.  Using the above example of the NAM population, the corresponding 
population file would consist of 25 lines, as follows: 

Z001 
Z002 
… 
Z025 

The third alternative, and most flexible, method to specify which samples are part of a biparental family is to use 
the -pedF (“pedigree file”) option to indicate the name of a pedigree file in tab-delimited text format.  See 
Appendix 2 for a description and example of the pedigree file.  

Filtering of SNPs based on linkage disequilibrium 
If your biparental families consist of predominantly homozygous RILs, then you can take advantage of the ability 
of the BiParentalErrorCorrectionPlugin to filter out SNPs that do not exhibit linkage disequilibrium (LD) in those 
families with surrounding SNPs on the same chromosome.  Families consisting of highly heterozygous progeny 
should not be used for LD filtering, however, because the manner in which LD is calculated in Tassel3 assumes 
that the samples are inbred lines (this assumption has been lifted in Tassel4). 

If your biparental families do consist of RILs, then you can invoke the LD filtering function of the 
BiParentalErrorCorrectionPlugin by setting the -mnPLD (Minimum median population LD (R2)) parameter to 
something larger than 0.0 but less than 1.0 (it is -1.0 by default = no LD-based filtering).  The higher the value of 
the -mnPLD parameter, the more stringent is the LD filtering.  For our maize discovery builds, which include the 
maize NAM set of biparental families, we typically set -mnPLD to 0.1.  If LD filtering is invoked, then LD (R2) is 
calculated for every SNP in every biparental family, provided that there are at least 10 non-missing genotypes for 
the SNP in that family, and that the minor allele frequency in that family is at least 0.15.  If these criteria are met 
for a SNP in a particular family, then R2 is calculated in that family for that SNP versus the 5% of the remaining 
SNPs from the same chromosome that most closely flank the SNP being tested, excluding SNPs that are within 
100Kb of the site being tested.  (This 100Kb exclusion is designed to prevent SNPs that fall within local mis-
assemblies of the genome [or paralagous regions] from internally reinforcing one another.)  If from among those 
flanking SNPs there are at least 5 that can be tested for LD versus the target SNP, then the median (within family) 
R2 of those valid tests is recorded. Across multiple families, the median of the median within-family R2 value is 
then determined. SNPs for which this median population R2 (across families) is less than the value of the               
-mnPLD parameter will then be filtered from the output HapMap genotypes file.  Note that SNPs that did not 
have valid within-family median R2 values for any of the families (e.g., SNPs that did not segregate with a MAF 
>= 0.15 in any of the families) are considered as “untested for LD” but are not removed from the output HapMap 
genotypes file. 

Unlike the error detection portion of the BiParentalErrorCorrectionPlugin (see below), the LD filtering portion 
does not require expected segregation ratios of 1:1 in the biparental families, but only requires that there is some 
level of LD present with each biparental family at the local chromosomal scale, and that the population-specific 
minor allele frequency is at least 0.15.  However, as mentioned above, the LD filtering does require that the 
progeny are predominantly homozygous RILs. 

Detection of Error-Prone SNPs 
For detection of error-prone SNPs, these requirements are reversed: the progeny need not be predominantly 
homozygous RILs, but the expected segregation ratio for each biparental families should be 1:1.  Hence, the error 
detection part of the BiParentalErrorCorrectionPlugin can be used on either F2 families or families consisting of 
F2-derived RILs. 
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To detect and filter out error-prone SNPs, each SNP is tested in each biparental family for highly significant 
deviation (p<0.001) from the expected 1:1 segregation pattern using a binomial test.  If you use a pedigree file     
(-pedF option) to denote the biparental families, only families where the expected parental contributions are 50% 
will be used for this test.  Alternatively, if you use the -popM or -popF option to denote biparental families, this 
error detection part of the plugin will assume that all the families have expected segregation ratios of 1:1.  Each 
SNP is only tested in a family if the number of non-missing allele calls for that SNP in the family is at least 19 
(with homozygotes counted once and heterozygotes counted twice) -- this is to ensure adequate power for 
detection of significant (p<0.001) deviation from 1:1 segregation.  Hence, depending on the amount of missing 
data, small biparental families (say, with fewer than 40 progeny) may not be useful for this error-detection part of 
the plugin.  If a SNP is found to (1) significantly deviate from 1:1 segregation at p<0.001 in a family, and (2) to 
display a degree of segregation distortion such that the family-specific minor allele frequency is less than 
expSegregation/minDistortionRatio (where expSegregation is 0.5 and minDistortionRatio is the 
value set by the -minD parameter [default: 2.5]), then the number of allele calls for the family-specific minor 
allele and the total number of allele calls in that family are included in the calculation of an overall error rate 
across the families for each SNP.  Essentially, if a SNP is polymorphic in a biparental family but deviates very 
strongly from the expected segregation ratio, then it is very likely that the family-specific minor allele calls result 
from sequencing errors (or other errors, such as alignment errors).  Note that SNPs that do not segregate (are 
monomorphic) in a family (i.e., no errors detected) are still included in the calculation of the overall error rate 
across families, as long as the number of non-missing genotype calls for that SNP in the family is at least 19. 

Once all SNPs have been tested in each biparental family for highly significant segregation distortion, and overall 
error rates tallied across all of the families for each SNP, then the SNPs with an overall error rate greater than the 
maxErrorRate set by the -mxE parameter (default: 0.05) are filtered from the output HapMap genotype file.  
In addition, unless the -kpUT (“keepUnTested for Error”) option is invoked (off by default), all SNPs for 
which the number of non-missing allele calls (with homozygotes counted once and heterozygotes counted twice) 
is less than 19 in all of the biparental families will be removed from the output HapMap genotype file (these are 
SNPs with undefined overall error rates because of very high amounts of missing data). 

For SNPs that were not removed from the output, but that displayed high error rates (i.e., severe segregation 
distortion) in particular biparental families, the apparent polymorphisms in those particular families are corrected, 
providing that the likelihood ratio probErr/probSegDist >= 1 for the corresponding SNP in that family, 
where probErr is the binomial likelihood of the observed number of apparently erroneous allele calls in that 
family, based on the overall error rate, and probSegDist is binomial likelihood of the observed degree of 
segregation distortion, assuming an expected segregation ratio of 1:1.  To correct the genotypes in such families, 
homozygotes for the family-specific minor alleles are set to missing, and heterozygotes are set to homozygous for 
the family-specific major allele, so that the SNP in question is no longer polymorphic in the family in question.  
Genotypes in taxa that are not part of a specific biparental family displaying high error rates for a SNP are not 
affected by this step. 

Note that, in contrast to the LD filtering function of the BiParentalErrorCorrectionPlugin, which requires that the 
progeny of the biparental populations are predominantly homozygous RILs, the error detection part of this plugin 
should work even if the progeny in the biparental families are highly heterozygous, provided that the expected 
segregation ratio is 1:1 (e.g., an F2 family).  Although multiple biparental families are preferred, the error 
detection portion should also work even if there is only one biparental family amongst your samples (as should 
the LD filter). 

MergeIdenticalTaxaPlugin 

Summary: 
Merges the genotypes of samples (“taxa”) with identical short names (up to the first colon of their full name).  
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Input: 
• A hapmap format genotype file (.hmp.txt or .hmp.txt.gz) containing replicate taxa 

Output: 
• A hapmap format genotype file in which the replicate taxa have been merged 

Arguments: 
MergeIdenticalTaxaPlugin  
-hmp Input HapMap file.  Use a plus sign (+) as a wildcard character in place of the 

chromosome number to allow processing of multiple files from different 
chromosomes. File(s) can either be compressed (.hmp.txt.gz) or 
uncompressed (.hmp.txt). 

-o Output HapMap file.  Use a plus sign (+) as a wild card character in place of 
the chromosome number to allow processing of multiple files from different 
chromosomes. File(s) can either be compressed (.hmp.txt.gz) or 
uncompressed (.hmp.txt). 

