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A B S T R A C T

One of the main topics of interest in physics is the composition and structure of
matter. Especially for hadrons, which are bound states of quarks and gluons such
as the proton and neutron, the description is incomplete. Quantumchromodynam-
ics (QCD), the theory of the strong interaction, is in accordance with most of the
results from measurements. However QCD as well as derived effective theories or
lattice-QCD calculations are unable to fully explain the rich hadron spectrum.

The isoscalar part of the hadron spectrum is particularly interesting, because
states with a large gluon content are expected in this sector. In order to validate or
invalidate theories, the precise measurement of the states is crucial. The mass and
width of states can be measured by energy scans. With the method of partial wave
analysis one is able to extract additional information such as the spin and parity
of the states. In this respect, the BESIII experiment at IHEP in Beijing and the
future P̄ANDA experiment at FAIR in Darmstadt, will contribute with valuable
information.

A key parameter for such experiments is the luminosity, which is needed for
energy scans and the measurement of absolute cross sections. In this thesis the
implementation of the versatile LuminosityFit software package is presented. It is
responsible for the determination of the luminosity from the reconstructed tracks
of the P̄ANDA luminosity detector with high stability and an accuracy of below
0.5%. Essential for the small systematic uncertainty is the correction of influences
from the accelerator beam and the target. In consequence a high accuracy for line
shape measurements of resonances is ensured with the highly accurate luminosity
determination.

Furthermore this thesis aims towards the extraction of the isoscalar mesons in
the reaction J/ψ → γπ0π0. The presence of many wide and interfering states
makes a correct theoretical description difficult. To address this matter the imple-
mentation of the helicity formalism for the general partial wave analysis frame-
work ComPWA is presented in this thesis. The goal of ComPWA is to establish
the comparability of various theoretical models and formulations. The study of
the isoscalar mesons can benefit from the direct comparison of different theories.
This implementation of the helicity formalism takes the novel approach by using
an expert system. An exhaustive validation of the implementation is performed on
the basis of the J/ψ→ γπ0π0 reaction. With the availability of the helicity formal-
ism in ComPWA, partial wave analysis can be performed with this first general
model, that serves as a reference for comparisons with other implementations.
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Z U S A M M E N FA S S U N G

Eine der zentralen Fragen der Physik ist die Zusammensetzung von Materie.
Vor allem im Bereich der Hadronen, wozu die Protonen und Neutronen gehö-
ren, sind einige Phänomene bisher noch ungeklärt. Die Quantenchromodynamik
(QCD), die theoretische Beschreibung der starken Wechselwirkung, ist in guter
Übereinstimmung mit den meisten Messergebnissen. Allerdings sind weder die
QCD selbst, noch effektive Theorien oder Berechnungen im Rahmen der Gitter-
QCD in der Lage, alle bisher gefundenen Zustände zuzuordnen und deren interne
Struktur aufzuklären.

Besonders interessant ist der isoskalare Sektor, da in diesem Zustände mit
großem Gluonen-Anteil erwartet werden. Um theoretische Beschreibungen zu be-
stätigen oder auszuschliessen, ist das präzise Vermessen der Zustände wesentlich.
Energiescan-Messungen erlauben die genaue Bestimmung der Masse und Breite
von Zuständen, während die Partialwellenanalyse die Extraktion von zusätzlichen
Eigenschaften wie des Spins und der Parität ermöglicht. Hierzu liefern das BESIII-
Experiment am IHEP in Peking und das künftige P̄ANDA-Experiment an FAIR
in Darmstadt wichtige Ergebnisse.

Eine grundlegende Messgröße für Experimente dieser Art ist die Luminosität,
welche für Energiescan-Messungen oder der Bestimmung von absoluten Streu-
querschnitten erforderlich ist. Im Rahmen dieser Arbeit wurde das umfangrei-
che LuminosityFit-Softwarepaket entwickelt, welches die Luminosität aus den
rekonstruierten Spuren des P̄ANDA-Luminositätsdetektors mit hoher Stabilität
und einer geringen systematischen Unsicherheit von weniger als 0.5% bestimmt.
Ausschlaggebend für das Erreichen dieser hohen Genauigkeit ist die Berücksich-
tigung der Abweichungen von einem idealen Strahl und Target. Damit ist von
Seiten der Luminosität eine hohe Genauigkeit beim Vermessen der Linienform
von Resonanzen sichergestellt.

Zudem befasst sich die Arbeit mit der Extraktion der isoskalaren Mesonen in
der Reaktion J/ψ → γπ0π0. Aufgrund der breiten und miteinander interferieren-
den Zustände ist deren korrekte Bestimmung eine komplizierte Aufgabenstellung.
Hierzu wurde der Helizitätsformalismus für das allgemeine Partialwellenanalyse-
Framework ComPWA implementiert. ComPWA hat zum Ziel, die Vergleichbar-
keit von verschiedenen theoretischen Beschreibungen herzustellen. Dies ist für
die Analyse der isoskalaren Mesonen von Vorteil, weil damit ein unmittelbarer
Vergleich zwischen den unterschiedlichen Formalismen möglich wird. Mit der
Verwendung eines Expertensystems bietet die Implementierung einen neuartigen
Lösungsansatz. In Anlehnung an den Zerfall J/ψ → γπ0π0 wird die Richtigkeit
dieser Implementierung im Detail überprüft. Durch den Helizitätsformalismus in
ComPWA steht das erste allgemeine Model zur Verfügung, welches für weitere
Implementierungen als Vergleichsmodell benutzt werden wird.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth
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M O T I VAT I O N

One of the fundamental questions that mankind is trying to find an answer to is “What
is matter made of?”. Over centuries intense research efforts have shown that there is not
a single answer to this question, but there exists a hierarchy of matter, ranging from very
large composite objects such as planets or stars over molecules to atoms and finally to the
fundamental building blocks of our universe. The latter is studied by the field of elemen-
tary particle physics with the Standard Model as our best understanding of the smallest
scale of matter. It is summarized by figure 1. There are three particle categories: the

Figure 1: The Elementary Particles of the Standard Model [1].

quarks, the leptons, all of them being fermions of spin S =  h/2, and the interaction me-
diator bosons with integral spin. Both the quarks and leptons are categorized into three
generations well separated in their mass which is indicated by the columns in figure 1.
Each particle or state possesses a set of quantum numbers that uniquely identifies them.
Quarks carry the additive baryon number B = 1/3 while the leptons possess the lepton
quantum number L = 1. A total of six quark flavors are currently known, historically
named up (u), down (d), strange (s), charm (c), bottom (b), and top (t), while each of
the six flavors introduces a quantum number. For the four heavy quarks the assignment
is straight forward, the s quark carries strangeness S = −1, the c quark charm C = 1,
the b quark bottomness B = −1, and the top quark topness T = 1. Unlike these quarks,
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2 motivation

the u and d quark have a similar mass and the isospin was introduced to express this
symmetry. Analogous to the spin S it is also an SU(2) group and the u and d quarks
carry I = 1/2, I3 = ±1/2, respectively.

Currently the Standard model contains three forces, the electromagnetic (EM), the
weak and the strong force, which are described by their appropriate gauge quantum field
theory (QFT). QFT combines special relativity and quantum mechanics predicting for ex-
ample the existence of antiparticles as a consequence. Hence for every particle exists an
antiparticle which has all internal quantum numbers inverted. Specifically, quantum elec-
trodynamics (QED) describes the interactions of particles with electric charge with the
photon as the force mediator. Because the photon is massless, the range of the EM force
is infinite, but its strength drops off rapidly, more precisely the force drops with 1/r2.
The small coupling constant αEM ≈ 1

137 of EM interactions together with the renormaliz-
ablity of QED allows for analytic perturbation calculations that can be carried out with
high precision, making it a well tested theory that is in excellent agreement with mea-
surements [2]. It can be unified with the weak force, which is mediated by the massive
W± and Z0 gauge bosons, to the electroweak theory [3–5]. All of the quarks and leptons
carry weak charge and can therefore interact weakly. The interaction strength of the weak
force is heavily suppressed by terms arising from the massive force mediator bosons. The
mass of the weak interaction bosons seemed rather unesthetic until the 1960s, as gauge
invariance also requires the W and Z bosons to be massless. The proposed Higgs mech-
anism was able to solve this mystery by the spontaneous symmetry breaking. However
the theory remained indefinite over decades as no evidence for the Higgs particle was
found by experiments. Only recently, in the year 2012, the long awaited Higgs particle
was discovered [6, 7].

The third force of the standard model is the strong force with the gluons as the me-
diator bosons. Both the quarks and gluons possess color charge, which allows them to
interact by the exchange of the gluons. The underlying renormalizable QFT [8], quantum
chromodynamics (QCD), is able to describe two unique effects of the strong force with a
four momentum transfer Q2 dependent coupling constant in an elegant way. In general
the coupling constant of a QFT is not constant, but vacuum polarization terms generate
a Q2 or interaction range dependence. The coupling constant decreases as Q2 becomes
smaller or the interaction distance becomes larger. This effect is also known as charge
screening. In contrast to the photon the gluons themselves carry color that allows them
to couple to other gluons. In return this results in a coupling constant αs that increases
as the interaction distance becomes larger or decreases for an increasing four momen-
tum transfer Q2. For QCD this effect dominates over the charge screening one, so that
the coupling constant dependency to Q2 is governed by the self coupling feature (see
figure 2). At large Q2 or small distances it is very small and the quarks are quasi free
and calculations can be performed via perturbation theory [10]. This effect is known as
asymptotic freedom [11, 12]. On the contrary at large distances or smallQ2 it increases in
a monotonic fashion, making it impossible to use the otherwise successful perturbation
theory. As a result the existance of a free quark or antiquark is forbidden. This effect is
known as confinement [13].

The observable bound states of quarks, the so called hadrons, are colorless and catego-
rized within the constituent quark model (CQM) [14] into mesons (B = 0) and baryons
(B = 1). Thus conventional mesons are simply a quark antiquark pair and baryons a
three quark state. In contrast to the mesons, the antiparticles of baryons belong to the
separate family of antibaryons (B = −1). Apart from the quark flavor, further classifica-
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Figure 2: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets
(NLO: next-to-leading order; NNLO: next-to-next-to leading order; res. NNLO: NNLO
matched with resummed next-to-leading logs; N3LO: next-to-NNLO) [9].

tion is possible using the JPC nomenclature, with the total spin J, the parity P and the
C-parity. The total spin J is a coupling of the intrinsic spin S and the angular momentum
L. The P and C-parity are multiplicative quantum numbers and describe the behavior of
the particle state wave function under the spacial reflection transformation ~x 7→ −~x and
the particle to antiparticle transformation.

In order to gain insight into this rich particle spectrum one approach is trying to
solve QCD numerically by discretizing spacetime, which is known as lattice QCD. Being
computationally intensive, the use and precision of lattice QCD is still limited. How-
ever the steady increase of computation power over the years has accelerated this field
of research, allowing to determine the hadron spectrum with increasing precision, e. g.
the proton mass with 2% [15]. Otherwise one has to refer to effective field theories or
approximating models, such as chiral perturbation theory [16] or the constituent quark
model.

The classification and structure of the vast amount of experimentally discovered parti-
cles in the hadron spectrum is of high interest. With the discovery of several unexpected
states in respect to the conventional hadron picture, the interest was drawn to the search
for unconventional hadrons, so called exotics. For example in the charmonium sector
(cc̄ mesons), the recent measurement of the X,Y,Z states has caught the focus of atten-
tion [17–19]. Also parts of the meson spectrum remain understood relatively poor despite
decades of investigation. In particular information of the light isoscalar spectrum with
JPC = 0++, consisting of isospin singlet states (I = 0), proves to be difficult to extract
due to many broad and overlapping states. The supernumerary amount of states also
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makes this sector interesting with regard to the search for exotics. Additional precision
measurements are needed to gain further insight on the nature of these states.

At this point one might ask, how exactly can such a bound state be measured in an
experiment? Since all states except the energetic lowest ones are instable, they have to be
produced first. In general this is achieved by the collision of particles, which are stable
or are comparatively long-lived, e. g. protons, electrons, pions, kaons and muons. If an
instable bound state is produced, it will decay into a set of particles that are stable or
relatively long lived. These decay products are also known as the final state and can be
measured. In the reverse order information about the instable bound states is obtained.

The mass and width of states can be extracted from the line shape. Energy scans are
a simple yet precise method that measure the line shape of states produced directly in
the intial particle collision. In this case the beam energy or the center of mass energy√
s of the initial particle collisions is increased step by step, while the reaction rate is

recorded. This obtained line shape spectrum will exhibit peaks at the masses of created
instable states, as a result of their resonant production. The advantage of the energy scan
is that merely the counting of a reconstructed final state is needed. The future experi-
ment P̄ANDA is able to make such measurements with its antiproton proton collisions.
Depending on the reaction partners, e. g. electron positron collisions, the accessible states
via direct production can be limited to a subset of the quark model states.

In addition, states with exotic quantum numbers can never be produced directly. There-
fore one has to resort to another well established technique for extracting the information
of states, the method of partial wave analysis (PWA). It allows the extraction of the prop-
erties of the states produced indirectly from subsequent decays. Partial wave models
are created for the reaction processes, and by fitting the predicted kinematic variable
distribution of the model for the given final state to the measured data, the instable inter-
mediate particles and their parameters can be extracted. Apart from the mass and width
of a state, also additional information e. g. the spin and parity are extracted. Important
for such amplitude analysis is large amounts of data, in order to be able to notice small
variations in the kinematic distributions. Currently experiments like BESIII are ideal for
such analysis with their record amounts of collected data in the charm region, enabling
unprecedented precision.

Line shape measurements require the information of the luminosity, which scales the
overall reaction rate. Because the luminosity can vary with each individual measurement
point of the energy scan, the knowledge of the relative luminosity is a vital aspect of
the normalization and the correct measurement of the line shape [20]. Furthermore the
absolute luminosity is mandatory for the determination of the absolute cross section
of any process. One goal of this thesis is to determine the luminosity for the P̄ANDA
experiment from the reconstructed track information of the luminosity detector (LMD)
with the highest possible accuracy. This high accuracy on the luminosity is achieved by
studying the influence of the target and accelerator beams in detail.

When performing PWA, many different models can be used to extract properties of
the states. The comparison of the various models is of high value, as it can provide more
information on their interpretation, accuracy, limits, etc. Consequently the properties of
states can be extract with higher accuracy and more insight on the composition of the
states is gained. The second goal of the thesis is the implementation of the helicity formal-
ism for the ComPWA framework. With this, a first general and well established model
is made available, that serves as a foundation for the comparability of other models. In
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this thesis the focus lies on the light isoscalar spectrum with the preparation of a partial
wave analysis of the reaction channel J/ψ→ γπ0π0 using BESIII data. The attractiveness
of this reaction lies in its simpliticy, due to the restriction of the quantum numbers for
the pseudoscalar-pseudoscalar pair.