-xHet Exclude heterozygote calls (default: false = call hets) 

-hetFreq Cutoff frequency between het vs. homozygote calls (default: 0.8) 
-sC  Start chromosome.  Must be an integer.  Ignored if -hmp and -o arguments do 

not contain ‘+’. 
-eC End chromosome.  Must be an integer.  Ignored if -hmp and -o arguments do 

not contain ‘+’. 
 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeIdenticalTaxaPlugin  
-hmp myGenos_chr+.hmp.txt.gz -o myGenos_taxaMerged_chr+.hmp.txt.gz -hetFreq 
0.75 -sC 1 -eC 10 -endPlugin -runfork 

Gory Details: 
The MergeIdenticalTaxaPlugin merges all sets of two or more samples (“taxa”) in the input hapmap genotypes 
file with the same short name (up to the first colon of the full name).  For this plugin to work correctly, the 
remainder of the full sample names (after the first colon) need to be unique (i.e., different flowcell:lane:well) for 
each replicate sample.  For example, three samples in the input hapmap genotype file with the full names 
“B73:42A87AAXX:2:A01”, “B73:42A87AAXX:2:E12”, and “B73:58C95AAXX:7:G10” will be merged in the 
output file, and the merged sample will be named “B73:MERGE”. 
 Invoking the -xHet (“Exclude heterozygote calls”) option sets apparently heterozygous genotypes in merged 
samples to missing. Invoke this option only if you are highly confident that all of your replicate samples are fully 
inbred with no heterozygosity whatsoever. Since this is rarely the case, most users will leave the -xHet option off 
(the default), so that apparent heterozygous sites in a merged sample are called as such. Note that the -xHet option, 
if invoked, will have no effect on the genotypes of non-replicate samples that are not merged with any others (i.e., 
existing heterozygote calls in unique samples that are not merged with any other samples will not be set to 
missing even if -xHet is invoked).  The -xHet option only affects the genotypes of merged samples.  

The -hetFreq option is used to control the cutoff allele frequency between heterozygous and homozygous calls 
with respect to the most frequently observed allele among the replicate individuals to be merged. The value 
assigned to the -hetFreq parameter is used in the following manner to call heterozygotes in merged samples: 
  
if ((nMajGenos+nHetGenos)/(nMajGenos+nMinGenos+2*nHetGenos) > hetFreq)  
    geno = homMajor; 
else if ((nMinGenos+nHetGenos)/(nMajGenos+nMinGenos+2*nHetGenos) > hetFreq) 
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    geno = homMinor;  
else if (xHet) 
    geno = missing; 
else 
    geno = heterozygous; 

Where: 
nMajGenos = the number of homozygous major allele genotypes observed among the replicate samples to be 
merged, 
nHetGenos = the number of heterozygous genotypes, and 
nMinGenos = the number of homozygous minor allele genotypes. 

This algorithm assumes low coverage (~1x or less), so that, if a homozygote was called for a SNP in an individual 
sample (prior to merging), most of the time it would have been called on the basis of only a single read. In other 
words, homozygotes are counted only once toward their respective allele frequency, regardless of the actual 
number of reads behind the SNP call in the individual replicate sample (prior to merging). 

Here is an example of the application of this algorithm.  If you have 10 replicate samples (“taxa”), 8 of which 
have genotypes of A/A at a particular SNP, 2 with A/C (=“M”), and 0 with C/C, and use the default value of         
-hetFreq of 0.8, then the genotype of the SNP in the merged sample will be A/A (coded as “A” in the hapmap 
output), since (8+2)/(8+0+2*2) = 0.833 which is > 0.8. 

In contrast, if 7 have a genotype of A/A, 2 have a genotype of A/C (“M”) and 1 has a genotype of C/C, then, 
provided that the -xHet is not invoked, the merged genotype will be called A/C (“M”), since (7+2)/(7+1+2*2) = 
0.75 which is <= 0.8.  However, if -xHet (exclude heterozygotes) is invoked, then the merged genotype would be 
called N/N (=N). 

RawReadsToHapMapPlugin (the Production SNP Caller) 

Summary: 
The RawReadsToHapMapPlugin is the “Production Pipeline”.  You can use this plugin if you have already 
performed a large-scale “Discovery Build” in your species and have, since then, obtained GBS raw sequence data 
(FASTQ files) for some new samples that were not included in the Discovery Build.  The 
RawReadsToHapMapPlugin allows you to quickly call genotypes in these new samples without having to redo a 
whole new Discovery Build, by using information on all the SNPs ascertained in the Discovery Build.  This 
information, regarding which SNP alleles are represented by each tag, needs to have been made available in a 
“Production-ready” TagsOnPhysicalMap (Production TOPM) by the using the -mUpd option of the 
TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”). 

Input: 
• FASTQ or QSEQ sequence files 
• Barcode key file 
• Production TOPM created by the TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) through use of 

the -mUpd flag 

Output: 
• HapMap genotype (.hmp.txt) files.  One per chromosome per input sequence file. 

Arguments: 
RawReadsToHapMapPlugin  
-i Input directory containing FASTQ and/or QSEQ files 
-k Barcode key file (see example in Appendix 1) 
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-e Enzyme used to create the GBS library 
-m TagsOnPhysicalMap (.topm) file containing genomic positions of all of 

the tags of interest as well as which alleles each useful tag represents for 
the useful SNPs (variants) covered by that tag.  This “Production 
TOPM” should have been populated with variants by using the -mUpd 
option at the TagsToSNPByAlignment (Discovery SNP calling) step. 

-o Output directory to contain output HapMap genotype (.hmp.txt) files.  
One output genotype file per chromosome is created per input raw GBS 
sequence file. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -RawReadsToHapMapPlugin -i fastq -k 
NewSamples_key.txt -e ApeKI -m topm/myProduction.topm -o hapmap/production    
-endPlugin -runfork1 

Gory Details: 
The RawReadsToHapMapPlugin (“Production Pipeline”) allows you to quickly generate genotypes for new 
samples without having to perform an entirely new “Discovery Build” from scratch.  The drawback of this is that 
any novel tags and associated novel SNPs present in your new samples, but not in the Discovery Build, will not 
be scored.  Hence, it makes the most sense to run the RawReadsToHapMapPlugin (rather than performing a new 
Discovery Build from scratch that encompasses all samples to date) if the samples in your new raw GBS sequence 
(FASTQ) files are not expected to contain much novel genetic diversity relative to the samples run in your last 
Discovery Build, and if your last Discovery Build contained a large number (thousands) of samples.  The 
majority of users probably do not need to run the Production Pipeline (RawReadsToHapMapPlugin).  
Furthermore, the GBS Production Pipeline is more mature in Tassel4 than in Tassel3. 

The list of available restriction enzymes (-e option) is the same as that provided in the FastqToTagCountPlugin 
section, above. 

To run the RawReadsToHapMapPlugin, you need to have created a “Production TOPM” out of the TOPM used 
in your last Discovery Build.  This should have been done by invoking the -mUpd option at the 
TagsToSNPByAlignmentPlugin (Discovery SNP Calling) step.  This would have resulted in a copy of the input 
TOPM being produced in which variants were recorded for each useful SNP in each useful tag.  See the above 
section on the TagsToSNPByAlignmentPlugin for more details.  In the RawReadsToHapMapPlugin, the 
Production TOPM is specified by the -m option. 

One issue that is not resolved in the Tassel3 GBS pipeline is that the Production TOPM produced by the -mUpd 
option of the TagsToSNPByAlignmentPlugin contains all of the SNPs called at that step.  If you subsequently 
used either the GBSHapMapFiltersPlugin or the BiParentalErrorCorrectionPlugin to filter out “bad” SNPs, the 
only way to remove them from the Production TOPM is by using the KeepSpecifiedSitesInTOPMPlugin from 
Tassel4.  As is the case for any Tassel plugin, if you call the Tassel4 KeepSpecifiedSitesInTOPMPlugin without 
any options, the options will be provided: 
 

The options for the KeepSpecifiedSitesInTOPMPlugin are: 
    -input   Input directory containing Site List files 
    -orig    Original TOPM 
    -result  Output, site-filtered TOPM 

Here, the “Original TOPM” (-orig option) is the Production TOPM produced by the -mUpd option of the Tassel3 
TagsToSNPByAlignmentPlugin, containing all the SNPs output by that step, the “Output, site-filtered TOPM” (-
result option) is a Production TOPM with only the sites (SNPs) of interest retained, and the “Input directory 
containing Site List files” (-input option) specifies a folder that contains one file per chromosome specifying 
which sites you want to keep in the Production TOPM (i.e., which sites passed through the filters applied by the 
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GBSHapMapFiltersPlugin and/or BiParentalErrorCorrectionPlugin).  These Site List files are tab-delimited text 
(.txt) files with only two columns: the first specifies the chromosome, and the second the site to be retained.  The 
Site List files can be easily generated from the final .hmp.txt files produced after running the 
GBSHapMapFiltersPlugin or the BiParentalErrorCorrectionPlugin during the Discovery Build. 

Another shortcoming of the RawReadsToHapMapPlugin in Tassel3 is that SNP calling is “qualitative” rather than 
“quantitative”.  This means that the read depth for each allele within each sample (taxon) is not taken into 
consideration when calling genotypes.  Therefore, an individual sample with, for example, 20 reads of one allele 
and only 1 read of the alternate allele will be called a heterozygote.  This is in contrast with the 
TagsToSNPByAlignmentPlugin (“Discovery SNP Caller”) (see above), where SNP calling is quantitative (as long 
as a TBTByte or TBT HDF5 is used instead of a TBTBit).  This shortcoming is resolved in the Tassel4 GBS 
pipeline, where the Production SNP Caller (aptly named the ProductionSNPCallerPlugin!) performs quantitative 
SNP calling. 

The output HapMap genotype (.hmp.txt) files are named after each input FASTQ (or QSEQ) file, with the ending 
“_fastq.gz” part of the name (or acceptable variant thereof) being replaced by “_chr#.hmp.txt”, where # stands for 
an integer representing the chromosome number.  One output genotype file is produced per chromosome per input 
FASTQ (or QSEQ) file. 

Since the RawReadsToHapMapPlugin produces separate HapMap genotype files for each input FASTQ file (and 
for each chromosome), if your new samples are spread across multiple lanes, you will very likely need to merge 
the output genotype files.  This is another area where Tassel3 is not “up to snuff”.  Merging multiple genotype 
files (called “Alignments” in Tassel jargon) is best performed with Tassel4.  To do this with the Tassel4 GUI 
(Graphical User Interface), first load the genotype files to be merged (with Data|Load), then select them under the 
Sequence folder, and then use Data|Merge Alignments.  To merge genotype files with the Tassel4 command line 
consult the following document: 
http://www.maizegenetics.net/tassel/docs/Tassel4MergeAlignments.pdf  

BinaryToTextPlugin 

Summary: 
Reads a binary GBS file and outputs the equivalent text file. 

Input: 
• Binary File 

Output: 
• Text File 

Arguments: 
BinaryToTextPlugin  
-i <filename> Input binary file name. 
-o <filename> Output text file name. 
-t <type> Type of input file (TagCounts, TBTBit, TBTByte, TOPM).  Does not work 

with TBT HDF5 files. 

Example commands: 
/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
-i tagCounts/rice.cnt -o tagCounts/rice_cnt.txt -t TagCounts 
-endPlugin -runfork1 

http://www.maizegenetics.net/tassel/docs/Tassel4MergeAlignments.pdf
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/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
-i tbt/rice.tbt.byte -o tbt/rice_tbt.txt -t TBTByte  
-endPlugin -runfork1 

/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
-i topm/rice.topm -o topm/rice_topm.txt -t TOPM  
-endPlugin -runfork1 

TextToBinaryPlugin 

Summary: 
Reads a Text GBS File and outputs the equivalent binary file. 

Input: 
• Text File 

Output: 
• Binary File 

Arguments: 
TextToBinaryPlugin  
-i <filename> Input text file name. 
-o <filename> Output binary file name. 
-t <type> Type of file (TagCounts, TBTBit, TBTByte, TOPM). 

Example commands: 
/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
-i tagCounts/rice_tagCounts.txt -o tagCounts/rice.cnt -t TagCounts 
-endPlugin -runfork1 

/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
-i tbt/rice.tbt.txt -o tbt/rice_tbt.bin -t TBTBit  
-endPlugin -runfork1 

/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
-i topm/rice.topm.txt -o topm/rice.topm -t TOPM  
-endPlugin -runfork1 
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Appendix 1:  Key file example 

The barcode key file is formatted as tab-delimited text.  You can create it from Excel if you save it as tab-
delimited text.  In the example key below there are two lanes, each at 96 plex.  The barcodes correspond to our 
original 96-plex ApeKI layout (we now work with 384-plex).  You can combine lanes from multiple flow cells in 
a single key file and GBS analysis if you wish (we recommend analyzing all of your samples together for 
discovery builds).  Note that there is a “Blank” in each plate, in different positions (G10 and H03 in the example).  
This facilitates diagnosis of accidental plate swaps.  Since well H12 is overused for this, we recommend putting 
your blanks in wells other than H12. 

Only the first seven columns (A-G) are mandatory.  If there is an eighth column present (column H) and it 
contains integers, these will be interpreted as LibraryPrepID’s, which should be unique for every 
Sample/Barcode/Well combination (where Well = Row+Column).  These LibraryPrepID’s are used to facilitate 
merging of the TagsByTaxa counts from replicate runs of the same library preps (on multiple flow cell lanes).  
For more information on merging of TagsByTaxa counts based upon LibraryPrepIDs, see the 
ModifyTBTHDF5Plugin (-c option) above. 

You can add additional columns to the key file as you see fit -- these will be ignored by the pipeline (but may be 
useful to you).  However, if you do not have LibraryPrepID’s in Column H (the eighth column), then make sure 
that none of the cells in column H contain integers. 

The key file must not contain spaces or colons (‘:’).  However, it is OK to include dashes, parentheses, or 
underscores:  - ( ) _ 