The thesis begins with a summary of the current knowledge of hadronic resonances,
open questions and possible theoretical interpretations. Chapter two presents the BESIII
experiment at the Beijing Electron Positron Collider II (BEPCII) with its record-breaking
amount of collected data in the charm sector and the P̄ANDA experiment at the Facility
for Antiproton and Ion Research (FAIR) currently under construction. Both setups are
ideal machines for the study of the hadron spectrum. The third chapter introduces the
concept of luminosity and guides towards the design of the luminosity detector (LMD)
as well as the corresponding reconstruction software. In chapter four a detailed descrip-
tion of the luminosity extraction software is presented. Extensive systematic studies on
the accuracy of the determined luminosity are performed in chapter five. Here influ-
ences of various sources of the luminosity extraction software, which affect the accurate
determination of the luminosity, are studied in detail. These sources are the detector effi-
ciency and resolution correction, the type of estimator used in the optimization problem,
as well as the accelerator and target beam of the P̄ANDA experiment. Chapter six then
turns to the amplitude analysis of the J/ψ → γπ0π0 reaction using data of the BESIII
experiment. It starts of with an theoretical introduction to partial wave analysis (PWA)
and the helicity formalism. Afterwards the ComPWA framework is shortly presented in
a general scope, while the following sections are devoted to the implementation of the
helicity formalism with a unique approach by describing the physics model using an ex-
pert system. In chapter seven the implementation of the helicity formalism is validated
exhaustively and closes with first results of the amplitude analysis of the BESIII dataset.
At the end the results of the thesis are summarized in the final discussion chapter.





1
H A D R O N S P E C T R O S C O P Y

Spectroscopy is a measurement technique in which observed intensity distributions of
radiation properties, e. g. the energy, are extracted. It originates from the study of the in-
teraction of electromagnetic radiation with matter. The recorded distributions are called
spectra. In hadron spectroscopy, the intensity variation of certain kinematic variables ob-
served in particle reactions are studied to obtain the interesting information of possibly
created bound states. Properties of a state include its mass and width, but also its quan-
tum numbers and internal structure. From the elementary constituents of these states,
the quarks, a vast amount of composite particles are accessible. Their classification and
internal structure is the core issue addressed by the field of hadron spectroscopy.

A well established theory for the understanding of the rich hadron spectrum is the
constituent quark model (CQM). Historically it emerged from the previously developed
eightfold way [21] that was introduced to organize the growing amount of states. The
CQM asserts mesons being quark antiquark pairs and baryons three quark states, while
all quarks carry color1 and only colorless hadrons are allowed. Using the SU(3) symmetry
group, the nine possible qq̄ combinations containing the light u, d, and s quarks are
grouped into an octet and a singlet of light quark mesons. This can be extended further
to a SU(4) flavor symmetry group by including the charm quark c, which results in a 15-
plet and a singlet, depicted in figure 3 for the ground states (L = 0) of the pseudoscalar
(S = 0) and vector mesons (S = 1). Even though the SU(4) flavor symmetry group is
broken strongly, due to the large mass difference of the charm quark, the qualitative
classification and grouping of the mesons is possible. The states are commonly described
by the JPC quantum numbers, J being the spin, P the parity and C the charge conjugation
parity2 of the meson. The following selection rules apply

• |L− S| 6 J 6 L+ S with the orbital angular momentum L and sum of quark spins
S = 0, 1

• P = (−1)L+1

• C = (−1)L+S only defined for states which are their own antiparticle.

With L = 0 the pseudoscalar (0−+) and the vector (1−−) states are addressed, similarly
with an orbital excitation L = 1 the scalars (0++), the axial vectors (1++) and (1+−), and
the tensors (2++). Despite its simplicity, the quark model is able to describe the observed
hadron spectrum astonishingly well. Its power lies in the ability to categorize or organize
the rich particle spectrum, which, especially at the time of its establishment, was of great
importance to see structure and spawn new ideas for future models like QCD.

1 In the CQM the quarks carry a color charge, which was introduced [22] because of the ∆++ baryon that has
uuu constituent quark content and would be forbidden by fermi statistics.

2 The charge conjugation operator C changes a particle to its antiparticle, therefore inverting all its internal
quantum numbers.
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Z

Z

Z

Figure 3: SU(4) weight diagram showing the 16-plets for the pseudoscalar (a) and vector mesons
(b) made of the u, d, s and c quarks as a function of isospin Iz, charm C, and hyper-
charge Y = B+ S− C

3 . The nonets of light mesons occupy the central planes to which
the cc̄ states have been added [9].

Already previously mentioned, there are additional states apart from the conventional
mesons and baryons, the so called exotics hadrons. In contrast to the “regular” hadrons,
their quantum numbers can also take JPC combinations that are not accessible by the
“regular” mesons or baryons. According to the selection rules above the quantum num-
bers for pure exotic states in the meson sector are JPC = 0−−, 0+−, 1−+, 2+−, · · · . The
simplest realizations of these states in the quark model picture are

• hybrid (qq̄g), additional gluon contribution

• glueball (gg or ggg), pure gluon states

• tetraquark (qq̄qq̄), additional quark antiquark pair contribution

• pentaquark (qqqqq̄), additional quark antiquark pair contribution

• molecular states ((qq̄)(qq̄) or (qqq)(qq̄)), two mesons or meson and baryon form-
ing a bound state.

It should be noted that also baryon exotic contributions are listed here, like the pen-
taquark.

In general a hadron state is a linear combination of various bound state contributions
as long as the quantum numbers for each contribution are identical. However states with
exotic quantum numbers are missing the conventional meson or baryon contribution,
therefore making them the easiest target for evidence of an exotic state contribution. The
visualization of the simplest contributions are shown in figure 4. Two parts of the meson
spectrum are particularly suited for this search, which are presented in more detail in
the following sections.
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Figure 4: Simplest conventional and exotic components of hadron states within the consituent
quark picture [23, p. 11].

1.1 light quark sector

The light mesons are made up of the u, d and s quarks. Because their masses are small
compared to the binding energy, the bound states of such quarks have to be treated
relativistically. On the contrary the advantage is that their mass can be neglected as
an approximation, allowing effective field theories to take over, as for example chiral
perturbation theory (ChPT). In addition they are comparatively easy to measure from an
experimental point of view, due to their low mass which allows an abundant production
already at low beam energies.

Light mesons are categorized by the SU(3) symmetry group, hence only states on the
center planes of the diagrams in figure 3 are accessible, as we restrict the states to be
charmless. The lightest mesons are the pseudoscalar pions which form an isospin |I, Iz >
triplet [24, p. 47]

π+ = |1,+1 > = −ud̄

π0 = |1, 0 > =

√
1

2
(uū− dd̄)

π− = |1,−1 > = dū.

For a perfect symmetry between the quarks, all three quarks and states within a multiplet
would be equal in mass. As measurements have shown, the states consisting of first
generation quarks (u,d and their antiquarks), are indeed very similar in mass, therefore
impose only a weak breaking of the underlying SU(2) symmetry. Within SU(3) there are
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two isoscalar states with the same JPC quantum numbers. These are the singlet ψ1 and
the octet state ψ8

ψ1 =

√
1

3
(uū+ dd̄+ ss̄)

ψ8 =

√
1

6
(uū+ dd̄− 2ss̄).

They are defined by the orthogonality to each other and the neutral isospin triplet state

(ψ3 =
√
1
2(uū−dd̄)). Since both of these states are isoscalar and have the same quantum

numbers JPC, they are allowed to mix and the physical states are orthogonal linear com-
bination of these basis states. In fact for the ground state vector mesons (L = 0,S = 1),
the physical states are

φ(1020) = ψ8cos(θV) −ψ1sin(θV) ≈ ss̄

ω(782) = ψ8sin(θV) +ψ1cos(θV) ≈
√
1

2
(uū+ dd̄).

With a vector mixing angle of θV = 36.4° [9], the mixing is nearly ideal, making the two
physical states almost pure in the generation of quarks contributing to the state. The u,
d, s quark masses and the mixing angles are actually determined from the masses of
the states in the octet and singlet. The mixing angles and state masses suggest a heavier
s quark, compared to u and d, therefore breaking the SU(3) symmetry. Similarly this
procedure can be applied to the pseudoscalars, namely the π0, η and η ′ states. However
here the quark model reaches its limit, as measurements show a large mass difference
between the η and η ′, that cannot be explained with merely state mixing.

In addition the understanding in some parts of the light meson spectrum is relatively
poor. The light isoscalar spectrum (I = 0) is particularly interesting, because the observed
states are supernumerary with respect to predicted conventional isoscalar mesons. Fig-
ure 5 shows the light isoscalar mesons with JPC = 0++, comparing the 6 states predicted
by the quark model with the 8 observed states. This suggests interpretations beyond the
simple qq̄ picture, such as molecules, glueballs and tetraquark systems. Owing to the
fact that glueballs are isospin singlet states, this spectrum becomes even more intrigu-
ing. However as the majority of these states are broad and overlap, with widths between
100-450MeV , both their correct theoretical description as well as their experimental ex-
traction process is difficult.

A resonance is described by a pole spole in the S-matrix in the complex energy plane√
spole =Mc2 − iΓ/2.

M and Γ denote the mass and width of the resonance. The location of this pole is only
in agreement with the Breit-Wigner parameterization for narrow and well-separated res-
onances [26]. Also they should be far away from thresholds of decay channels. Specifi-
cally for the f0(500)/σ, which is a very broad structure, this constraint is not given and
the simple Breit-Wigner parameterization is not a valid approximation. In addition, the
separation of the resonance from the background becomes impossible for such broad
resonances. The pole position can be best extracted with state of the art dispersion rela-
tions [27] to about 450− i275MeV [26, 28]. Even though the f0(980) is a quite narrow
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Figure 5: The spectrum of isoscalar mesons with JPC = 0++ [23]. The black bars represent quark
model predictions [25, p.64f], while the gray shaded areas and bars show the experi-
mental data [9] with the masses in dark and widths in light gray.

resonance, it overlaps strongly with the broad f0(500) and f0(1370), hence making the
pole extraction with a Breit-Wigner problematic. The interference may shift the peak in
the invariant mass spectrum and also the nearby KK̄ threshold can create a dip or peak.
In analogy also the strong overlapping for the f0 resonances above 1GeV/c2, which is
evident from figure 5, makes their correct pole extraction difficult.

The interpretation of these states is controversial, although some are supported with
stronger evidence. For example the f0(980) can be associated with a KK̄ molecule due to
the unexpected strong coupling to KK̄, even though the threshold is close [29, 30]. Also
it is mainly seen in semi-leptonic Ds decays and decays of B/Bs-mesons, supporting this
interpretation. Similar reasoning applies for the multiquark interpretation [31, 32]. When
comparing the f0(1370) with the quark model predictions (see figure 5), a corresponding
partner can be found and the qq̄ picture appears suitable. Its decay into predominantly
2 and 4 pions also supports this view. For the f0(1500) and f0(1710) the interpretation
is again more debated. Pure gauge quenched3 lattice QCD calculations show a glueball
ground state with quantum numbers 0++ and its first excited state with 2++ [33] (see
figure 6). The masses of these states are predicted to be at 1710± 50± 80MeV/c2 and
2390± 30± 120MeV/c2, while the first pure exotic glueball state has quantum numbers
2+− at a mass of around 4GeV/c2. As the 0++ states for example are also accessible by
conventional mesons, these states can mix with the glueball ground state. Possible mixing
partners are the f0(1370), f0(1500) and the f0(1710) as their masses are similar [34, 35].
The f0(1500) couples strongly to ππ but not to KK̄, unlike the f0(1710), which decays

3 In the quenched approximation, qq̄ loops are neglected.
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Figure 6: Predicted glueball mass spectrum from the lattice in quenched approximation [33].

mainly into kaons. This fact favors the f0(1500) for a dominant glueball content [35].
However simply comparing the mass of the f0(1710) and the predicted glueball mass
from [33], this state seems like the more suitable candidate. It was found that the decay
of a spin zero glueball G to light qq̄ pairs is chirally suppressed by the mass ratio factor
of (mq/mG)2 [36]. This supports the glueball interpretation of the f0(1710) as this effect
would result in a more dominant decay into kaons [25]. Since glueballs are expected to
be produced in gluon rich decays, the production of the f0 states in J/ψ radiative decays
can help with the interpretation of these f0 resonances. The J/ψ state belongs to a family
of mesons known as the charmonia.

1.2 charmonium

When moving towards mesons build up from heavier constituent quarks, models can
take advantage of this by treating them non-relativistically as an approximation. The
charm (c), bottom (b) and top (t) quarks count as heavy, listed with increasing mass, but
states consisting of top quarks were not seen since the t quark lifetime is shorter than
the hadronization time scale. Therefore the charm and bottom quark meson spectrum
is favored for searches in the heavy quark region. In general quarkonium designates
a flavorless meson, constructed from a quark and its own antiquark (qq̄), and hence
Charmonium is a meson with cc̄ content. Non-relativistic treatments can model the char-
monium spectrum, with for example the Cornell potential [37]

V = −
 hcα

r
+ k · r (1)
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with the distance between the quark and antiquark r, and the model parameters k and α.
Because of the similar properties of the gluons compared to photons a coulomb-like po-
tential, given by the first term in equation 1, is a reasonable choice and is compatible with
asymptotic freedom. The second term is a linear growing string term which introduces
the confinement feature. The level scheme of the charmonium spectrum is pictured in
figure 7.
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Figure 7: The level scheme of the cc̄ states showing experimentally established states with solid
lines. Singlet states are called ηc and hc, spin triplet states ψ and χcJ, and unassigned
charmonium-like states X. In parentheses it is sufficient to give the radial quantum
number and the orbital angular momentum to specify the states with all their quantum
numbers [9].

The lowest mass mesons with charm quark content are theDmesons. Below the thresh-
old of DD̄, the charmonium states are quite long living, due to the Okubo-Zweig-Iizuka
(OZI) rule [38]. It states that Feynman diagrams, that can be cut in two by only slicing
internal gluon lines, and not cutting any external particle lines, are suppressed. As a con-
sequence these states are also narrow regarding their width, making them well separated
in the mass spectrum, allowing a good approximation for the Breit-Wigner [39] model.
For this reason the charmonium sector is also promising for the search of exotic mesons.
The most prominent charmed state is the J/ψ, as with its discovery the charm quark was
born.

Over the past few years several new charmonium-like states have been observed, now
known as the X,Y,Z states. They challenge the conventional quark model due to their
conflict with expectations. In charged sector the discovery of the Zc(3900)± [17] shows
exotic properties. They carry electric charge but also couple strongly to charmonium,
as the decay to π±J/ψ preferred. This indicates a cc̄ content with additional quarks to
provide the necessary electric charge. Therefore the Zc states are a strong candidates
for tetraquarks or even higher quark states. The neutral ones are the X(3872), Y(4260),
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Y(4360) and Y(4660)4 and their masses and decay properties are still obscuring their inter-
nal structure. Even though the X(3872) was discovered already in 2003 [40], its quantum
numbers have only recently been measured to be 1++ by the Large Hadron Collider
beauty (LHCb) experiment [41, 42]. Because it is very close to the D0D̄∗0 threshold, a
possible explanation for this state is a 1++ DD̄∗ molecule. The strong isospin breaking
that is predicted due to the nearby D+D∗− threshold [43] is also verified by the ratios
of the J/ψω and J/ψρ decay channels [44]. Lattice QCD is making continuous improve-
ments [45] and only recently a candidate for the X(3872) state was found just below
the DD̄∗ threshold [46]. A tetraquark interpretation would also be possible but rather
unlikely, since the charged partner of the X(3872) has not been observed. Despite the im-
mense efforts in uncovering the structure of the X(3872), more experimental information
is required and can be provided by the measurement of the line shape of the X(3872),
which can be performed by the P̄ANDA experiment.

So far there are several candidates for exotic states or contributions to regular hadron
states. For example in the light quark and the charmonium sector for the mesons, that
have been discovered by experiments in the past years. However either their existence
is questionable or more information on their properties are needed to reveal their true
nature. Therefore new and more precise measurements are highly anticipated. Very re-
cently the LHCb experiment reported to have discovered exotic hadrons consistent with
a tetraquark interpretation [47]. In the future, experiments like the P̄ANDA and BESIII
experiment also play an important role.

4 Sometimes they are also referred to as X instead of Y in literature.
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H A D R O N S P E C T R O S C O P Y D E T E C T O R
S Y S T E M S

Beneficial for amplitude analyses are precise, clean and large data sets. Both the operat-
ing BESIII and the future P̄ANDA experimental setup are ideal machines for this task
with their high luminosities. Currently BESIII performs some of the most interesting mea-
surements for hadron spectroscopy having collected a record amount of data. P̄ANDA
will give access to a broader spectrum of states with its anti-proton proton collisions.
These two experiments are described in more detail in this chapter.

2.1 the BESIII experiment

The BESIII detector is located at the BEPCII of the Institute of High Energy Physics (IHEP)
in Beijing. The BEPCII is a multi-bunch collider with two separate rings of a circumfer-
ence of 237.5m working at an energy range of s = 2GeV − 4.6GeV . Its high design
luminosity of > 10 · 1033 1/cm2 s at a center of mass energy of 2 · 1.89GeV is achieved by
using a top-off injection system that enables the collider to reuse the remaining bunches.
In addition the BEPCII can also be used as a source of synchroton radiation, in which case
only electrons are being accelerated. One of the strengths of the BESIII experiment is the
high luminosity resulting in substantial amounts of data, which is crucial for precision
measurements especially in the field of hadron spectroscopy. For example an uncontested
amount of more than 1.5 billion J/ψ events are recorded as well as around 3 fb−1 at the
ψ(3770). Also large datasets at around 4.26GeV exist.

2.1.1 Physics Program

The physics program of the BESIII experiment is versatile and can be divided into the
following categories [48]:

charmonium physics : From the large amount of data, the total decay widths of the
J/ψ and ψ ′ are measured with a precision below the percent level. Furthermore
the many different decay modes of the J/ψ are studied much more precisely than
before, giving insight to some of the problems such as the ρπ puzzle, i.e. violations
of the 12%-rule, and non-DD̄ decays of the ψ(3770) [48]. Also transitions between
the different charmonium states are mapped out and more massive states such as
the Y(4260) are now accessible at BESIII. Cabbibo-suppressed J/ψ decay channels
can be studied, which seem to have higher branching ratios as predicted by the
Standard Model (SM) [48]. Unique explorations for physics beyond the SM are
planned with the search for evidence of flavor-changing neutral currents.

search for new and exotic hadronic states : In the past four years the BESIII
collaboration made some unexpected discoveries. At first a charged resonance de-

15
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caying into a charged pion and a J/ψ was observed, now named Zc(3900)± [17].
Intriguing about this particle is the decay into a J/ψ, which suggest cc̄ content,
and the non-zero charge implicating additional quark content. In the same year a
partner to the Zc(3900)± was found, the Zc(4020)± [49]. It decays into a charged
pion and hc, which is also a charmonium state, suggesting a cc̄qq̄ content in con-
sequence. Also the neutral partners to the Zc states were observed recently, the
Zc(3900)

0 [18, 50] and the Zc(4020)0 [19], completing the two isospin triplets.

By studying the J/ψ decays, hadron spectroscopy and search for new hadronic
states in the light quark sector is possible. Because the J/ψ’s almost always annihi-
late into gluons they are very useful for glueball searches and for probing the gluon
contents of light hadrons. A radiative decay of the J/ψ → γπ0π0 was studied to
gain new insight in the controversal light isoscalar spectrum [51].

D-physics : Currently BESIII possesses the record data set of ψ(3770), which allows
high precision measurements. From purely leptonic decays of the produced D and
Ds mesons, the decay constants fD and fDs can be measured with expected system-
atic errors of 1.2% and 2.1% [48], respectively. Inclusive and exclusive semileptonic
decays of D-mesons will also be studied to test various theoretical predictions.
In addition from studying the D decays, one can extract the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements Vcs and Vcd with an expected systematic error
of around 1.6%. Since theoretical predictions for D− D̄ mixing and CP-violation
are unreliable, BESIII can provide new experimental information about them. Rare
or forbidden decays can be studied systematically and provide strict tests of the
SM and have the potential of uncovering the effects of new physics beyond the SM.
Their measured branching ratios can be improved significantly, while the precision
on the upper limits of branching ratios for unseen modes can be improved by two
orders of magnitude.

τ-physics : Experimental studies of inclusive hadronic τ decays can provide precise de-
terminations of the strange quark mass and the CKM matrix element Vus, while the
study of leptonic decays can test the universality of the electroweak interaction and
give a possible hint of new physics. Also, due to the high statistics and low back-
ground fraction the measurement precision of the Michel parameters is improved
by a factor of 2 to 4. Moreover the τ mass is measured with a higher precision of
around 0.09MeV . Amongst others the high statistics data sets of BESIII also allow
for improvements on the SM uncertainty of the anomalous magnetic moment of
the muon (g − 2)µ [52]. In comparison with the high precision measurement of
(g− 2)µ [53], conclusions on the valididty of the SM or possible physics beyond
can be drawn. Similarly the large datasets of the reaction e+e− → pp̄ allow for
improvements of the proton time-like form factors by around 30% [54].

2.1.2 The BESIII Detector

The BESIII detector is optimized for the physics requirements discussed in the previous
section. The average multiplicity lies in order of four charged particles and photons,
with a typical momentum of charged particles of around 0.3GeV/c, an average energy
of photons of 100MeV and an upper limit of 1.0GeV for most particles. The complete
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Figure 8: Side view of the upper half of the BESIII detector [55]

detector has an angular coverage 93%. The profile view is shown in figure 8. In the next
paragraphs the individual detector components will be described in more detail [48].

multi-layer drift chamber (MDC) The conical shaped MDC surrounds the beam-
pipe. Two superconducting quadrupoles are positioned in the MDC end caps and
focus the beam onto the interaction point. With the help of the solenoidal magnetic
field of 1 T the MDC measures the momentum of charged particle tracks by their
curvature with a resolution of δp/p = 0.5% at 1.0GeV/c. The single cell position
resolution in the radial plane is 130µm while the resolution in beam direction is
2mm. The detector covers a θ-range down to cos(θ) = 0.93 and is split into an outer
and inner chamber, while the latter can be replaced in case of radiation damage. A
total of 43 layers of drift cells make up the MDC. Each drift cell consists of one tung-
sten gold plated sense wire that is surrounded by eight aluminum field wires. The
cell volume is filled with a helium-propane mixture (He/C3H8 = 60 : 40) which
optimizes the tradeoff between multiple scattering and a good dE/dx resolution.
Altogether the energy loss resolution for particles is 6%.

time-of-flight (TOF) By measuring the flight duration of particles from the IP the
TOF system determines particle velocities that can be used for particle identification
(PID). The TOF surrounds the MDC and consists of a barrel layer and two end caps
that cover a solid angle of |cos(θ)| < 0.83 and 0.85 < |cos(θ)| < 0.95 respectively. The
barrel layer is built from two layers of staggered scintillating bars, while the end
caps only have a single layer of scintillators. The scintillators are read out by fine
mesh photomultiplier tubes and achieve a timing resolution of 90 ps in the barrel
and 70 ps in the end caps. This allows for a 3σπ/K separation up to momenta of
0.7GeV/c.

electromagnetic calorimeter (EMC) The energy and flight direction of pho-
tons, electrons and positrons will be measured by the EMC. It is located between
the TOF system and the superconducting solenoid and is also split into a barrel
region covering a solid angle of |cos(θ)| < 0.82 and the two end caps covering the
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larger polar angles of 0.83 < |cos(θ)| < 0.93. The sensor material consists of 28 cm
long CsI(Tl) crystals, which corresponds to 15 radiation lengths, and are read out
by two silicon photo-diodes. With an energy resolution of 2.3%/

√
E(GeV) and a

position resolution of below 6mm/
√
E(GeV), the EMC can separate electrons and

pions for momenta higher than 200MeV/c.

muon system Most outward from the IP the muon system, occupying the space within
the iron flux return of the superconducting magnet, discriminates and identifies
muon tracks, by making use of the penetration power of the muons. The system
consists of multiple interleaving detection and absorption layers. In this case the lat-
ter are iron plates, which are also responsible for the magnetic field return, and stop
most of the created particles except the muons. Resistive plate chambers (RPCs) are
responsible for the actual tracking of the muons, which consist of two electrodes
separated by an isolating gas, in which a charged particle will ionize the gas and
create a signal. Signals in all detection layers will therefore identify a muon. The
barrel part consists of 9 such layer pairs, while the endcaps only have 8. Due to
the bending of muon tracks in the magnetic field and the energy loss in the EMC
crystals, the muon system becomes effective for energies starting at 0.4GeV .

trigger system and event filter Because of the high interaction rates, which are
dominated by background reactions, an event filtering is necessary, realized with
a two level trigger system. The first level (L1) is a hardware trigger that processes
the information from the subdetectors with the global trigger logic. The L1-trigger
clock is synchronized to the accelerator and operates at 41.65MHz. The second
trigger level (L2) is a software trigger, which runs on a server farm, and reduces
the background further by partially reconstructing the events. The BESIII DAQ
runs at a rate of 4 kHz, with a overall background rate suppression from 40MHz

to below 2 kHz.

luminosity determination The luminosity is determined by using three QED pro-
cesses, for which cross sections are well known and very large. After correcting for
detector effciency and acceptance, the luminosity is determined from the rate of
these processes with a precision of 1%. Luminosity monitors near the interaction
point additionally measure the relative bunch-by-bunch luminosity using the rate
of incident photons from radiative Bhabha scattering.
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2.2 the P̄ANDA experiment

The international research center FAIR is located at the GSI Helmholtzzentrum für Schw-
erionenforschung GmbH (GSI) in Darmstadt (Germany) and is currently under construc-
tion. It is a versatile particle accelerator complex hosting several experiments on its site
and is funded by 16 countries. Figure 9 gives an overview on the research center. The

proton
linac
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SIS18
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SIS100

SIS300
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pbar
target
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RESR

FLAIR

NESR

PANDA

Figure 9: The accelerator complex FAIR [56].

starting point of all future particle beams is in main parts the already existing GSI ac-
celerator complex with its universal linear accelerator (UNILAC) and the Schwerionen
Synchrotron (SIS) 18. For the complete description of the facility please refer to [57]. The
P̄ANDA experiment will be located at the High-Energy Storage Ring (HESR). One key
aspect that makes the P̄ANDA experiment powerful and unique, is the use of the an-
tiproton beam provided by HESR. The antiproton beam, which is fed into the HESR, is
created in a multi step procedure. At first protons are created and accelerated by a chain
of the proton linear accelerator (p-LINAC), the SIS 18 and the SIS 100 to a final energy of
29GeV [58]. Then the high energetic protons from the SIS 100 are shot in bunches on a
nickel (or iridium) antiproton production target [59] producing a large diversity of sec-
ondary particles via hard processes. A magnetic horn in combination with a momentum
separation station will extract antiprotons with high efficiency on the transfer way to
the Collector Ring (CR). The CR provides full acceptance of those separated antiprotons
and its main task is the collection, cooling and debunching of the antiproton beam [60].
In the first years of operation, the pre-cooled beam will be directly fed into the HESR.
A later upgrade involves the construction of the recuperated experimental storage ring
(RESR) [56, 61]. The need for a high intensity beam requires an accumulation of antipro-
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tons coming from the CR before it is transferred to the HESR [62]. During accumulation
the beam emittance is further reduced by stochastic cooling.

2.2.1 The High-Energy Storage Ring (HESR)

KOALA
SPARC

Figure 10: Illustration of the HESR setup with a length of 250m and a width of 120m. The
racetrack shaped storage ring is equipped with RF cavities for beam acceleration and
deceleration and stochastic pickups as well as kickers in the straights. While inter-
actions of the stored antiproton beam with a perpendicular target beam are studied
with the P̄ANDA experiment in the lower straight section, the opposite straight will
be equipped in a later stage with an electron cooler to reduce the beam emittance.
Possible locations for the KOALA and SPARC experiment are indicated [63].

The HESR is going to host not solely the P̄ANDA experiment, but also the KOALA [64]
and SPARC [65] experiment (see figure 13). The exact locations of the latter two experi-
ments are not fixed yet. The HESR RF-cavities allow for the beam to be acc- or decelerated
in the momentum range of 1.5GeV/c-15.0GeV/c. One of the prominent features of the
HESR is its cooling system. On the one hand stochastic cooling will be applied [66]. As
indicated in figure 13 the stochastic pickups and kickers will get the particles with larger
emittance closer to the ideal orbit. For a high intensity beam a momentum resolution in
the order of ∆p/p ≈ 10−4 will be achieved. By temporarily inserting cold electrons into
the antiproton beam, additional cooling for particles with already low emittance can be
achieved. The electron beam is slightly tilted with respect to the p̄ bunch to achieve the
highest cooling power1. This two stage cooling system achieves the highest momentum
resolution of ∆p/p > 3 · 10−5, crucial for energy scan experiments.