 
Flowcell Lane Barcode Sample PlateName Row Column LibraryPrepID 
ABC12AAXX 1 CTCC MySample001 MyPlate1 A 1 1234567 
ABC12AAXX 1 TGCA MySample002 MyPlate1 A 2 1234568 
ABC12AAXX 1 ACTA MySample003 MyPlate1 A 3 1234569 
ABC12AAXX 1 CAGA MySample004 MyPlate1 A 4 1234570 
ABC12AAXX 1 AACT MySample005 MyPlate1 A 5 1234571 
ABC12AAXX 1 GCGT MySample006 MyPlate1 A 6 1234572 
ABC12AAXX 1 TGCGA MySample007 MyPlate1 A 7 1234573 
ABC12AAXX 1 CGAT MySample008 MyPlate1 A 8 1234574 
ABC12AAXX 1 CGCTT MySample009 MyPlate1 A 9 1234575 
ABC12AAXX 1 TCACC MySample010 MyPlate1 A 10 1234576 
ABC12AAXX 1 CTAGC MySample011 MyPlate1 A 11 1234577 
ABC12AAXX 1 ACAAA MySample012 MyPlate1 A 12 1234578 
ABC12AAXX 1 TTCTC MySample013 MyPlate1 B 1 1234579 
ABC12AAXX 1 AGCCC MySample014 MyPlate1 B 2 1234580 
ABC12AAXX 1 GTATT MySample015 MyPlate1 B 3 1234581 
ABC12AAXX 1 CTGTA MySample016 MyPlate1 B 4 1234582 
ABC12AAXX 1 ACCGT MySample017 MyPlate1 B 5 1234583 
ABC12AAXX 1 GTAA MySample018 MyPlate1 B 6 1234584 
ABC12AAXX 1 GGTTGT MySample019 MyPlate1 B 7 1234585 
ABC12AAXX 1 CCAGCT MySample020 MyPlate1 B 8 1234586 
ABC12AAXX 1 TTCAGA MySample021 MyPlate1 B 9 1234587 
ABC12AAXX 1 TAGGAA MySample022 MyPlate1 B 10 1234588 
ABC12AAXX 1 GCTCTA MySample023 MyPlate1 B 11 1234589 
ABC12AAXX 1 CCACAA MySample024 MyPlate1 B 12 1234590 
ABC12AAXX 1 GCTTA MySample025 MyPlate1 C 1 1234591 
ABC12AAXX 1 CTTCCA MySample026 MyPlate1 C 2 1234592 
ABC12AAXX 1 GAGATA MySample027 MyPlate1 C 3 1234593 
ABC12AAXX 1 ATGCCT MySample028 MyPlate1 C 4 1234594 
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ABC12AAXX 1 TATTTTT MySample029 MyPlate1 C 5 1234595 
ABC12AAXX 1 CTTGCTT MySample030 MyPlate1 C 6 1234596 
ABC12AAXX 1 ATGAAAC MySample031 MyPlate1 C 7 1234597 
ABC12AAXX 1 AAAAGTT MySample032 MyPlate1 C 8 1234598 
ABC12AAXX 1 GAATTCA MySample033 MyPlate1 C 9 1234599 
ABC12AAXX 1 GAACTTC MySample034 MyPlate1 C 10 1234600 
ABC12AAXX 1 GGACCTA MySample035 MyPlate1 C 11 1234601 
ABC12AAXX 1 GTCGATT MySample036 MyPlate1 C 12 1234602 
ABC12AAXX 1 AACGCCT MySample037 MyPlate1 D 1 1234603 
ABC12AAXX 1 AATATGC MySample038 MyPlate1 D 2 1234604 
ABC12AAXX 1 ACGACTAC MySample039 MyPlate1 D 3 1234605 
ABC12AAXX 1 GGTGT MySample040 MyPlate1 D 4 1234606 
ABC12AAXX 1 TAGCATGC MySample041 MyPlate1 D 5 1234607 
ABC12AAXX 1 AGTGGA MySample042 MyPlate1 D 6 1234608 
ABC12AAXX 1 TAGGCCAT MySample043 MyPlate1 D 7 1234609 
ABC12AAXX 1 TGCAAGGA MySample044 MyPlate1 D 8 1234610 
ABC12AAXX 1 TGGTACGT MySample045 MyPlate1 D 9 1234611 
ABC12AAXX 1 TCTCAGTC MySample046 MyPlate1 D 10 1234612 
ABC12AAXX 1 CCGGATAT MySample047 MyPlate1 D 11 1234613 
ABC12AAXX 1 CGCCTTAT MySample048 MyPlate1 D 12 1234614 
ABC12AAXX 1 AGGC MySample049 MyPlate1 E 1 1234615 
ABC12AAXX 1 GATC MySample050 MyPlate1 E 2 1234616 
ABC12AAXX 1 TCAC MySample051 MyPlate1 E 3 1234617 
ABC12AAXX 1 AGGAT MySample052 MyPlate1 E 4 1234618 
ABC12AAXX 1 ATTGA MySample053 MyPlate1 E 5 1234619 
ABC12AAXX 1 CATCT MySample054 MyPlate1 E 6 1234620 
ABC12AAXX 1 CCTAC MySample055 MyPlate1 E 7 1234621 
ABC12AAXX 1 GAGGA MySample056 MyPlate1 E 8 1234622 
ABC12AAXX 1 GGAAC MySample057 MyPlate1 E 9 1234623 
ABC12AAXX 1 GTCAA MySample058 MyPlate1 E 10 1234624 
ABC12AAXX 1 TAATA MySample059 MyPlate1 E 11 1234625 
ABC12AAXX 1 TACAT MySample060 MyPlate1 E 12 1234626 
ABC12AAXX 1 TCGTT MySample061 MyPlate1 F 1 1234627 
ABC12AAXX 1 ACCTAA MySample062 MyPlate1 F 2 1234628 
ABC12AAXX 1 ATATGT MySample063 MyPlate1 F 3 1234629 
ABC12AAXX 1 ATCGTA MySample064 MyPlate1 F 4 1234630 
ABC12AAXX 1 CATCGT MySample065 MyPlate1 F 5 1234631 
ABC12AAXX 1 CGCGGT MySample066 MyPlate1 F 6 1234632 
ABC12AAXX 1 CTATTA MySample067 MyPlate1 F 7 1234633 
ABC12AAXX 1 GCCAGT MySample068 MyPlate1 F 8 1234634 
ABC12AAXX 1 GGAAGA MySample069 MyPlate1 F 9 1234635 
ABC12AAXX 1 GTACTT MySample070 MyPlate1 F 10 1234636 
ABC12AAXX 1 GTTGAA MySample071 MyPlate1 F 11 1234637 
ABC12AAXX 1 TAACGA MySample072 MyPlate1 F 12 1234638 
ABC12AAXX 1 TGGCTA MySample073 MyPlate1 G 1 1234639 
ABC12AAXX 1 ACGTGTT MySample074 MyPlate1 G 2 1234640 
ABC12AAXX 1 ATTAATT MySample075 MyPlate1 G 3 1234641 
ABC12AAXX 1 ATTGGAT MySample076 MyPlate1 G 4 1234642 
ABC12AAXX 1 CATAAGT MySample077 MyPlate1 G 5 1234643 
ABC12AAXX 1 CGCTGAT MySample078 MyPlate1 G 6 1234644 
ABC12AAXX 1 CGGTAGA MySample079 MyPlate1 G 7 1234645 
ABC12AAXX 1 CTACGGA MySample080 MyPlate1 G 8 1234646 
ABC12AAXX 1 GCGGAAT MySample081 MyPlate1 G 9 1234647 
ABC12AAXX 1 TAGCGGA Blank MyPlate1 G 10 1234648 
ABC12AAXX 1 TCGAAGA MySample082 MyPlate1 G 11 1234649 
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ABC12AAXX 1 TCTGTGA MySample083 MyPlate1 G 12 1234650 
ABC12AAXX 1 TGCTGGA MySample084 MyPlate1 H 1 1234651 
ABC12AAXX 1 AACCGAGA MySample085 MyPlate1 H 2 1234652 
ABC12AAXX 1 ACAGGGAA MySample086 MyPlate1 H 3 1234653 
ABC12AAXX 1 ACGTGGTA MySample087 MyPlate1 H 4 1234654 
ABC12AAXX 1 CCATGGGT MySample088 MyPlate1 H 5 1234655 
ABC12AAXX 1 CGCGGAGA MySample089 MyPlate1 H 6 1234656 
ABC12AAXX 1 CGTGTGGT MySample090 MyPlate1 H 7 1234657 
ABC12AAXX 1 GCTGTGGA MySample091 MyPlate1 H 8 1234658 
ABC12AAXX 1 GGATTGGT MySample092 MyPlate1 H 9 1234659 
ABC12AAXX 1 GTGAGGGT MySample093 MyPlate1 H 10 1234660 
ABC12AAXX 1 TATCGGGA MySample094 MyPlate1 H 11 1234661 
ABC12AAXX 1 TTCCTGGA MySample095 MyPlate1 H 12 1234662 
ABC12AAXX 2 CTCC MySample096 MyPlate2 A 1 1234663 
ABC12AAXX 2 TGCA MySample097 MyPlate2 A 2 1234664 
ABC12AAXX 2 ACTA MySample098 MyPlate2 A 3 1234665 
ABC12AAXX 2 CAGA MySample099 MyPlate2 A 4 1234666 
ABC12AAXX 2 AACT MySample100 MyPlate2 A 5 1234667 
ABC12AAXX 2 GCGT MySample101 MyPlate2 A 6 1234668 
ABC12AAXX 2 TGCGA MySample102 MyPlate2 A 7 1234669 
ABC12AAXX 2 CGAT MySample103 MyPlate2 A 8 1234670 
ABC12AAXX 2 CGCTT MySample104 MyPlate2 A 9 1234671 
ABC12AAXX 2 TCACC MySample105 MyPlate2 A 10 1234672 
ABC12AAXX 2 CTAGC MySample106 MyPlate2 A 11 1234673 
ABC12AAXX 2 ACAAA MySample107 MyPlate2 A 12 1234674 
ABC12AAXX 2 TTCTC MySample108 MyPlate2 B 1 1234675 
ABC12AAXX 2 AGCCC MySample109 MyPlate2 B 2 1234676 
ABC12AAXX 2 GTATT MySample110 MyPlate2 B 3 1234677 
ABC12AAXX 2 CTGTA MySample111 MyPlate2 B 4 1234678 
ABC12AAXX 2 ACCGT MySample112 MyPlate2 B 5 1234679 
ABC12AAXX 2 GTAA MySample113 MyPlate2 B 6 1234680 
ABC12AAXX 2 GGTTGT MySample114 MyPlate2 B 7 1234681 
ABC12AAXX 2 CCAGCT MySample115 MyPlate2 B 8 1234682 
ABC12AAXX 2 TTCAGA MySample116 MyPlate2 B 9 1234683 
ABC12AAXX 2 TAGGAA MySample117 MyPlate2 B 10 1234684 
ABC12AAXX 2 GCTCTA MySample118 MyPlate2 B 11 1234685 
ABC12AAXX 2 CCACAA MySample119 MyPlate2 B 12 1234686 
ABC12AAXX 2 GCTTA MySample120 MyPlate2 C 1 1234687 
ABC12AAXX 2 CTTCCA MySample121 MyPlate2 C 2 1234688 
ABC12AAXX 2 GAGATA MySample122 MyPlate2 C 3 1234689 
ABC12AAXX 2 ATGCCT MySample123 MyPlate2 C 4 1234690 
ABC12AAXX 2 TATTTTT MySample124 MyPlate2 C 5 1234691 
ABC12AAXX 2 CTTGCTT MySample125 MyPlate2 C 6 1234692 
ABC12AAXX 2 ATGAAAC MySample126 MyPlate2 C 7 1234693 
ABC12AAXX 2 AAAAGTT MySample127 MyPlate2 C 8 1234694 
ABC12AAXX 2 GAATTCA MySample128 MyPlate2 C 9 1234695 
ABC12AAXX 2 GAACTTC MySample129 MyPlate2 C 10 1234696 
ABC12AAXX 2 GGACCTA MySample130 MyPlate2 C 11 1234697 
ABC12AAXX 2 GTCGATT MySample131 MyPlate2 C 12 1234698 
ABC12AAXX 2 AACGCCT MySample132 MyPlate2 D 1 1234699 
ABC12AAXX 2 AATATGC MySample133 MyPlate2 D 2 1234700 
ABC12AAXX 2 ACGACTAC MySample134 MyPlate2 D 3 1234701 
ABC12AAXX 2 GGTGT MySample135 MyPlate2 D 4 1234702 
ABC12AAXX 2 TAGCATGC MySample136 MyPlate2 D 5 1234703 
ABC12AAXX 2 AGTGGA MySample137 MyPlate2 D 6 1234704 
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ABC12AAXX 2 TAGGCCAT MySample138 MyPlate2 D 7 1234705 
ABC12AAXX 2 TGCAAGGA MySample139 MyPlate2 D 8 1234706 
ABC12AAXX 2 TGGTACGT MySample140 MyPlate2 D 9 1234707 
ABC12AAXX 2 TCTCAGTC MySample141 MyPlate2 D 10 1234708 
ABC12AAXX 2 CCGGATAT MySample142 MyPlate2 D 11 1234709 
ABC12AAXX 2 CGCCTTAT MySample143 MyPlate2 D 12 1234710 
ABC12AAXX 2 AGGC MySample144 MyPlate2 E 1 1234711 
ABC12AAXX 2 GATC MySample145 MyPlate2 E 2 1234712 
ABC12AAXX 2 TCAC MySample146 MyPlate2 E 3 1234713 
ABC12AAXX 2 AGGAT MySample147 MyPlate2 E 4 1234714 
ABC12AAXX 2 ATTGA MySample148 MyPlate2 E 5 1234715 
ABC12AAXX 2 CATCT MySample149 MyPlate2 E 6 1234716 
ABC12AAXX 2 CCTAC MySample150 MyPlate2 E 7 1234717 
ABC12AAXX 2 GAGGA MySample151 MyPlate2 E 8 1234718 
ABC12AAXX 2 GGAAC MySample152 MyPlate2 E 9 1234719 
ABC12AAXX 2 GTCAA MySample153 MyPlate2 E 10 1234720 
ABC12AAXX 2 TAATA MySample154 MyPlate2 E 11 1234721 
ABC12AAXX 2 TACAT MySample155 MyPlate2 E 12 1234722 
ABC12AAXX 2 TCGTT MySample156 MyPlate2 F 1 1234723 
ABC12AAXX 2 ACCTAA MySample157 MyPlate2 F 2 1234724 
ABC12AAXX 2 ATATGT MySample158 MyPlate2 F 3 1234725 
ABC12AAXX 2 ATCGTA MySample159 MyPlate2 F 4 1234726 
ABC12AAXX 2 CATCGT MySample160 MyPlate2 F 5 1234727 
ABC12AAXX 2 CGCGGT MySample161 MyPlate2 F 6 1234728 
ABC12AAXX 2 CTATTA MySample162 MyPlate2 F 7 1234729 
ABC12AAXX 2 GCCAGT MySample163 MyPlate2 F 8 1234730 
ABC12AAXX 2 GGAAGA MySample164 MyPlate2 F 9 1234731 
ABC12AAXX 2 GTACTT MySample165 MyPlate2 F 10 1234732 
ABC12AAXX 2 GTTGAA MySample166 MyPlate2 F 11 1234733 
ABC12AAXX 2 TAACGA MySample167 MyPlate2 F 12 1234734 
ABC12AAXX 2 TGGCTA MySample168 MyPlate2 G 1 1234735 
ABC12AAXX 2 ACGTGTT MySample169 MyPlate2 G 2 1234736 
ABC12AAXX 2 ATTAATT MySample170 MyPlate2 G 3 1234737 
ABC12AAXX 2 ATTGGAT MySample171 MyPlate2 G 4 1234738 
ABC12AAXX 2 CATAAGT MySample172 MyPlate2 G 5 1234739 
ABC12AAXX 2 CGCTGAT MySample173 MyPlate2 G 6 1234740 
ABC12AAXX 2 CGGTAGA MySample174 MyPlate2 G 7 1234741 
ABC12AAXX 2 CTACGGA MySample175 MyPlate2 G 8 1234742 
ABC12AAXX 2 GCGGAAT MySample176 MyPlate2 G 9 1234743 
ABC12AAXX 2 TAGCGGA MySample177 MyPlate2 G 10 1234744 
ABC12AAXX 2 TCGAAGA MySample178 MyPlate2 G 11 1234745 
ABC12AAXX 2 TCTGTGA MySample179 MyPlate2 G 12 1234746 
ABC12AAXX 2 TGCTGGA MySample180 MyPlate2 H 1 1234747 
ABC12AAXX 2 AACCGAGA MySample181 MyPlate2 H 2 1234748 
ABC12AAXX 2 ACAGGGAA Blank MyPlate2 H 3 1234749 
ABC12AAXX 2 ACGTGGTA MySample182 MyPlate2 H 4 1234750 
ABC12AAXX 2 CCATGGGT MySample183 MyPlate2 H 5 1234751 
ABC12AAXX 2 CGCGGAGA MySample184 MyPlate2 H 6 1234752 
ABC12AAXX 2 CGTGTGGT MySample185 MyPlate2 H 7 1234753 
ABC12AAXX 2 GCTGTGGA MySample186 MyPlate2 H 8 1234754 
ABC12AAXX 2 GGATTGGT MySample187 MyPlate2 H 9 1234755 
ABC12AAXX 2 GTGAGGGT MySample188 MyPlate2 H 10 1234756 
ABC12AAXX 2 TATCGGGA MySample189 MyPlate2 H 11 1234757 
ABC12AAXX 2 TTCCTGGA MySample190 MyPlate2 H 12 1234758 
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Appendix 2:  Pedigree file example 