The expected luminosity profile is shown in figure 11. It can be divided in a prepa-
ration time tprep and the experimental time texp. Preparation time includes injection,
pre-cooling, acc- or decelerating the beam, beam steering as well as recuperation of re-
maining antiprotons after experimental time as long as the beam is not dumped after

1 Note that the electron cooling process only increases the emittance for particles with a certain degree of the
emittance. For particles with higher emittance than this threshold the correction will actually be counterpro-
ductive.
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Figure 11: A typical cycle in the operation of the HESR with RESR[67].

each run. During the preparation time the target beam (see section 2.2.3) is switched off.
Once the target beam is switched on, it marks the beginning of the experimental time,
and the luminosity profile will follow the exponential decay of the form

L(t) = L0 · exp
(
−
t

τ

)
. (2)

The total beam lifetime τ is defined as the time at which point the luminosity has reached
1/e of the peak luminosity L0. The most dominating effect for the beam loss or beam
lifetime is the hadronic interaction. Next to first dominating effects are the small angle
or coulomb scattering and the energy straggling. The Touschek Effect, which describes
losses due to single large-angle intra-beam scattering [68], is fourth largest. Particles
that have not exited the beam pipe will be reintegrated into the antiproton beam by the
powerful cooling system.

For the two foreseen operation modes, the high resolution (HR) and the high lumino-
sity (HL) mode, the specifications of the HESR are summarized in table 1. Without the

beam parameters HL mode HR mode

p [GeV/c] 1.5 - 15 1.5 - 8.9
∆p/p (rms) ≈ 10−4 > 3 · 10−5
N antiprotons 1011 1010

Lpeak [cm−2 s−1] 2 · 1032 2 · 1031

Table 1: Design goal antiproton beam parameters for the HESR in the HR and HL mode of oper-
ation [69]. A target density of 4 · 1015 atoms/cm2 was assumed.

RESR and the electron cooling system at the beginning of P̄ANDA, only the high resolu-
tion mode will be available with a slightly worse momentum resolution of > 5 · 10−5.
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pbeam 1.5GeV/c 4.06GeV/c 8.9GeV/c 15GeV/c

emittance (rms) [mmmrad] 1.45 0.53 0.244 0.145
spot size (rms) [mm] 0.8 0.8 0.8 0.8
divergence (rms) [mrad] 1.81 0.67 0.31 0.18

Table 2: Expected HESR beam parameters HL mode with N = 1011 antiprotons

additional beam parameters Several aspects of the antiproton beam can intro-
duce systematic effects that are crucial for the determination of the luminosity with the
luminosity detector (LMD) and will be mentioned in the following. Ideally every antipro-
ton would travel on the same trajectory throughout the beam line. This would correspond
to a single point in the phase space x,y,px,py,pz (see appendix B.1). However in reality
the particles are distributed around this ideal value. This distribution can have two pos-
sible variations from the ideal value, mean and variance. Naturally the phase space can
be split into the longitudinal pz and transversal x,y,px,py phase space. The transversal
phase space can further be divided into x,y and px,py. It is now of high interest to ob-
tain realistic values for the mean and variance of these values. Variations of pz are called
the momentum resolution σp as usually the z axis is aligned with the beam line, carrying
the largest contribution of the total particle momentum. The magnitude of transversal
variations can be expressed with the beam emittance ε, which is very common in accel-
erator dynamics. The design goals for the emittance εx,y and the momentum spread σp
of the HESR antiproton beam during physics data taking are

εx,y =
1mmmrad

βγ

(
N

N0

)4/5
(RMS) (3)

and

σp

p
=
1.33 · 10−3

βγ

(
N

N0

)2/5
(RMS) (4)

with the reference numberN0 = 3.5 · 1010. Note that the beam emittance and momentum
spread are not only depending on the number of antiprotons N, but is also reduced by
the momentum boost in form of the βγ Lorentz factor. This effect is called adiabatic
damping [70, p.48].

From the emittance the variation of the subspaces x,y and px,py can be calculated.
They are also known as the beam spot and divergence. In order to have a high interac-
tion rate the RMS beam spotsize should be roughly 0.8mm [71], and is assumed as fixed.
With the emittance and the beam spotsize, the divergence can be calculated as explained
in the appendix B.1. These beam parameters are summarized in tables 2 and 3 for the
two running modes. It should be noted that the beta function is adjustable in the range
from 1m to 20m, and describes the trajectories of particles in the accelerator. In the case
of the HL mode the desired spotsize of 0.8mm would therefore not be possible, but a
slightly larger spotsize of 1.2mm has to be used. As a consequence the divergence be-
comes smaller to about 1.2mrad. Similarly for the highest beam momentum in the HR
mode the beta value of 20m will be exceeded and the actual spotsize and divergence
would vary slightly from the values given in table 3. The mean variations of the antipro-
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pbeam 1.5GeV/c 4.06GeV/c 8.9GeV/c 15GeV/c

emittance (rms) [mmmrad] 0.23 0.08 0.04 0.023

spot size (rms) [mm] 0.8 0.8 0.8 0.8
divergence (rms) [mrad] 0.29 0.11 0.05 0.03

Table 3: Expected HESR beam parameters HR mode with N = 1010 antiprotons

ton distribution from the ideal accelerator trajectory in the phase space are the mean
position, the mean angle and the mean momentum. Variations in position and angle will
be referred to as beam offset and beam tilt. The beam position will be measured with so
called beam positioning monitors (BPM), that are located upstream and downstream of
the P̄ANDA experiment, roughly 20m apart. Those devices measure the center of grav-
ity of a beam charge distribution with a resolution in the order of 100µm [72]. This leads
to uncertainties of the beam offset of roughly 200µm and the tilt of the beam of about
20µrad, neglecting component position uncertainties.

Taking all these effects together, combined upper bounds can be estimated for the
individual beam properties, based on the beam losses on the walls of the beampipe. Since
the non-interacting beam travels without any focusing along the P̄ANDA experiment,
the bottleneck is located roughly 11m behind the IP, where the beampipe diameter is
70mm. Obviously the beam spot size is almost irrelevant, as the beampipe diameter is
much greater than the typical beam spot size at the IP. Assuming the beam is point-like
in x,y at the IP and normal distributed in px,py, the beam loss rate is given by

τ−1 = −ln

erf

(
3.2mrad− 0.9 · roffset

mrad
cm − θtilt

σdiv

)f . (5)

erf is Gauss error function and f represents the revolution frequency which is roughly
450 kHz. The value 3.2mrad ≈ 35mm

11m is the maximal angular acceptance of the antipro-
ton beam calculated from the bottleneck values of the beampipe at the LMD stated above.
Keeping the beam loss rate from the beampipe interaction an order of magnitude below
the typical beam loss rates of 1 · 10−4, we can determine critical upper bounds for the
beam offset, tilt and divergence rcrit

offset = 0.5 cm, θcrit
tilt = 0.5mrad, σcrit

div = 0.5mrad 2.
While momentum resolution can be very high due to the powerful cooling system

of the HESR the trueness or absolute precision depends on beam momentum measure-
ment methods. The measurement of particle revolution frequencies by Schottky noise
spectrum analysis and the orbit length via BPM readings gives direct access to the mo-
mentum spread and its absolute value, with an beam energy uncertainty of 100 keV in
the charmonium region [73].

2.2.2 Physics Program

The P̄ANDA experiment is a multi purpose experiment in the field of hadron and nuclear
physics [74–76]. Thus it addresses a rich spectrum of physics topics:

2 Note that these critical values are shared amongst each other, therefore, if the beam offset is smaller, higher
values in the divergence and tilt may be possible.
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hadron spectroscopy : Hadron spectroscopy is dedicated to the search for exotic
particles and the measurement of hadron properties. Exotic particles do not sim-
ply consist of 2 or 3 constituent quarks, but carry additional degrees of freedom
either by more quark content or gluon contributions. They shed light on the full
allowed particle space of QCD. Also there are discovered particles which do not
fit very well into the current model predictions, with especially large deviations in
the charmonium, D-meson and baryon sector. For this purpose P̄ANDA has excep-
tional capabilities due to its antiproton beam and variable beam energy allowing
the direct productions of a large variety of particles via formation reactions. Their
line shape information is accessible by using the method of energy scans.

in-medium effects : The origin of hadron masses in the context of spontaneous chiral
symmetry breaking in QCD and its partial restoration in a hadronic environment
can be studied with P̄ANDA. So far the light quark sector was the primary focus,
but with the higher center of mass energies P̄ANDA can extend these studies to the
hidden and open charm region. In addition the J/ψ nucleus dissociation cross sec-
tion can be deduced by comparing measurements of J/ψ and D meson production
cross sections in p̄p annihilation on a series of nuclear targets. It is a fundamen-
tal parameter for understanding of the J/ψ suppression in relativistic heavy ion
collisions interpreted as a signal for quark-gluon plasma formation.

nucleon structure : Exclusive pp̄ annihilation into two photons at large s and t can
be described with generalized parton distributions (GPDs) [77, 78]. It is proposed
to measure the crossed-channel Compton scattering and the related exclusive anni-
hilation processes with a scalar meson, a vector meson, or a lepton pair in the final
state. The comparison of the differential cross sections of the various processes and
the comparison with GPD based models will allow new insights into the annihila-
tion process in terms of quark models and QCD. Via the process p̄p → e+e− it is
possible to determine the electromagnetic form factor of the proton in the time-like
region. In the lowQ2 region down to threshold several experiments have measured
the proton form factor, while at high Q2, of up to 15GeV2/c2, only few measure-
ments with limited statistics exist. Unlike the other experiments P̄ANDA is able to
determine the form factors |GM| and |GE| separately over a wide Q2 range from
threshold to 20GeV2/c2 with significant improvements on the results in the high
Q2 region.

hypernuclei : Replacing an up or down quark with a strange quark in a proton or
neutron of a nucleus leads to the formation of a hypernucleus. With the introduc-
tion of the quantum number strangeness in the nucleus a third dimension is added
to the nuclear chart. Even though single and double Λ-hypernuclei were discov-
ered roughly 60 years ago, only 8 double Λ-hypernuclei are presently known, in
spite of considerable experimental effort. With its p̄ beam copious production is ex-
pected at P̄ANDA. The determination of the ΛΛ strong interaction strength will be
the first result, which is not feasible by direct scattering experiments. Because the
hyperons are not restricted by the Pauli principle to populate all possible nuclear
states, they are an excellent probe for the structure of the nucleus and the hyperon-
nucleon interaction. Furthermore, the Λ−N weak interaction can be studied with
four-baryon, strangeness non-conserving reactions like ΛN → NN and ΛΛ → ΛN

in the nucleus [76, p.140].



2.2 the P̄ANDA experiment 25

2.2.3 The P̄ANDA Detector

Due to the broad spectrum of the physics program a universal experimental setup with
a 4π angular coverage is needed. The targeted precision of the measurements sets high
demands on the track reconstruction resolution and particle identification capabilities.
Furthermore the high interaction rates require corresponding radiation hardness of the
detector subsystems, which also have to be able to handle the high data rates. As shown
in figure 12 the P̄ANDA detector guarantees a large angular coverage with its target/bar-
rel and forward spectrometer part. Its detector subsystems will be introduced in more
detail in the following.

P̄ANDA target To achieve high luminosities the P̄ANDA experiment has a fixed
target in the heart of the target spectrometer. The target system varies depending on the
physics measurements that will be performed and can be roughly divided in solid state
and “gaseous state” targets. Solid targets will be used for studies of antiproton-nucleon
reactions and hypernuclei productions and consist of wires or foils. The high density
“gaseous” targets which will be used during the first years of P̄ANDA operation. Two
different target systems are being developed for P̄ANDA: A cluster-jet target and a pellet
target [80].

The cluster-jet is produced by expansion of pre-cooled gas through a special convergent-
divergent nozzle into vacuum. With accurate pressure and temperature settings conden-
sation into clusters is observed. The dimensions of the jet are small enough to achieve a
high overlap with the antiproton beam. The target jet beam density can be parameterized
according to the formula

ρT (x, z) = ρ0 ·
erf
(
bz/2−z
s

)
− erf

(
−bz/2−z

s

)
2

·
erf
(
bx/2−x
s

)
− erf

(
−bx/2−x

s

)
2

(6)

where erf is the error function. bx and bz denote the widths of the beam with the
highest beam density ρ0 at its center. Within this distribution the density is homoge-
neous, which is another advantage of the cluster jet target as it results in a more con-
stant luminosity over time. Prototype measurements have led to target densities of up
to ρ0 = 1.7 · 1015 atoms/cm3 with beam dimensions of bz = 13.1mm, bx = 3.3mm and
s = 1.39mm [81]. The dimensions along y are infinite for a constant target beam.

The main part of a pellet target is a triple-point chamber. There a jet of a cryogenic
liquid is injected through a nozzle into a gas of the same element or helium, which is
kept near the triple-point. The nozzle is vibrating periodically, driven by a piezoelectric
transducer, what in turn leads to drop production. Those drops are further cooled before
exiting the chamber as a very stable frozen pellet stream through a thin capillary into
the antiproton beam. With 10 pellets in average at the interaction point and a typical
pellet size of 30µm an effective thickness of up to 5 · 1015 atoms/cm2 is reached. This
corresponds to the maximum interaction rate at P̄ANDA. Due to relatively slow target
beam speed of currently about 60m/s its divergence is harder to control as in comparison
for the cluster jet target. With an optical tracking system to record the beam direction
the pellet position can be determined with an accuracy of better than 0.1mm at the in-
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teraction region, which benefits the reconstruction of certain charmonium and Hyperon
decays [82]. However the diameter of pellets has to be increased and the frequency has
to be reduced such that in average only one pellet crosses the antiproton beam. The ef-
fective target thickness is reduced down to 2 · 1015 atoms/cm2. The target beam will have
approximately a cylindrical shape with a full width diameter of about 3mm.

cluster target pellet target

eff. thickn. [atoms/cm2] 6 2 · 1015 > 4 · 1015
size transverse 2− 3mm 6 3mm

size longitudinal 15mm 6 3mm

Table 4: Properties of the target beams for the P̄ANDA experiment. Numbers are based on already
achieved results [80, 81].

The specifications of these two target systems are summarized in table 4. For a con-
stant instantaneous luminosity, which is under discussion, either the target density or
the overlap between the antiproton beam and the target beam has to be constantly in-
creased starting with a low density or small overlap. That way the decreasing number of
antiprotons in the HESR is compensated. Both solutions require a fast measurement of
the relative instantaneous luminosity as a feedback for the target systems. The variation
of the antiproton beam and target is forseen by the hypernuclei setup [83, 84], with a
primary target that consists of a thin carbon fiber allowing the produced Ξ particles to
escape. To obtain reaction rates in the order of 1 · 106 s−1, the target is placed on the
edge of the accelerator beam spot. To keep the average luminosity as high as possible the
target will be shifted to the antiproton beam center over time.

the target spectrometer For the determination of momenta of charged particles
one requires tracking detectors and a magnetic field. The barrel part has a solenoid
magnet with a magnetic field strength of 2 T around the IP and several tracking detectors.
The most inner detector surrounding the IP is the micro vertex detector [85]. It is a
combination of semiconductor strip sensors and pixel sensors in the regions of high track
multiplicities delivering the high vertex resolution of below 100µm. Both the primary
interaction vertex and secondary vertices of short lived particles and delayed decays
rely on information of the micro vertex detector (MVD). Furthermore it improves the
momentum resolution and PID. Just surrounding the MVD is the central tracker, the
straw tube tracker (STT) [86] consisting of a total of 4636 straws. A straw is a 10mm thick
aluminised mylar tube, which is operated with an ArCO2 gas mixture at an overpressure
of 1 bar, making it self-supporting. Each straw tube contains a single anode wire in the
centre, collection the generated charge clouds. They are arranged in planar layers around
the beam pipe at radial distances 15 cm-41.8 cm and an overall length of 150 cm. The
detector delivers position resolutions of less than 150µm with a material budget of 1.2%
of one radiation length at a momentum range from about a few 100MeV/c up to 8GeV/c.
In addition energy loss (dE/dx) for the particle trajectories can be calculated, which is
needed in particular to separate protons, kaons and pions in the momentum region
below 1GeV/c. Particles emitted at angles below 20° are not covered by the STT and will
be tracked by three planar gas electron multiplier (GEM) stations placed approximately
1.1m, 1.4m and 1.9m downstream of the target. The GEMs are able to sustain the high
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particle rates in the forward direction due to the relativistic boost of the fixed target setup
and enable unambiguous tracking with a position resolution below 100µm.

Going further, for the detection of neutral particles and the identification of light
charged particles the electromagnetic calorimeter (EMC) is a crucial detector. The EMC
is made up of the barrel part, the foward and the backward endcap. Here lead tungstate
PbWO4 crystals are mostly read out by large area avalanche photodiodes. On the one
hand this enables good energy resolution of 1.54%/

√
E(GeV) + 0.3% for photon and

electron detection under the compact design conditions of the target spectrometer. On
the other hand short decay times of less than 20ns and a good radiation hardness have
been achieved [87]. The crystals are aligned to the proximity of the IP.

Several state of the art PID systems establish the last group of subsystems, which are
responsible for classifying a large variety of particles over a wide kinematic range. The
time-of-flight (TOF) system achieves the best classification for low momentum particles
and is located just outside of the central tracker. For the intended time resolution of
100 ps, a three standard deviation separation for π/K of up to 430MeV/c at 90° and
760MeV/c at a polar angle of 22° is achievable. In addition it can deliver timing informa-
tion that can improve the performance of the trigger for the hypernuclei program and
help reduce background and correct for dispersion effects in the detector of internally
reflected Cherenkov light (DIRC) subsystem. The DIRC uses the emitted Cherenkov radi-
ation to provide π/K separation up to about 4GeV/c in the target spectrometer at polar
angles between 22°-140°. Particles crossing the solid fused silica slabs with a thickness
of 1.7 cm, surrounding the beam line at a radial distance of 48 cm, create the Cherenkov
light, that is then detected by micro-channel plate photomultiplier tubes (MCP-PMTs).
The DIRC also serves for the distinction between gammas and relativistic charged parti-
cles entering the EM-calorimeter behind. In the forward direction another DIRC in shape
of a large disc is located in the endcap. It will provide π/K identification in the higher
momentum range at polar angles of 5°-22°.

Since muons are extremely penetrable compared to other particles, they are detected
in a typical absorber-detector combination. The P̄ANDA muon system consists of al-
ternating detection and absorber layers, introducing enough material budget to absorb
remaining pions. Hence only muons will fully pass the detection system and can there-
fore be successfully identified. The barrel part consists of 13 sensitive layers, each 3 cm
thick, surrounded with iron absorbers of 3 cm-6 cm thickness. For the forward end cap
more material is required, due to the occurring higher energetic particles. Therefore, six
detection layers are placed around five 6 cm thick iron layers. The sensors itself are rect-
angular aluminum mini drift tubes (MDTs). Behind the forward end cap a removable
muon filter with four additional layers of 6 cm iron and corresponding detection layers
is placed between the solenoid and the dipole magnets. This also acts as an additional
magnetic screen between the two magnetic fields.

the forward spectrometer The target spectrometer has an opening in the for-
ward direction for particles with polar angles below 5° and 10° in vertical and horizontal
z-direction. Charged particle tracking is done with the dipole magnetic field of 1 T (2 T m
bending power) and the forward tracker (FT). The FT consists of six tracking stations
each equipped with 2 detection planes. Similar to the central tracker, they are based on
straw tube detectors of 10mm thickness. Every detection plane consists of 32 straws ar-
ranged side by side in two layers, making up 4 straw planes per tracking station. The
two inner straw planes are inclined by ±5° with respect to the outer planes, allowing to
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handle multi-track events while the average track multiplicity in the FT is about 1 per
event. With the position resolution of 0.1mm per detection layer and a material budget
of 0.3% X0 for each tracking station, a momentum resolution of below 1% is achieved.
Also the tracking stations should stand high local particle fluxes in the vicinity of the
beam pipe with rates of about 2 · 107 s−1 in the high luminosity mode.

Photons and electrons in the forward direction will be measured by a Shashlyk-type
EMC with high resolution and efficiency about 7-8m downstream of the target. Each
Shashlyk module is made up of alternating lead and scintillator plates with embedded
wavelength shifting fibers. Then the scintillation photons can pass to a photomultiplier
tubes (PMTs), which is attached to the fibers. This is a well established and successfully
used detector with an energy resolution of 4%/

√
E.

Finally, also the forward spectrometer has additional particle identification detectors.
The forward TOF are walls of plastic scintillator slabs, which are read out on both ends
by fast PMTs. It ensures a 3σ π/K and K/p separation at momenta below 2.8GeV/c
and 4.7GeV/c respectively. One wall is placed in front of the forward EMC and another
inside the dipole magnet opening, to detect low momentum particles which do not exit
the dipole magnet. At the higher momenta a ring imaging Cherenkov (RICH) detector
gives the necessary separation for pions, kaons and protons. Charged particles traveling
through the silica aerogel and C4F10 gas mixture produce Cherenkov radiation, which
is reflected onto PMTs with a lightweight mirror. This enables particles separation in
the momentum range 2-15GeV/c, while keeping the material budget as low as possible.
Similar to the muon system of the target spectrometer the muon range system, placed 9m
from the target, consists of interleaved absorber and rectangular aluminium mini drift
tube (MDT) layers. The system allows discrimination of pions from muons, detection of
pion decays and, with moderate resolution, also the energy determination of neutrons
and anti-neutrons.

The last component in forward direction is the luminosity detector (LMD), which will
be explained in detail in the next chapter.

P̄ANDA trigger and DAQ Because the high precision physics goals of the P̄ANDA
experiment require a substantial amount of data, the P̄ANDA data acquisition (DAQ)
system has to handle high data rates of up to 200GB/ sec at an average interaction rate
of 20MHz [88]. To deal with the large fraction of background a sophisticated event filter-
ing and trigger system are mandatory. One unique feature of P̄ANDA is that no global
hardware trigger will be used, but instead solely a partial reconstruction of the events
will lead to the trigger decision. Every detector front end is running independently and
employs feature extraction algorithms to select relevant data. It is collected by data con-
centrators and sent to a two stage event building network. Compute nodes reconstruct
the reactions on the fly in order to form a trigger decision and write the interesting events
to tape. To synchronize the DAQ system across all sub-detectors the synchronization of
data acquisition (SODA) protocol[89] will be used. It offers a global clock with a jitter
of less than 20 ps and timestamps coupled to the HESR beam structure. This way it is
possible to assemble a complete event out of the information from individual detector
components within the event building network.
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L U M I N O S I T Y M E A S U R E M E N T @ P̄ A N D A

3.1 luminosity

In contrast to classical mechanics, no predictions for an individual reaction can be made
in quantum theory. Instead each possible outcome has a certain probability to occur.
Hence multiple identical and independent measurements have to be performed, in order
to determine the probabilities. An experimental physicist determines the probability for
a reaction in form of the cross section σ. The cross section denotes the interaction proba-
bility per flux and relates, together with particle flux or instantaneous luminosity L, to the
reaction rate

R = L · σ. (7)

Because particle rates for processes are measured by counting N events over a period of
time dt a time-integration of equation 7 has to be performed to

N = L · σ (8)

with

L =

∫
Ldt (9)

the time-integrated luminosity. From this definition the luminosity can also be put in di-

Figure 13: Illustration of luminosity for a beam of fluxΦ impinging on a fixed target with density
ρT and length d.

rect relation with the interacting particle bunches. The number of possible interactions
depends on the amount of independently created initial states, which are controlled by
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Figure 14: Illustration of a general scattering process from a two particle initial state α to a final
state β.

the amount of colliding particles. For a fixed target experiment it can be shown that the
luminosity[90] is equal to

L = ΦρTd. (10)

Here Φ is the accelerator beam flux, ρT the target density and d the target thickness. This
assumes that all of the accelerator beam actually overlaps with the target.

The importance of luminosity can be directly concluded from equation 7. In quantum
theory [91, p.134f] the S-matrix Sαβ contains all of the interesting physics information
and gives the probability amplitude for the transition from the initial state α to the final
state β. Therefore the main physics interest lies in determining these matrix elements.
For the case of a two particle initial state, the measured cross section stands in relation
to the scattering matrix as

dσ(α→ β) = (2π)4u−1α |Mαβ|
2δ4(pβ − pα)dβ (11)

with Sαβ = −2πiδ4(pβ − pα)Mαβ and the relative velocity between the two particles
in the initial state uα = | ~p1E1

− ~p2
E2

|. The delta function ensures momentum and energy
conservation as pα and pβ are the four momenta of the initial and final state. Notice
that in general the cross section is a differential, which gives the interaction probability
per flux, in which the final state particles are in an infinitesimal phase space region dβ
around the value β as described by

dN(α→ β)

dβ
= L · dσ(α→ β)

dβ
. (12)

Experiments measure the number of events for the final state β in the proximity dβ,
dN(α→β)

dβ . Therefore no absolute cross section values or S-matrix elements can be de-
termined without the luminosity. However for probability ratios of two processes the
case is slightly different. There the luminosity is not required, which is obvious from
equation 12 by constructing the ratio of two cross sections.
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3.2 luminosity measurements

In principle there are only two possible ways to measure the luminosity. One possibility
is to use equation 10 directly, for which the target density and thickness as well as the
accelerator beam flux information is needed. The latter can be determined from the
accelerator side. When a charged particle passes through matter it loses energy through
electromagnetic processes and this is also true inside a storage ring where a coasting
beam goes through a thin target a very large number of times. The energy loss, which
is proportional to the target thickness, builds up steadily in time and causes a shift in
the revolution frequency in the machine which can be measured through the study of
the Schottky spectra [92]. This allows the effective target thickness to be deduced and
has been investigated with an internal proton beam of energy 2.65GeV at the COSY
accelerator using the ANKE spectrometer and a hydrogen cluster-jet target [93]. It yields
luminosity values with a precision of about 5% and is also planned for the P̄ANDA
experiment. Unfortunately this method only works for a coasting beam, which is not
accelerated to its nominal energy on each turn, but is continuously losing energy [93].
This means that only punctual measurements for separate runs can be performed and
not simultaneously to the recording of the physics data.

Alternatively the luminosity can be obtained indirectly by the measurement of a reac-
tion rate, while the luminosity can simply be determined by formula 12. This requires the
knowledge of the cross section for the process. The more precise the cross section model
is known, the smaller the systematic uncertainty from the model on the determined lumi-
nosity value. In e+e− annihilation experiments the preferred channel is Bhabha scatter-
ing (e+e− → e+e−) for which the absolute cross section can be calculated accurately from
QED [90]. On the contrary such a precisely known channel is not present in hadronic
reactions, since QCD cannot be solved analytically in general. For the E760/E835 experi-
ment the choice of the reference cross section was p̄p elastic scattering. By measuring the
energy of the recoil protons in dependence on the scattering angle as close as possible
to the limiting polar angle, the luminosity was determined [94]. Similarly, elastic p̄p re-
actions are used by the P̄ANDA luminosity detector (LMD) to determine the luminosity.
However only the anti-protons are measured, because most recoil protons cannot exit
the beampipe or the solenoid magnetic field due to the low energies [85].

3.3 the elastic p̄p scattering model

The elastic scattering of p̄p contains two interfering processes. One is the long range
force via the exchange of photons, coupling to the electric charge, and the other is the
exchange of hadrons and gluons at shorter distances. The corresponding cross section is
therefore expanded to

dσel

dt
=

1

16π
|fhad + fcoule

iδ(t)|2 =
dσcoul

dt
+
dσhad

dt
+
dσint

dt
(13)

where t denotes the four momentum transfer and δ the Coulomb phase. Note that the
value of t is defined as a negative number. fhad and fcoul denote the scattering amplitudes
for the two interaction types that results in the respective cross sections σhad and σcoul

and the interference part σint.
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The coulomb cross section

dσcoul

dt
=
4πα2EMG

4(t)( hc)2

β2t2
(14)

is well understood and analytically calculable within QED. Here β = v/c is the ratio of
the velocity v to the speed of light c and  h denotes the reduced Plank constant. αEM is
the fine structure constant and G(t) = (1+∆)−2 the proton dipole form factor, with ∆ =

|t|/(0.71GeV/c). As evident from formula 14, the Coulomb part of the cross section (t→
0) is divergent by virtue of the infinite range of the EM force. However, screening effects
actually prevent the cross section from going to infinity. In addition the antiprotons will
be measured starting at some minimal scattering angle by the experiment. This naturally
implicates a cutoff for the lower t region and a correct description close to t → 0 is not
required. As EM force allows long distance interactions, it is the dominating process at
small scattering angles where small momentum is transferred.

The hadronic part, dominating at larger scattering angles, cannot be calculated analyt-
ically, due to the self-coupling feature of the mediating gluons. Therefore only approxi-
mate empirical models can be used to parametrize this part of the elastic cross section.
In the momentum transfer range −t > 0.0001GeV2/c2, where the hadron interaction is
dominating, the description

dσhad

dt
=
σ2had(1+ ρ

2)

16π( hc)2
eBt (15)

is suitable [95]. σhad is the total hadronic cross section, B the slope parameter and ρ the
ratio of real to imaginary part of the hadronic scattering amplitude at zero momentum
transfer. The parameters σhad, B and ρ are obtained from fits to p̄p elastic scattering data
from various experiments. Because the E760 collaboration has used this parameterization,
we also refer to this model as the “E760 model”.