A pedigree file contains the following columns: 
 
Family  = name of the family to which the sample belongs (use “NA” if it is not part of a family) 
Name  = full name of the sample (e.g., “Z002E0001:61VBRAAXX:6:250021377”) 
Parent1 = short name of the first parent (e.g., “B73”) 
Parent2 = short name of the second parent (e.g., “CML103”) 
Contribution1 = the expected genetic contribution of Parent1 (e.g., 0.5 for an F2-derived RIL) 
Contribution2 = the expected genetic contribution of Parent2 (e.g., 0.5 for an F2-derived RIL) 
f  = an estimate of the inbreeding coefficient of the sample (e.g., 0.75 for an S3) 
Comments = any comments about that sample for your own purposes (e.g. “sample mix-up?”) 

The pedigree file must contain an entry (row) for every sample (taxon) in the input hapmap genotype file. If a 
particular sample is not part of a biparental family, enter “NA” for Family, Parent1, Parent2, Contribution1, and 
Contribution2.  If you do not know (or trust) the level of inbreeding of one or more of your samples, then set the 
value for f as “NA”.  For 1:1 segregation (e.g., F2 progeny or RILs derived therefrom), both Contribution1 and 
Contribution2 should be set at 0.5 (= expected allele frequency).  For a backcross or pseudo-testcross, 
Contribution1 and Contribution2 should be 0.75 and 0.25 respectively.  For a BC2 family (or BC2-derived RILs), 
Contribution1 and Contribution2 should be 0.875 and 0.125 respectively. 

The example pedigree file below contains, for illustrative purposes, the 26 inbred founders of the maize Nested 
Association Mapping (NAM) population, along with 5 RILs per NAM family.  The full NAM population actually 
consists of 5000 RILs (200 RILs per family). 
 