The interference term

dσint

dt
=
αEMσhad

β|t|
G2(t)e

1
2Bt(ρcos(δ) + sin(δ)) (16)

plays a minor role in the total cross section, as it is dominated at low t by the Coulomb
cross section and similarly at larger t by the hadronic elastic cross section. The Coulomb
phase δ depends on the momentum transfer t and the slope parameter B

δ(t) = αEM

[
0.577+ ln

(
B|t|

2
+ 4∆

)
+ 4∆ln(4∆) + 2∆

]
. (17)

In the P̄ANDA collaboration the dual parton model (DPM) generator is used to sim-
ulate the background from a large variety of inelastic antiproton proton reactions [96].
In addition it also simulates elastic scattering and provides a hardronic part that is valid
over a wider t range [97] modeled by

dσhad

dt
= A1 ·

[
et/2t1 −A2 · et/2t2

]2
+A3 · et/t2 . (18)

Unlike the “E760 model” it is not motivated by physics, and the parameters Ai and ti are
again obtained from existing measurements. Altogether the DPM generator implements
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the full elastic cross section given by equation 13 and uses the Coulomb and Interference
parameterizations specified by equations 14 and 16.

hadron part parameterization comparison One of the systematic uncertain-
ties on the luminosity measurement can arise directly from inaccuracies of the hadronic
part of the elastic p̄p scattering cross section. They were studied extensively in [98], which
includes a comparison of the DPM elastic hadronic model (equation 18) and the “E760

model” (equation 15). The relative uncertainty after integration of the luminosity over
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of each parameter to the total model uncertainty is shown at Plab=15GeV/c. The con-
tributions of sT and r dominate at small |t| and the contribution from the parameter
b dominates at large |t|.
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Figure 3.11: The relative uncertainty of the cross section integrated over di�erent polarangles ranges in dependence of Plab (for the E760-like model)
Fig. 3.11 presents the relative uncertainty of the cross section integrated over di�er-

ent q ranges and normalized to the integrated elastic cross section in the same range.
The model uncertainty is around 2% at the beam momentum 1.5GeV/c and goes down
to 0.1% between 3–6GeV/c. Afterwards it rises slowly and at the highest beam mo-
menta (Plab 15GeV/c) goes up to 2%. In the range of 2–8GeV/c beam momentum
for which the model was originally provided, the model uncertainty is below 0.5%.
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The parameter errors DA1, DA2, DA3 and Dt2 are estimated from the �t results as

�t function uncertainties at 0.68 Con�dence Level. For the �xed parameter t1, an error
Dt1 = 0.01 is assumed independent from the energy.
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Fig. 3.7 shows the uncertainty of the di�erential cross section in dependence on the

momentum transfer at the beam momentum Plab 15GeV/c. In addition the contribu-
tion to the uncertainty of each parameter to the total model uncertainty is plotted. The
contribution from the parameter A1 dominates the model uncertainty. Contributions
due to A2 and Dt1 parameters are already small and contributions due to A3 and t2 are

Figure 15: The relative uncertainty of the cross section integrated over different polar angles
ranges in dependence on the beam momentum plab (left: E760 model; right: DPM
model) [98, p.44 f].

three different angular ranges is shown in figure 15. The chosen integral ranges are close
to the angular range covered by the LMD of ≈ 3mrad− 9mrad. Clearly, the E760 model
was tuned to the beam momenta data between 3GeV/c and 7GeV/c, visible by the small
uncertainties in this range. Below and above this range the uncertainty increases due to
the extrapolation. The data from previous experiments, which are used for the two model
parameterizations, are shown in figure 16. On the contrary the DPM parameterization
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3.3.2.3 Comparison of the models with the data from previous elastic pp̄ scatter-

ing experiments
In the Durham HepData base [51] 38 measurements of the di�erential pp̄ elastic scat-
tering cross section are listed. The data is summarized in Appendix B. A short overview
is presented in Fig. 3.12, where measurements are sorted by the beam momenta Plab
and the four-momentum transfer t ranges for all found past experiments. The data
used for parameter determination of the DPM and E760 models are marked by di�er-
ent colors. In DPM only data with wide t-range (between 10�2 and 1 (GeV/c)2) is used.
This is natural, since the DPM group aims to reproduce the di�erential cross section in
a wide t range 2.
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Figure 3.12: |t| ranges for previous pp̄ elastic scattering measurements
For the comparison of the DPM and the E760-like models with data, missing sys-

tematic errors are added to the data as suggested in [51]. A few examples of the com-
parison are provided in Fig. 3.13. For all energies, at large |t| the E760-like model
rapidly decreases and predicts a vanishing di�erential cross section. The DPM model
is more realistic and predicts non-zero values for large |t|. However, due to the large
uncertainty of the DPM model, this prediction is rather inaccurate.

The |t| range, which will be available for the luminosity measurement at PANDA , is
energy dependent. It varies between 10�5–10�2 (GeV/c)2 (see Fig. 3.4). Most of the
experimental data are available at a relatively large |t| compared to the LMD |t| range
(Fig. 3.12). Only a few measurements are available in the LMD range and are used to
evaluate the relative systematic uncertainty between each model, the DPM model and

2For further parameter improvement it might be useful to combine data from di�erent experiments, forexample at Plab 8GeV/c
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small to exit the beam pipe or to pass the MVD or the STT. Measurement at higher
momentum transfers, when energy is enough to go through the beam pipe, still would
be complicated due to curling of the protons in the 2 Tesla solenoid �eld. And at much
higher momentum transfers the Coulomb part of the di�erential cross section would
not be visible in the data at any momentum of the beam.
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Figure 3.4: Region available for the luminosity measurement at PANDA (green) andrange for the KOALA experiment in terms of momentum transfer |t|

However it appears feasible to measure the forward scattered antiproton. The an-
tiprotons scattered below 3 mrad are planned to be reused in the beam of HESR. Thus
only larger angles can be used for the luminosity measurement. The LMD will be able
to register scattered antiprotons with scattering angle q between 3 and 9mrad 1. Un-
fortunately in this angular range the Coulomb part is not dominating for large beam
momenta. Fig 3.4 shows the range covered by the LMD in terms of |t| in dependence of
the beam momenta of PANDA. The blue line on this plot indicates the |t| value at which
the Coulomb part is equal to the hadronic part of the elastic scattering cross section.
At higher |t| values the hadronic part becomes large than the Coulomb part. Already at
Pbeam ⇠ 3.5GeV/c the hadronic part contributes to the events registered by the LMD
and for Pbeam >12GeV/c it dominates in the LMD measurement range. Therefore the
uncertainties of the models for estimation of the hadronic part impact the accuracy of
the luminosity extraction for the beam momentum values above 3.5GeV/c.

1The upper bound is limited by size of the beam pipe.

Figure 16: Left: |t| ranges for previous p̄p elastic scattering measurements [98, p.48]
Right: Measurement region for the luminosity detector at PANDA (green) and for the
KOALA experiment (golden) in terms of momentum transfer |t| [98, p.40].

tries to model the hadronic elastic cross section over a larger momentum range by using
also information from previous measurements at higher momenta. As figure 16 shows,
the used measurement points unfortunately lie even more above the four-momentum
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transfer range of the LMD than the data used by the E760 parameterization. This leads to
even larger uncertainties of the elastic cross section. However as both parameterizations
lack experimental information in the LMD momentum and momentum transfer range, a
more precise measurement is needed for the luminosity determination at P̄ANDA.

For this reason the KOALA experiment will measure both the recoil protons as well as
the elastically scattered antiprotons in the relevant four-momentum range (see figure 16)
for various momenta [64], in order to precisely determine the hadronic part of the elastic
scattering. A special beampipe in the interaction region was designed specifically for
KOALA, which allows the measurement of the recoil protons. In the forward direction
the luminosity detector (LMD) measures the scattered antiprotons from the elastic p̄p
scattering, implying small momentum transfers or small scattering angles θ, due to the
forward boost from the fixed target setup.

3.4 the luminosity detector

In order to minimize the systematic uncertainty from the hadronic part of the elastic
scattering model, the measurement is performed at low momentum transfers where the
Coulomb cross section is dominant. Therefore the placement of the LMD should be as
close as possible to the non-interacting beam and as far away as possible from the inter-
action point (IP). Hence the LMD is placed 10.5m-12.5m behind the target measuring at
the angular range of approximately 3mrad to 9mrad. Unfortunately, the low momen-
tum transfers prevent the measurement of the recoil protons, as the kinetic energies are
too low to penetrate the beam pipe or the protons are curling in the solenoid magnet field
at very low radii [85]. Consequently the tracks of the antiprotons have to be measured
precisely to ensure a high luminosity precision and accuracy.

The elastically scattered antiprotons will travel inside the beampipe along the entire
P̄ANDA setup through the magnetic fields of the solenoid and dipole magnet until they
reach the LMD. This is possible as the diameter of the beampipe is stepwise increasing
upto the entrance of the LMD to ensure the desired angular acceptance. The placement
behind the P̄ANDA experiment is advantageous as the dipole magnetic field drastically
reduces the background since only particles with negative charge and the correct mo-
mentum will get the needed deflection. This is crucial for the background surpression as
neither the momentum nor the ID of particles are measured by the LMD.

3.4.1 The Vacuum Box and Transition Region

The complete setup of the LMD is shown in the figure 17. Inside the LMD vacuum box
the beampipe tapers from a diameter of 200mm to a diameter of 70mm at the transi-
tion cone, allowing the elastically scattered particles at polar angles between ≈3mrad
and ≈9mrad to enter the LMD volume. The transition cone is a laminate of a robust
biaxially-oriented polyethylene terephthalate (boPET) foil and a conducting aluminum
foil, shielding the electromagnetic fields of the non-interacting antiproton beam. Its di-
ameter changes smoothly to minimize distortions of the beam from rapid conductivity
changes. Due to the dimensions of the LMD and the out-gassing of various detector
components, the high grade vacuum of the beampipe of 1 · 10−9mbar is not feasbible
for the LMD. The transition foil seperates the two vacua and allows an about 2 orders
of magnitude worse vacuum in the LMD box, without altering the performance of the
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Figure 17: CAD Side view of the complete luminosity detector (LMD) [79].

detector. To prevent the transition foil from ripping, communication of both vacuum vol-
umes, specially during evacuation, is important. This is achieved by a coupled pumping
system of the beam pipe and the vacuum box itself [79].

Once the particles are inside the LMD vacuum, they will travel through 4 detector
planes, where the first plane is placed at z=11.24m and the following 3 with distances
of 20 cm, 10 cm and 10 cm in between. Multiple scattering is proportional to the material
budget, thus it is kept as low as possible in order to have a good angular resolution. For
the LMD a total of 4 planes was chosen to be able to perform a track fit and obtain errors
on the track parameters for validation reasons. In principle three layers would suffice,
but in case of a missing hit in a detection layer a fourth layer recovers these events. As
each plane introduces additional multiple scattering, the first two planes have the largest
impact on the angular track resolution and their distance was chosen to be larger to
generate a large lever arm. A minimal distance of 10 cm between planes is a trade-off
between the compact design and mechanical spacing requirements.
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3.4.2 Detector Layout

State of the art pixel sensors [99], the high voltage monolythic active pixel sensors
(HV-MAPS), are used for the actual particle track detection. They convert the raw ana-
log signals to digital row and column hit information directly on the chip. The main
difference of HV-MAPS to normal MAPS technology is the relatively high bias voltage
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digitization
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smart diodes
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0
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m

Figure 18: Illustration of the layout of a single
HV-MAPS chip.

of 50V and above, resulting in a larger
number of charges and a faster charge
collection in the order of nano-seconds.
In addition the sensors can be thinned
down to 50µm making the material bud-
get very low. The layout scheme of a
single sensor can be seen in figure 18.
A sensor has the dimension of 2 cm by
2 cm with pixel dimensions of 80µm by
80µm. Even though the majority of the
sensor area is active, the guard ring on
the border (100µm) and also the digiti-
zation part (500µm) will lead to some
inefficiencies. Naturally the pixel design
is able to handle high count rates and is
read out in time-frames of 25ns.

For beam instability reasons the detec-
tor is divided in an upper and lower half
that can be retracted from the beam to

avoid unnecessary radiation damage, e. g. during the injection phase of the beam. Each
half plane consists of 5 modules and is depicted in figure 19. A module consists of a
chemical vapor deposition (CVD) diamond wafer that has 5 sensors glued on each side
optimizing the azimuthal coverage, making it a total of 400 sensors for the entire detector.
The main disadvantage of the active pixel sensors is their heat generation of the on-chip

3+2 HVMAPS on 
CVD Diamond

Aluminum Support

V2A Cooling Pipe

Spring loaded
Clamps

Figure 19: Illustration of a half plane acting as a cooling support of 5 modules. The aluminum
structure contains a stainless steel cooling pipe. Electrical components which are at-
tached to the surface of the cooling structure as well as the sensors on the back side of
each module are not visualized.

electronics. As a result the sensors have to be cooled and diamond, with its superior heat
conductivity, has been chosen as a cooling support structure. Altogether the radiation
length of a single plane is X/X0 = 0.3735%, while next to the diamond, sensors and glue,
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also the power and signal cables for the sensors will contribute to this value [79]. An
aluminum structure holds the diamond wafers and maintains their temperature below
50 ◦C with the integrated cooling circuit.

3.4.3 DAQ System

The data from the 400 HV-MAPS is send to the LMD data acquisition (DAQ) system,
where it is sorted, filtered and fast track reconstruction software decides which tracks
should be stored. Time information from the SODA system, which sends common tim-
ing signals to all P̄ANDA sub-detectors to correlate individual signals, are included in
the data before it is transferred to the P̄ANDA DAQ system. As mainly elastic scattering
events will be reconstructed by the LMD, most P̄ANDA physics events will be not or
anti-correlated to the LMD and hence LMD event building can be regarded as indepen-
dent1[79]. For a controlled operation of the P̄ANDA experiment, online information of
the luminosity is essential and for this purpose a simplified instantaneous luminosity
determination will be implemented. Together with the luminosity values of the HESR
accelerator group absolute precision of about 10% for the online monitoring will be
reached.

3.5 track reconstruction

The LMD software is developed for the extraction of the time-integrated luminosity from
raw data, the individual pixel hits. During measurements the detector will deliver this
information directly, however for simulation studies this pixel hit information has to
be artificially generated. All simulations in the first part of this thesis have been per-
formed with the PandaRoot [100] software package, which uses the geometry and track-
ing (Geant4) software [101]. It is initialized with realistic computer models or geometries
of the important parts of the experiment setup. Because only a small fraction of particles
in the forward direction is able to reach the LMD, only a few components of the entire
detector setup are needed for the simulations. These are the geometries of the LMD, the
beam pipe, the solenoid and the dipole magnet. High precision field maps are used in the
simulation software for both magnets. The magnetic field strength of the dipole varies
continuously with the beam energy, while the solenoid is operated at its full current or
half current for beam momenta above or below 3.0GeV/c.

The geometry of the LMD (figure 20) is composed of the vacuum box, the beampipe
including the transition cone and the half planes including the aluminum support and
cooling structures. Each module consists of a diamond wafer, layer of glue, the sensors
and cables for the signal and power transmission. The cables are modeled by a layer of
aluminum and kapton with an effective thickness. After the simulation the generated
charge distributions in the active sensor material are digitized into pixel hits, using the
geometrical layout of a sensor as shown in figure 18. Hereby individual thresholds for
the deposited charge of each pixel can be set, which determine if the pixel information is
used further. The row and column information of all of these fired pixels are calculated.
At this point the simulated data will be processed with the same track reconstruction
software as the real data.