Family Name Parent1 Parent2 Contribution1 Contribution2 f Comments 
NA B73:MRG:2:250040143 B73 NA 1 0 0.9 inbred 
NA B97:MRG:2:250039795 B97 NA 1 0 0.9 inbred 
NA CML103:MRG:4:250056356 CML103 NA 1 0 0.9 inbred 
NA CML228:MRG:4:250056512 CML228 NA 1 0 0.9 inbred 
NA CML247:MRG:4:250056531 CML247 NA 1 0 0.9 inbred 
NA CML277:MRG:4:250057053 CML277 NA 1 0 0.9 inbred 
NA CML322:MRG:4:250056637 CML322 NA 1 0 0.9 inbred 
NA CML333:MRG:4:250056648 CML333 NA 1 0 0.9 inbred 
NA CML52:MRG:4:250056274 CML52 NA 1 0 0.9 inbred 
NA CML69:MRG:4:250056291 CML69 NA 1 0 0.9 inbred 
NA HP301:MRG:2:250040193 HP301 NA 1 0 0.9 inbred 
NA Il14H:MRG:2:250040130 IL14H NA 1 0 0.9 inbred 
NA Ki11:MRG:2:250039815 Ki11 NA 1 0 0.9 inbred 
NA Ki3:MRG:2:250040211 Ki3 NA 1 0 0.9 inbred 
NA Ky21:MRG:2:250040003 Ky21 NA 1 0 0.9 inbred 
NA M162W:MRG:2:250040157 M162W NA 1 0 0.9 inbred 
NA M37W:MRG:2:250040142 M37W NA 1 0 0.9 inbred 
NA Mo18W:MRG:2:250040011 Mo18W NA 1 0 0.9 Inbred 
NA MS71:MRG:2:250040020 MS71 NA 1 0 0.9 Inbred 
NA NC350:MRG:2:250040135 NC350 NA 1 0 0.9 inbred 
NA NC358:MRG:2:250040063 NC358 NA 1 0 0.9 inbred 
NA Oh43:MRG:2:250040141 Oh43 NA 1 0 0.9 inbred 
NA OH7B:MRG:2:250040208 OH7B NA 1 0 0.9 inbred 
NA P39:MRG:2:250040161 PI587133 NA 1 0 0.9 inbred 
NA Tx303:MRG:2:250040016 Tx303 NA 1 0 0.9 inbred 
NA Tzi8:MRG:2:250040137 Tzi8 NA 1 0 0.9 inbred 
NAM_B97 Z001E0001:628NHAAXX:1:250021125 B73 B97 0.5 0.5 0.9 RIL 
NAM_B97 Z001E0002:628NHAAXX:1:250021137 B73 B97 0.5 0.5 0.9 RIL 
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NAM_B97 Z001E0003:628NHAAXX:1:250021149 B73 B97 0.5 0.5 0.9 RIL 
NAM_B97 Z001E0004:628NHAAXX:2:250021176 B73 B97 0.5 0.5 0.9 RIL 
NAM_B97 Z001E0005:628NHAAXX:2:250021188 B73 B97 0.5 0.5 0.9 RIL 
NAM_CML103 Z002E0001:61VBRAAXX:6:250021377 B73 CML103 0.5 0.5 0.9 RIL 
NAM_CML103 Z002E0002:61VBRAAXX:6:250021389 B73 CML103 0.5 0.5 0.9 RIL 
NAM_CML103 Z002E0003:61VBRAAXX:6:250021401 B73 CML103 0.5 0.5 0.9 RIL 
NAM_CML103 Z002E0004:61VBRAAXX:7:250021428 B73 CML103 0.5 0.5 0.9 RIL 
NAM_CML103 Z002E0005:61VBRAAXX:7:250021440 B73 CML103 0.5 0.5 0.9 RIL 
NAM_CML228 Z003E0001:705VVAAXX:1:250021629 B73 CML228 0.5 0.5 0.9 RIL 
NAM_CML228 Z003E0002:705VVAAXX:1:250021641 B73 CML228 0.5 0.5 0.9 RIL 
NAM_CML228 Z003E0003:705VVAAXX:1:250021653 B73 CML228 0.5 0.5 0.9 RIL 
NAM_CML228 Z003E0004:705VVAAXX:2:250021680 B73 CML228 0.5 0.5 0.9 RIL 
NAM_CML228 Z003E0005:705VVAAXX:2:250021692 B73 CML228 0.5 0.5 0.9 RIL 
NAM_CML247 Z004E0001:705VVAAXX:5:250021881 B73 CML247 0.5 0.5 0.9 RIL 
NAM_CML247 Z004E0002:705VVAAXX:5:250021893 B73 CML247 0.5 0.5 0.9 RIL 
NAM_CML247 Z004E0003:705VVAAXX:5:250021905 B73 CML247 0.5 0.5 0.9 RIL 
NAM_CML247 Z004E0004:705VVAAXX:6:250021932 B73 CML247 0.5 0.5 0.9 RIL 
NAM_CML247 Z004E0005:705VVAAXX:6:250021944 B73 CML247 0.5 0.5 0.9 RIL 
NAM_CML277 Z005E0001:61VBPAAXX:1:250022133 B73 CML277 0.5 0.5 0.9 RIL 
NAM_CML277 Z005E0003:61VBPAAXX:1:250022145 B73 CML277 0.5 0.5 0.9 RIL 
NAM_CML277 Z005E0004:61VBPAAXX:1:250022157 B73 CML277 0.5 0.5 0.9 RIL 
NAM_CML277 Z005E0005:61VBPAAXX:2:250022184 B73 CML277 0.5 0.5 0.9 RIL 
NAM_CML322 Z006E0001:61VE7AAXX:1:250022385 B73 CML322 0.5 0.5 0.9 RIL 
NAM_CML322 Z006E0002:61VE7AAXX:1:250022397 B73 CML322 0.5 0.5 0.9 RIL 
NAM_CML322 Z006E0003:61VE7AAXX:1:250022409 B73 CML322 0.5 0.5 0.9 RIL 
NAM_CML322 Z006E0005:61VE7AAXX:2:250022436 B73 CML322 0.5 0.5 0.9 RIL 
NAM_CML333 Z007E0001:61VE7AAXX:5:250022637 B73 CML333 0.5 0.5 0.9 RIL 
NAM_CML333 Z007E0002:62P7LAAXX:6:250028327 B73 CML333 0.5 0.5 0.9 RIL 
NAM_CML333 Z007E0003:61VE7AAXX:5:250022661 B73 CML333 0.5 0.5 0.9 RIL 
NAM_CML333 Z007E0004:61VE7AAXX:6:250022688 B73 CML333 0.5 0.5 0.9 RIL 
NAM_CML333 Z007E0005:62P7LAAXX:6:250028339 B73 CML333 0.5 0.5 0.9 RIL 
NAM_CML52 Z008E0001:61VBPAAXX:5:250022889 B73 CML52 0.5 0.5 0.9 RIL 
NAM_CML52 Z008E0002:61VBPAAXX:5:250022901 B73 CML52 0.5 0.5 0.9 RIL 
NAM_CML52 Z008E0003:61VBPAAXX:5:250022913 B73 CML52 0.5 0.5 0.9 RIL 
NAM_CML52 Z008E0004:61VBPAAXX:6:250022940 B73 CML52 0.5 0.5 0.9 RIL 
NAM_CML52 Z008E0005:61VBPAAXX:6:250022952 B73 CML52 0.5 0.5 0.9 RIL 
NAM_CML69 Z009E0001:61VE9AAXX:1:250023141 B73 CML69 0.5 0.5 0.9 RIL 
NAM_CML69 Z009E0002:61VE9AAXX:1:250023153 B73 CML69 0.5 0.5 0.9 RIL 
NAM_CML69 Z009E0003:61VE9AAXX:1:250023165 B73 CML69 0.5 0.5 0.9 RIL 
NAM_CML69 Z009E0004:61VE9AAXX:2:250023192 B73 CML69 0.5 0.5 0.9 RIL 
NAM_CML69 Z009E0005:61VE9AAXX:2:250023204 B73 CML69 0.5 0.5 0.9 RIL 
NAM_Hp301 Z010E0001:627C3AAXX:3:250028523 B73 Hp301 0.5 0.5 0.9 RIL 
NAM_Hp301 Z010E0002:628NVAAXX:6:250023405 B73 Hp301 0.5 0.5 0.9 RIL 
NAM_Hp301 Z010E0003:628NVAAXX:6:250023417 B73 Hp301 0.5 0.5 0.9 RIL 
NAM_Hp301 Z010E0004:628NVAAXX:7:250023444 B73 Hp301 0.5 0.5 0.9 RIL 
NAM_Il14H Z011E0001:61VE9AAXX:3:250028900 B73 Il14H 0.5 0.5 0.9 RIL 
NAM_Il14H Z011E0002:61VE9AAXX:3:250028912 B73 Il14H 0.5 0.5 0.9 RIL 
NAM_Il14H Z011E0003:61VE9AAXX:3:250028924 B73 Il14H 0.5 0.5 0.9 RIL 
NAM_Il14H Z011E0004:61VE9AAXX:4:250024075 B73 Il14H 0.5 0.5 0.9 RIL 
NAM_Il14H Z011E0005:61VE9AAXX:4:250024087 B73 Il14H 0.5 0.5 0.9 RIL 
NAM_Ki11 Z012E0001:628DJAAXX:3:250024276 B73 Ki11 0.5 0.5 0.9 RIL 
NAM_Ki11 Z012E0002:628DJAAXX:3:250024288 B73 Ki11 0.5 0.5 0.9 RIL 
NAM_Ki11 Z012E0003:628DJAAXX:3:250024300 B73 Ki11 0.5 0.5 0.9 RIL 
NAM_Ki11 Z012E0004:627C3AAXX:4:250028711 B73 Ki11 0.5 0.5 0.9 RIL 
NAM_Ki11 Z012E0005:628DJAAXX:4:250024339 B73 Ki11 0.5 0.5 0.9 RIL 
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NAM_Ki3 Z013E0001:628DJAAXX:7:250024528 B73 Ki3 0.5 0.5 0.9 RIL 
NAM_Ki3 Z013E0002:628DJAAXX:7:250024540 B73 Ki3 0.5 0.5 0.9 RIL 
NAM_Ki3 Z013E0003:628NJAAXX:4:250024659 B73 Ki3 0.5 0.5 0.9 RIL 
NAM_Ki3 Z013E0004:628NJAAXX:3:250024579 B73 Ki3 0.5 0.5 0.9 RIL 
NAM_Ki3 Z013E0005:628NJAAXX:3:250024591 B73 Ki3 0.5 0.5 0.9 RIL 
NAM_Ky21 Z014E0001:628NJAAXX:6:250024780 B73 Ky21 0.5 0.5 0.9 RIL 
NAM_Ky21 Z014E0002:628NJAAXX:4:250024676 B73 Ky21 0.5 0.5 0.9 RIL 
NAM_Ky21 Z014E0003:628NJAAXX:6:250024804 B73 Ky21 0.5 0.5 0.9 RIL 
NAM_Ky21 Z014E0004:628NJAAXX:7:250024894 B73 Ky21 0.5 0.5 0.9 RIL 
NAM_Ky21 Z014E0005:628NJAAXX:7:250024906 B73 Ky21 0.5 0.5 0.9 RIL 
NAM_M162W Z015E0001:62P7LAAXX:6:250028289 B73 M162W 0.5 0.5 0.9 RIL 
NAM_M162W Z015E0002:62P7LAAXX:6:250028311 B73 M162W 0.5 0.5 0.9 RIL 
NAM_M162W Z015E0003:62P7LAAXX:6:250028323 B73 M162W 0.5 0.5 0.9 RIL 
NAM_M162W Z015E0004:62P7LAAXX:6:250028335 B73 M162W 0.5 0.5 0.9 RIL 
NAM_M162W Z015E0005:62P7LAAXX:6:250028347 B73 M162W 0.5 0.5 0.9 RIL 
NAM_M37W Z016E0001:61VE9AAXX:5:250025347 B73 M37W 0.5 0.5 0.9 RIL 
NAM_M37W Z016E0002:61VE9AAXX:5:250025359 B73 M37W 0.5 0.5 0.9 RIL 
NAM_M37W Z016E0003:61VE9AAXX:5:250025371 B73 M37W 0.5 0.5 0.9 RIL 
NAM_M37W Z016E0004:61VE9AAXX:6:250025398 B73 M37W 0.5 0.5 0.9 RIL 
NAM_M37W Z016E0005:61VE9AAXX:6:250025410 B73 M37W 0.5 0.5 0.9 RIL 
NAM_Mo18W Z018E0001:628AGAAXX:2:250025721 B73 Mo18W 0.5 0.5 0.9 RIL 
NAM_Mo18W Z018E0002:628AGAAXX:2:250025758 B73 Mo18W 0.5 0.5 0.9 RIL 
NAM_Mo18W Z018E0003:628AGAAXX:2:250025741 B73 Mo18W 0.5 0.5 0.9 RIL 
NAM_Mo18W Z018E0004:628AGAAXX:2:250025761 B73 Mo18W 0.5 0.5 0.9 RIL 
NAM_Mo18W Z018E0005:628AGAAXX:2:250025773 B73 Mo18W 0.5 0.5 0.9 RIL 
NAM_MS71 Z019E0002:709G4AAXX:2:250025848 B73 MS71 0.5 0.5 0.9 RIL 
NAM_MS71 Z019E0003:709G4AAXX:2:250025885 B73 MS71 0.5 0.5 0.9 RIL 
NAM_MS71 Z019E0004:709G4AAXX:2:250025868 B73 MS71 0.5 0.5 0.9 RIL 
NAM_MS71 Z019E0005:709G4AAXX:2:250025888 B73 MS71 0.5 0.5 0.9 RIL 
NAM_NC350 Z020E0001:628NJAAXX:2:250026102 B73 NC350 0.5 0.5 0.9 RIL 
NAM_NC350 Z020E0002:628NJAAXX:2:250026139 B73 NC350 0.5 0.5 0.9 RIL 
NAM_NC350 Z020E0003:628NJAAXX:2:250026122 B73 NC350 0.5 0.5 0.9 RIL 
NAM_NC350 Z020E0004:628NJAAXX:2:250026142 B73 NC350 0.5 0.5 0.9 RIL 
NAM_NC350 Z020E0005:627C3AAXX:2:250028422 B73 NC350 0.5 0.5 0.9 RIL 
NAM_NC358 Z021E0001:709G4AAXX:3:250026356 B73 NC358 0.5 0.5 0.9 RIL 
NAM_NC358 Z021E0002:709G4AAXX:3:250026393 B73 NC358 0.5 0.5 0.9 RIL 
NAM_NC358 Z021E0003:709G4AAXX:3:250026376 B73 NC358 0.5 0.5 0.9 RIL 
NAM_NC358 Z021E0004:709G4AAXX:3:250026396 B73 NC358 0.5 0.5 0.9 RIL 
NAM_NC358 Z021E0005:709G4AAXX:3:250026408 B73 NC358 0.5 0.5 0.9 RIL 
NAM_Oh43 Z022E0001:709G4AAXX:5:250026610 B73 Oh43 0.5 0.5 0.9 RIL 
NAM_Oh43 Z022E0002:709G4AAXX:5:250026647 B73 Oh43 0.5 0.5 0.9 RIL 
NAM_Oh43 Z022E0003:709G4AAXX:5:250026630 B73 Oh43 0.5 0.5 0.9 RIL 
NAM_Oh43 Z022E0004:709G4AAXX:5:250026650 B73 Oh43 0.5 0.5 0.9 RIL 
NAM_Oh43 Z022E0005:709G4AAXX:5:250026662 B73 Oh43 0.5 0.5 0.9 RIL 
NAM_Oh7B Z023E0001:709G4AAXX:7:250026864 B73 Oh7B 0.5 0.5 0.9 RIL 
NAM_Oh7B Z023E0003:709G4AAXX:7:250026901 B73 Oh7B 0.5 0.5 0.9 RIL 
NAM_Oh7B Z023E0004:709G4AAXX:7:250026884 B73 Oh7B 0.5 0.5 0.9 RIL 
NAM_P39 Z024E0001:MRG:2:250027118 B73 P39 0.5 0.5 0.9 RIL 
NAM_P39 Z024E0002:627C3AAXX:4:250028702 B73 P39 0.5 0.5 0.9 RIL 
NAM_P39 Z024E0004:MRG:2:250027138 B73 P39 0.5 0.5 0.9 RIL 
NAM_P39 Z024E0005:MRG:2:250027158 B73 P39 0.5 0.5 0.9 RIL 
NAM_Tx303 Z025E0001:70980AAXX:4:250028959 B73 Tx303 0.5 0.5 0.9 RIL 
NAM_Tx303 Z025E0002:70980AAXX:4:250028996 B73 Tx303 0.5 0.5 0.9 RIL 
NAM_Tx303 Z025E0003:70980AAXX:4:250028979 B73 Tx303 0.5 0.5 0.9 RIL 
NAM_Tx303 Z025E0004:70980AAXX:4:250028999 B73 Tx303 0.5 0.5 0.9 RIL 
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NAM_Tx303 Z025E0005:70980AAXX:4:250029011 B73 Tx303 0.5 0.5 0.9 RIL 
NAM_Tzi8 Z026E0001:MRG:2:250027626 B73 Tzi8 0.5 0.5 0.9 RIL 
NAM_Tzi8 Z026E0002:MRG:2:250027663 B73 Tzi8 0.5 0.5 0.9 RIL 
NAM_Tzi8 Z026E0003:MRG:2:250027646 B73 Tzi8 0.5 0.5 0.9 RIL 
NAM_Tzi8 Z026E0004:MRG:2:250027666 B73 Tzi8 0.5 0.5 0.9 RIL 
NAM_Tzi8 Z026E0005:MRG:2:250027678 B73 Tzi8 0.5 0.5 0.9 RIL 
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Appendix 3:  Contents of a TagsOnPhysicalMap (TOPM) file 