1 Few correlated events will be used to calibrate the LMD time constant in respect to P̄ANDA.
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Figure 20: Simulation model of the luminosity detector.

By looking at the complete flow-chart of the software package (figure 21) one can see
the workflow of the LMD software. The LMD fit procedure, which determines the lumi-
nosity from the angular antiproton distribution, requires three essential inputs: the recon-
structed tracks arising from the actual measured detector hits, the detector acceptance
and the detector resolution. In order to obtain this information several data processing
steps are required, that can be categorized into three stages.

alignment stage : At first in the so called alignment stage the misalignment of each
individual sensor has to be detected with respect to its reference position in the
P̄ANDA coordinate system. The alignment itself consists of three parts, the align-
ment of the sensors on a module, the alignment of modules within a corridor and
the alignment of the corridors to the global P̄ANDA reference frame [102]. Usu-
ally the alignment procedure only has to be performed once after the detector has
been physically undergone changes, i.e initial setup or retraction/insertion of the
detector halves. While the first two alignment parts are crucial for the correct re-
construction of particle track parameters, the third part is elementary for correct
determination of the displacement of the IP and the accelerator beam tilt.

acceptance and resolution parameterizations : As a second step the detec-
tor acceptance and detector resolution parameterization are computed by using a
MC data sample and by using the IP position information from the first stage.

data reconstruction The third stage consists of the track reconstruction from the
measured data, which has to be corrected for the misalignment of the sensors.

Note that the second and third step are only dependent on step 1, hence they are
not time-ordered with respect to each other. All three stages share the same track recon-
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Figure 21: Flow-chart of the LMD software for the extraction of the luminosity starting from raw
data.
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Figure 22: Data reconstruction software flow of the LMD software starting from raw data.

struction software. Figure 22 provides a zoom-in into stage 3 of figure 21. The complete
reconstruction chain is separated into 6 steps, each performing a specific task going from
the raw pixel data to the fully reconstructed track at the IP [98].

As a very first step the pixel hits can be filtered for hot pixels as an example. Then
the row and column information of a sensor hit is converted into a hit in the P̄ANDA
coordinate system, that is further clustered with neighboring hits. Since the modules are
mounted with sensors on both sides, certain areas of the modules have overlaps of front
and back sensors (see figure 23). Clusters with a partner cluster in their proximity on
the other side are merged together into a single cluster. In the next step track search
algorithms try to find tracks in the collection of hits. Both the track-follower [103] and
cellular automaton (CA) [98, 104] algorithms are implemented, while the latter is used
as the default track finding method. The hits combined to a track candidate by the track
finder are then fitted via a broken line fit, extracting the track parameters such as posi-
tion and direction. In the broken line fit each segment between two detector planes is
modeled as a straight line that are connected at the detector planes [105]. This model is
able to describe the multiple scattering in the detector planes. Also a Kalman filter im-
plementation is available, which was used mainly for testing as its track fitting speed is
slower. The entity of the steps 1 to 3 are expressed by the boxes labeled with “Trk Reco”
in figure 21.
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Figure 23: Sensor placement scheme of a
single sensor module. Large over-
lapping areas are marked in
green and smaller ones in red.
Completely inactive areas are
filled in blue.

Analogous, the remaining steps fall in the
category of track filtering with the combined
label “Trk Filter”. Note that the track filtering
only appears in the stages 2 and 3 (see fig-
ure 21). The objective of the filtering is the re-
moval of background tracks that do not corre-
spond to elastic scattering events. Such back-
ground tracks can be identified by their char-
acteristic position and angular distribution of
the reconstructed track parameters with re-
spect to the elastically scattered antiprotons.
By cutting off the non-elastic scattering ar-
eas a large fraction of the background can
be removed. This filter is labeled here as the
“XY-cut Filter” [98]. Finally the reconstructed
tracks at the LMD are propagated back to the
IP using average tracking and error propaga-
tion package (Geane)[106]. This step is neces-
sary as the elastic scattering model is defined
at the production vertex and is perturbed by
the magnetic fields. Since the LMD cannot
measure the momentum of tracks, the beam

momentum is used for the back-tracking procedure as an approximation. The largest
relative deviation to the true momentum is in the order of 10−4 and is negligible, see
appendix B.3. Additional filtering can be performed on the back-propagated tracks, fur-
ther reducing the background to a percent level [98]. Figure 24 shows an exemplary two
dimensional angular distribution of reconstructed tracks at the IP by the LMD.
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Figure 24: Examplary reconstructed track 2D angular distribution at 1.5GeV/c.





4
L U M I N O S I T Y D E T E R M I N AT I O N - T H E
L U M I N O S I T Y F I T F R A M E W O R K

This chapter presents the LuminosityFit software, which counts as major work effort of
this thesis, and can be found on the github platform [107]. It is responsible for the de-
termination of the luminosity with the highest possible precision from the reconstructed
data of the LMD. Recalling chapter 3, this is achieved by comparing the measured elastic
scattering angular distribution with the theoretical model distribution. The normaliza-
tion variable is the absolute luminosity L. However the measured angular distribution
N(θ) cannot simply be compared to the theoretical model σ(θ), because several inevitable
measurement effects alter the original pure elastic scattering distribution. There are two
possible paths to overcome this obstacle. One possibility is to correct the measured data
for the effects introduced by the P̄ANDA spectrometer, which then allows a direct com-
parison with the pure elastic scattering model. Alternatively, the pure model can be mod-
ified to include all of the effects that arise during the measurement, so that is directly
comparable with the data. The first option is in practice not feasible as required oper-
ations such as deconvolutions, which undo the detector resolution of the data, require
very large amounts of data and a constant resolution to work reliably. On these grounds
the second option was chosen, allowing for far more flexibility, extraction power and pre-
cision. The construction of the fit model with all of the transformations and correction
procedures of the elastic scattering cross section is presented in detail in the following.
Results on the extracted luminosity precision and studies of systematic uncertainties are
presented in the next chapter.

4.1 the elastic scattering model

The cross section for elastic p̄p scattering was introduced in section 3.3. Apart from the
calculable coulomb part of the total elastic cross section, two possible parameterizations
for the description of the hadronic part exist. Both parameterizations are implemented
in the LuminosityFit software. Despite the fact that the E760 parameterization is more
suitable, because it uses more measurements in the four momentum range of the LMD,
the DPM parameterization was chosen for the studies in this thesis (see equation 18).
The reasoning is that the DPM generator is the only official generator for the P̄ANDA
experiment that includes elastic p̄p processes1. Moreover the operability of the Lumi-
nosityFit software and the validity of its extraction precision and studies on systematic
uncertainties are not influenced by the chosen parameterization, as long as the behavior
of the true physics cross section is described approximated. To ensure meaningful results

1 The official version of the DPM generator unfortunately uses 32bit floating point precision. For the small
excerpt of the angular spectrum of the LMD, the numerical precision was not good enough. Therefore a
special 64bit precision version of this generator is used in the simulation studies

45
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of the systematic effects, the parameterization of the event generator and the fit model
of the luminosity extraction software are identical.

4.2 coordinate transformations

In general the kinematics of the elastic scattering process is defined by the momentum
transfer t and the center of mass energy

√
s or the beam momentum plab. However the

latter can be omitted because for measurements of the P̄ANDA experiment the beam mo-
mentum will be fixed and measured with a relative precision of a few hundred keV/c.
Hence it can be regarded as a constant and only the momentum transfer t remains as a
phase space variable. In order to relate the measured quantities, the scattering angles θlab
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Figure 25: Elastic p̄p scattering cross section contributions in the LMD measurment range for
various beam momenta. For these beam momenta accurate magnetic field maps exists
in the simulation software.

and φlab in the laboratory system, to the momentum transfer t a coordinate transforma-
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tion is necessary. The relation between the four momentum transfer and the scattering
angle θlab (defined with respect to the incoming antiproton) is

t(θlab) = −2p2cms(1− cos(atan

(
sinθlab

γ(cosθlab −β
Elab
plab

)

)
)). (19)

This is an approximation for small momentum transfers, because the kinetic energy of
the recoiling proton is neglected, but can be used without concerns as demonstrated in
appendix B.2. The coordinate transformation also shows that the cross section is indepen-
dent of φ, hence the scattering probability is symmetric in this variable. As a consequence
the measurement of φ would not be relevant. The elastic cross section in dependence on
the scattering angle θlab is depicted for several beam momenta in figure 25.

So far the laboratory system and the accelerator reference system are assumed to be
aligned in this derivation. In reality the beam can have a certain inclination on the target,
resulting in a tilted reference system and the observed angular distribution is no longer
symmetric in φlab. Hence its measurement becomes important (see section 5.2.3). Taking
these facts into account, relation 12 expands to

dN(θlab,φlab)

dθlabdφlab =L · det(JR(θlab,φlab))

· det(Jt(θ)) ·
dσ(t(θ(θlab,φlab))

dt
. (20)

Figure 26: The θxθy coordiante
system.

Here σ is the total elastic cross section as defined in 13.
θ(θlab,φlab) describes the rotation transformation going
from the laboratory system to the tilted accelerator refer-
ence system. In this system the model is again φ sym-
metric, however the scattering angle θ has still to be
transformed into the momentum transfer t(θ) which
corresponds to equation 19. Since the cross section is
a differential also the angular elements are changed
under the transformations. The Jacobian determinants
det(JR(θlab,φlab)) and det(Jt(θ)) supply the necessary
correction factors for the rotation transformation of the
laboratory system and the transformation into the mo-
mentum transfer frame. They are calculated using nu-
merical differentiation of the transformation equations.

4.3 divergence smearing

As a next step, the divergence of the antiproton beam
has to be taken into account. This means that the antipro-
tons no longer all have the same inclination on the target, but are distributed around a
mean value, the beam tilt. It turns out that the overall fit performance is heavily penal-
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ized by the tilt rotation transformations in the θφ-coordinate system. For this reason the
θxθy-coordinate system, as illustrated in figure 26 and defined by

θlab
x =

px

pz
(21)

θlab
y =

py

pz
, (22)

is introduced. The crucial difference to the θφ spherical coordinates are the transforma-
tions of the angle variables from the laboratory system into the physics system, which
are now simple differences

θx = θlab
x − tiltx

θy = θlab
y − tilty

with
#  –

tilt = (tiltx, tilty, 1)

and

θ(θlab
x , θlab

y ; tiltx, tilty) =
√
θ2x + θ

2
y (23)

φ(θlab
x , θlab

y ; tiltx, tilty) = atan(θy/θx). (24)

This is a small angle approximation, but for the very small forward angles relevant for
the LMD these errors are negligible. The severity of the approximation is visualized in
figure 27. In this example a tilt of 0.5mrad in both the θx and θy direction was chosen,
which already resembles the worst expected setting of the HESR (see 2.2.1). Plotted is the
relative difference of θ calculated by equation 23 and the exact solution calculated using
rotations specified by Euler angles. It can be seen that the relative difference varies by
less than 0.2 · 10−6 in the measurement range of the LMD. In this new coordinate system
equation 20 changes to

dN(θlab
x , θlab

y )

dθlab
x dθ

lab
y

=L · det(JR(θlab
x , θlab

y ))det(Jt(θ))

·
dσ(t(θ(θlab

x , θlab
y ; tiltx, tilty)))
dt

. (25)

With these much simpler transformations, occurring especially frequently in the con-
volution algorithms needed for the beam divergence smearing and detector resolution
smearing, the computation times of the luminosity fit are reduced dramatically2. Now
the coordinate system rotation Jacobi determinant is relatively simple and can be calcu-
lated analytically as

JR(θ
lab
x , θlab

y )) =
1√

(θlab
x )2 + (θlab

y )2
.

In addition the periodicity in φ is removed also making some algorithms simpler. Fi-
nally the visualization of the results is more intuitive and easier to understand. In the
following an example will be worked out to clarify the actual divergence smearing con-

2 The run-time performance improves by a factor of about 100



4.3 divergence smearing 49

R
el

. D
if

f.

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8
6−10×

 /mradxΘ
10− 8− 6− 4− 2− 0 2 4 6 8 10

 /m
ra

d
y

Θ

10−

8−

6−

4−

2−

0

2

4

6

8

10

Figure 27: Relative difference of θ in the θxθy approximation and the exact solution for a beam tilt
setting of 0.5mrad in both θx and θy. The exact solution is calculated using rotations
specified by Euler angles.

volution algorithm. It works on a two dimensional grid and has two input models3 and
outputs a smeared model. In the example the signal function that will undergo the ef-
fect of divergence smearing is a uniform function defined in the range from −2.0mrad
to 2.0mrad in both dimensions θx and θy. For the divergence model a normalized 2D
gaussian function is used. These are depicted in figure 28. The algorithm now discretizes
both models on a specified grid, concretely in this example 14 chunks on each dimension.
The divergence model grid is adjusted so that the grid constant is equivalent to the one
of the signal model. Now for each 2D bin in the signal model space, an integral of its
content is performed and distributed to the neighboring bins according to the integral
values of the divergence model bins. The integrals are evaluated with MC integration.
Pictorially speaking the divergence model center is placed on top of each signal model
bin, so that the bin boundaries match, and the previously mentioned content distribution
is performed. The divergence smeared result can be seen in figure 28.

Putting this in mathematical terms we can define the divergence smeared elastic cross
section in the θlab

x , θlab
y coordinate system as

dσ(θlab
x , θlab

y )

dθlab
x dθ

lab
y

=

∫
dθlab
x ′

∫
dθlab
y ′ div(θlab

x , θlab
y , θlab

x ′ , θlab
y ′ )

· det(JR(θlab
x ′ , θlab

y ′ )) · det(Jt(θ))

·
dσ(t(θ(θlab

x ′ , θlab
y ′ ;

#–α)))

dt
. (26)

3 Note that the words model and function are used interchangeably.
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Figure 28: Example of the divergence smearing algorithm illustrating the procedure. In all figures
the black lines span the grid that was used within the smearing algorithm.
Top left: The signal model before the smearing process, here a uniform model in the
range from −2.0mrad to 2.0mrad in both dimensions is used.
Top right: The divergence smearing model, which is a 2D normal distribution.
Bottom: Resulting signal model after the smearing process, clearly showing smudged
edges of the original model from the gaussian smearing model.

Here the div(θlab
x , θlab

y , θlab
x ′ , θlab

y ′ ) is the function for the beam divergence that depends
on not only the initial space parameters θlab

x ′ , θlab
y ′ , but also the final ones θlab

x , θlab
y . The

θlab
x ′ , θlab

y ′ variables are being integrated over. Usually the divergence can be expressed
with the differences of the variables from the primed and unprimed coordinate system
and the divergence changes to div(θlab

x −θlab
x ′ , θlab

y −θlab
y ′ ), then the operation is more com-

monly referred to as the convolution. This description in terms of differences is of course
only valid as long as the divergence has this symmetry. For a more thorough discussion
of this topic see appendix B.4. Luckily this is very often the case, and specifically for the
LMD a 2D normal distribution is used for the divergence function. All parameters of the
model are absorbed by the vector #–α = (tiltx, tilty, divx, divy).