Although a TagsOnPhysicalMap (.topm or .topm.bin) file is binary, if you want to have a look “under the hood” it 
is possible to convert it to a human-readable, tab-delimited text format by using the BinaryToTextPlugin.  If the 
resulting .topm.txt file is too large to open in Excel (or a text editor), you can look at part of it by using the “head” 
command in Linux (or a combination of head and tail -- see the Introduction).  This Appendix is provided to 
answer the question that comes next: “What am I looking at?”   

The first line of a .topm.txt file consists of three numbers: 
1. tagNum:  the total number of tags contained in the TOPM 
2. tagLengthInLong:  how long is each tag in multiples of 32 bases. Typically 2 (= 64 bases) 
3. maxVariants:  the maximum number of variants (SNPs) that can be stored for each tag. These are 

populated by the -mUpd option of the TagsToSNPByAlignmentPlugin. 

Each subsequent line (row) of a .topm.txt file consists of the record for each tag, with the lines (rows) sorted by 
the sequence of each tag.  Because they are sorted by tag sequence rather than by chromosome, start position, and 
strand, it is possible that tags that align to the same start position and strand (i.e., that together comprise a 
TagLocus) will not be adjacent in the .topm.txt file.  Each tag row contains the following information: 

1. tagLength:  the actual length of the tag (before padding with polyA).  This is always less than or equal to 
the tagLengthInLong × 32 bases. 

2. multimaps:  the number of equally good, optimal chromosomal positions reported by the sequence 
aligner (BWA or bowtie2).  If you used bowtie2 to align your tags to the reference genome, then tags with 
two or more equally good chromosomal positions will have “99” for the value of multimaps (because 
bowtie2 does report the total number).  A “*” character indicates that no good alignments were found. 

3. chromosome:  If multimaps = 1, the chromosome number of the unique best alignment for the tag. 
Otherwise, a “*” = undefined (in that case, all remaining fields are undefined too). 

4. strand:  the strand to which the tag aligns (“1” = plus strand, “-1” = minus strand, “*” = undefined). 
5. startPosition:  the chromosomal position of the first base of the tag (barcoded end).  “*” = undefined. 
6. endPostion:  the chromosomal position of the last base of the tag.  “*” = undefined. 
7. divergence:  the edit distance to the reference genome of the unique best alignment of that tag.  “*” = 

undefined. 
8. For each variant up to maxVariants, a pair of integers consisting of the following (these are all “*” if the 

tag does not have a unique best alignment or if there are no variants recorded for the tag): 
a. variantPosOff:  the position (offset) of the variant (SNP) relative to the startPosition of the tag. 
b. variantDef:  the allele represented by the tag at that position, in decimal ASCII code, where 65 = 

“A”, 67 = “C”, 71 =  “G”, 84 = “T”, 45 = “-” (gap), and 78 = “N”. 
9. dcoP:  placeholder for a p-value from a binomial test of the genetic mapping support for the chromosome 

and startPosition.  Genetic testing of physical positions (obtained by sequence alignment) is not part of 
the standard pipeline (it requires custom code), so this is usually undefined (*). 

10. mapP:  placeholder for a p-value from a linkage disequilibrium test of the genetic mapping support for 
the chromosome and startPosition.  Genetic testing of physical positions (obtained by sequence 
alignment) is not part of the standard pipeline (it requires custom code), so this is usually undefined (*). 

 


	Table of Contents
	Introduction
	How to cite the TASSEL-GBS pipeline
	TASSEL Google Group
	TASSEL Source Code is Available on SourceForge
	Discovery Pipeline Overview
	Discovery versus Production Pipelines
	Recommended directory (folder) structure for a GBS analysis
	FastqToTagCountPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeMultipleTagCountPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	TagCountToFastqPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	Indexing with BWA
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Alignment with BWA
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Exporting BWA Alignments in SAM Format
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Indexing with bowtie2
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	Alignment with bowtie2
	Summary:
	Input:
	Output:
	Key Arguments:
	Example command:
	Gory Details:

	SAMConverterPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	FastqToTBTPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeTagsByTaxaFilesPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	SeqToTBTHDF5Plugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	ModifyTBTHDF5Plugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:
	Merging two TBT HDF5 files:
	Merging taxa with the same LibraryPrepID:
	Pivot (transpose) a TBT HDF5 file:

	Gory Details:

	TagsToSNPByAlignmentPlugin (the Discovery SNP Caller)
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	MergeDuplicateSNPsPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	GBSHapMapFiltersPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	BiParentalErrorCorrectionPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:
	Specifying which samples belong to which biparental families
	Filtering of SNPs based on linkage disequilibrium
	Detection of Error-Prone SNPs


	MergeIdenticalTaxaPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	RawReadsToHapMapPlugin (the Production SNP Caller)
	Summary:
	Input:
	Output:
	Arguments:
	Example command:
	Gory Details:

	BinaryToTextPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:

	TextToBinaryPlugin
	Summary:
	Input:
	Output:
	Arguments:
	Example commands:

	Appendix 1:  Key file example
	Appendix 2:  Pedigree file example
	Appendix 3:  Contents of a TagsOnPhysicalMap (TOPM) file