On the one hand the divergence gives the angular distribution of the antiproton beam
particles around its mean tilt. This means that the physics coordinate system is different
for each individual scattering event, as it is defined by the direction of flight of the
initial state. However, because the scattering process is invariant under rotations4, the
beam divergence is identical to a smearing of the elastic cross section by the divergence
distribution. Therefore it can also be interpreted as the probability density function for a
particle, which is initially within the angular element in the direction θlab

x ′ , θlab
y ′ , to wind

up in the neighboring direction θlab
x , θlab

y .

4 Invariant under rotations means that the scattering process can be rotated as a whole and the physics
outcome is not altered by this transformation.
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Using this definition, the relation of the measured angular distribution can be rewritten
as

dN(θlab
x , θlab

y )

dθlab
x dθ

lab
y

=L ·
dσ(θlab

x , θlab
y ; #–α)

dθlab
x dθ

lab
y

. (27)

4.4 efficiency correction

Next the so called efficiency correction has to be applied. The efficiency gives the proba-
bility for successful reconstruction of a track with the generated MC values of θxθy. This
is necessary due to the partial angular coverage of the LMD detector of the complete
angular range. Furthermore detection inefficiencies of the sensors or the unsuccessful
track reconstruction can lead to additional reductions of the efficiency. The true detector
acceptance can never be known, but only an approximation can be determined by us-
ing simulated data. The efficiencies used in the LuminosityFit software are determined
from simulations and track reconstruction with the PandaRoot software as described in
section 3.5. An event/track5 is regarded as accepted if the reconstruction software was
able to build a track from the sensor hits. The ratio between all accepted tracks and all
generated tracks is the efficiency ε. Specifically for the LuminosityFit the generated val-
ues of the track parameters θxθy6 are used for the angular efficiency ε(θx, θy), which
is shown in figure 29. Here the visualization advantage of the θxθy coordinate system

Figure 29: Angular acceptance of the LMD in the θxθy coordinate system for fully reconstructed
tracks at a beam energy of 1.5GeV/c (left) and 15GeV/c (right).

becomes apparent. The 10 modules on each plane of the detector can easily be seen, as
they are separated by thin inefficiency gaps. Most areas of a module region show a very
high efficiency of 99%, except for 4 pairs of holes in the center region of the module,
as well as two pairs of longer areas of inefficiency on each edge of the module that
reaches towards its center. These inefficiencies can be explained by the arrangement of
the individual sensors on the module as shown in figure 23 with the mentioned areas are
shaded in blue. In addition the electronical layout of the sensors (see figure 18) enhances
the inactive areas on the module, as every sensor is surrounded by a guard ring and
one edge also contains digitization components. The pairwise occurrence of the these

5 Single track events were used in these simulations.
6 Since all θxθy angles appearing in the following will be in the laboratory coordinate system, the labels lab

are dropped.
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inefficiencies is clarified by figure 30. Since all four detection planes are identical, any

IP

Sensors of Detector PlanesInefficiency
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1
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2

Figure 30: Sketch of four LMD planes sections with a inefficiency gap in the order of 100µm
diameter in each plane. On every detection plane the inefficiency locations are match-
ing, because the arrangement of the sensors is identical. The two red angular ranges
illustrate regions for tracks that cannot be reconstructed, due to insufficient track hits
(less than 3).

area that is not covered by any sensor appears repeatedly in every detector plane. As a
consequence there exist two nearby angular ranges, for which tracks that will traverse
more than one of these inefficient areas, leading to unsuccessful track reconstruction, be-
cause the software requires hits from three or four detector planes (see 3.5). For radial

angles between 11mrad <
√
θ2x + θ

2
y < 13mrad a ring of minor efficiency is visible at a

beam momentum of 1.5GeV/c. Antiprotons in this angular region are able to reflect off
the beampipe wall and enter the detector. Finally also noticeable when comparing the
two beam momenta scenarios is the more skewed and rotated acceptance for 1.5GeV/c,
arising from the larger ratio of the solenoid field strength and momentum7.

For the acceptance correction of the elastic scattering model, this binned two dimen-
sional efficiency, with the option of bilinear interpolation [108] based on the four nearest
bin centers, is used. When using the same binning for the acceptance as for the definition
of the model, an interpolation is not necessary. In case of a different binning the interpo-
lation has only to performed once at the construction of the two dimensional efficiency
object, since it is a static component of the final model. This avoids very costly interpo-
lation operations during the fitting procedure. To incorporate the efficiency the formula
for the elastic scattering, equation 27 changes to

dN(θx, θy)
dθxdθy

=L · ε(θx, θy) ·
dσ(θx, θy; #–α)

dθxdθy
. (28)

4.5 detector resolution smearing

Finally the imprecision of the measured track parameters by the LMD, more specifically
the angles θxθy, has to be taken into account. This finite resolution for the angles arises
mainly from two factors. The reconstructed track hits vary from the true values because
of the intrinsic sensor resolution and the multiple scattering in the modules and the
transition cone. The latter is dominant at low beam energies. Figure 31 shows the two di-
mensional angular resolution distributions for the two extreme momenta of the P̄ANDA
experiment. It can be seen that the resolution distributions can be rotated and skewed,
because of the solenoid and dipole magnetic fields. By fitting the resolution distributions

7 The solenoid is reduced to half current for beam momenta below 3.0GeV/c
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Figure 31: Global two dimensional angular resolution of the LMD at 1.5GeV/c (left) and
15GeV/c (right).

of various beam momenta with a 2D multivariate gaussian model, the parameters of the
resolution as a function of the momentum in the laboratory frame can be extracted and
are depicted in figure 32. Clearly the dominance of multiple scattering towards lower
energies is visualized by the increase of the width of the resolution distributions, which
are an effect of the reduced track “stiffness” for lower momentum antiprotons.
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Figure 32: Momentum dependence of the LMD two dimensional angular resolution. The major
and minor width (σ) of the resolution are shown in black and green.
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Similar to the approach of the divergence smearing correction in 4.3, the detector reso-
lution correction modifies the current two dimensional LMD fit model from equation 28

to

dN(θrec
x , θrec

y )

dθrec
x dθ

rec
y

=L ·
∫
dθMC
x

∫
dθMC
y Res(θrec

x , θrec
y , θMC

x , θMC
y )

ε(θMC
x , θMC

y )
dσ(θMC

x , θMC
y ; #–α)

dθMC
x dθMC

y

. (29)

The function Res(θrec
x , θrec

y , θMC
x , θMC

y ) contains all the information of the detector smear-
ing. Its domain is 4 dimensional and it gives the probability density for reconstructing
particles at angles θrec

x θ
rec
y initially generated at the IP with angles θMC

x θMC
y . Simulations

done with PandaRoot can give insight to this resolution function as both the generated
and reconstructed angles are available.

There are two possibilities to extract this information from the simulation results and
construct a resolution function. The first solution tries to parameterize the resolution
as a function of the generated (MC) angles θMC

x θMC
y , by first splitting the simulated res-

olution information into bins of these angles and then fitting each of these local two
dimensional resolution distributions with an appropriate model extracting the resolu-
tion parameters. When applying the smearing, the resolution model, here a 2D normal
distribution, is initialized with the correct parameters dependent on the angles θMC

x θMC
y .

Unfortunately it turns out that the resolution parameterization is extremely complex, as
the resolution is not constant along the generated angles θMC

x θMC
y . Also the resolution at

specific θMC
x θMC

y proximities can have additional contributions to the 2D normal distribu-
tion. These complications arise due to an inhomogeneous material budget of the detector
and edge effects. The problem of the resolution parameterization can be avoided in the
second solution, in which simulation data is used directly by storing the required infor-
mation within a 4D histogram. Due to the better compatibility and reliability, the latter
solution was chosen. However it imposes other difficulties that are related to statistics
and storage. In order to obtain equal statistical uncertainties for the resolution smearing
probabilities when increasing the binning or density of these 4D histograms, the needed
amount of data has to be increased with the fourth power. A similar statement holds for
the storage of the resolution information, which can quickly exceed several gigabytes.
From this point of view the histogram binning constant should be chosen as coarse as
possible.

To be able to systematically study this large chain of sophisiticated correction algo-
rithms and allow the flexible extension for further corrections, the need for a framework
for the construction of general functions of arbitrary dimensionality and complexity
arose. This led to the development of an additional software package, the ModelFrame-
work [109], which is a dependency of the LuminosityFit software8.

8 Both software packages are written purely in C++.
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L U M I N O S I T Y D E T E R M I N AT I O N R E S U LT S
A N D S Y S T E M AT I C S T U D I E S

This chapter presents the performance and accuracy of the LuminosityFit framework
including systematic studies of the influence of the accelerator and target beam parame-
terization on the accuracy. At first the runtime settings of the luminosity fit are given fol-
lowed by results of the luminosity determination for the ideal scenario. In this scenario
merely the parameterizations of the accelerator beam momentum and IP distributions
are idealistic, which use delta functions δ3(~plab) with ~plab = (0, 0,plab) and δ3( ~IP) with
~IP = (0, 0, 0). The parameters for realistic distributions are the shift and width of the IP
distribution and the tilt and divergence of the accelerator beam. They are studied system-
atically, with both expected parameter values as well as an extreme case. Those values
are taken from section 2.2.1, in which these parameters are discussed and summarized.

Because the detector resolutions (figure 32) and elastic scattering cross sections (fig-
ure 25) between the lab momenta of 4.06GeV and 15GeV/c are similar, most of the
following studies were only performed for the two extreme values for the antiproton
beam momentum of 1.5GeV/c and 15GeV/c. However results of several realistic scenar-
ios with non-trivial accelerator and target beam parameters as well as different beam
momenta are shown afterwards.

All data shown in this chapter has been simulated with the PandaRoot framework
with only pure elastic p̄p scattering events and no background from inelastic channels.
All relevant background sources are discussed at the end of this chapter.

5.1 ideal case fit results

Before any fit results are shown, some general information on the determination proce-
dure has to be provided. The fits are performed with the LuminosityFit software using
an extended binned log-likelihood estimator. With the typical data sample size of 106

events and a 2D histogram binning of roughly 300 in each dimension a binned estimator
is favored.

It was discovered that fits with a chi-square estimator give a systematic error on the
luminosity in the order of 0.1%. The reason for this is the assumption of a normal dis-
tributed bin content, which is not well enough satisfied for the used sample sizes and
poisson statistics is preferable [110]. This systematic error mainly effects the normaliza-
tion constant, but for the luminosity determination this is precisely the crucial parameter.
A complete description of the likelihood estimator is given in section A.1.

When using a binned estimator it is important to compare the bin content with the
integral of the model within the bin boundaries. This is in general a quite computation
expensive calculation, especially if the model changes with the fit parameters. In the
limit of fine binnings the function can be regarded as constant within the boundaries of
a single bin and a single function evaluation normalized to the area of bin provides an

55
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accurate value for the integral. The two dimensional integrals for the luminosity fit are
calculated by evaluating the model on a 3× 3 grid within each bin, giving the necessary
precision without large speed penalties. These integrals are cached and the luminosity
fit model is now discretized according to the histogram of the data.

The binning of the luminosity fit model introduces an approximation at the stage of
the efficiency correction, defined by equation 28. Here both the elastic scattering model
and the efficiency is assumed to be constant inside each bin, which is only valid for
large number of divisions of the binned model. When performing luminosity fits with
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Figure 33: Relative luminosity as a function of the fit model and data binning in the θx, θy space.
The black circles are fit results in which only accepted generated MC angular distribu-
tions are fitted. In this case the detector resolution smearing correction is not applied.
The blue squares are fit results of reconstructed angular distributions. All mean and
error values were calculated from the luminosity parameter fit result distributions of
100 bootstrapped data samples. The RMS value is used as an error estimate.

different binnings the optimal size can be determined, which is shown in figure 33. Here
two different types of data are fitted with the appropriate model: the reconstructed data
and accepted generated MC data. The former is the track information, arising from the
simulation and track reconstruction software, resembling realistic data. On the contrary
the accepted generated MC data is the information of the generated MC tracks the at
the IP, that resulted in a reconstructed track. In this case the resolution smearing of
the elastic scattering model was not used to ensure a valid description of this data. For
each chosen binning, 100 bootstrapped data samples were fitted and the mean and RMS
values of the relative luminosity distribution are displayed by the graphs in figure 33.

Clearly at low binnings the approximations of the model yield systematic uncertain-
ties of several permille. Note that the binning approximation is already introduced at the
stage of the efficiency correction. Once binnings of 300 are reached, this effect becomes
negligible for both the reconstructed data and accepted generated MC data fit. Then an
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excellent accuracy of the extracted luminosity is achieved, as they are compatible with
the actual generated luminosities Lref with respect to the statistical errors of about 0.05%.
The fits on angular distributions with binnings of 600 and above were not tested, due to
limited statistics for the resolution parameterization, its memory consumption and the
runtime of the fits. A binning of 300 has been chosen for all other performed luminosity
fits, as the computation times are the lowest here and no penalties on the accuracy of
the extracted luminosity are present. In the following a single high statistics sample will
be used instead of the 100 bootstrapped samples, due to reasons of feasibility. The mean
and error of fit parameters, such as the luminosity, are obtained directly from the mini-
mizer Function Minimization and Error Analysis 2 (MINUIT2). Figure 34 shows the two
dimensional angular distributions of both the simulated large data sample and the cor-
responding optimized luminosity model for the two extreme beam momentum values.
The bin-wise normalized residuals of the luminosity fit models and the reconstructed
angular distributions indicate that the model is able to perfectly describe the data, as
no distinct regions of over- or underestimation are visible. For the 15GeV/c beam mo-
mentum case the angular distributions reveal a grid-like substructure, which are a con-
sequence of the pixel sensors. Recalling the design of the detector each pixel has the
dimensions of 80µm×80µm. Most hits on the sensors are reconstructed from a single ac-
tivated pixel [20], as the charge deposition is low, making the center of the pixel the recon-
structed hit position. From the spacing between the detector planes, which is either 20 cm
or 10 cm, the angular resolution of the detector is limited to 80µm/20 cm = 0.4mrad.
The grid constant visible in the angular distribution for the 15GeV/c case in figure 34

is in perfect agreement with this value. For the regions of overlapping sensors (green
area in figure 23), this grid structure is not as prominent, which is clearly visible in the
reconstructed angular distribution. The reason for this is the only partial overlap of the
pixels of the front and back sensors, yielding an improved resolution after performing hit
merging of the two sides. For lower beam momenta this discrete structure is not visible
anymore, as it is smeared by the larger detector resolution from multiple scattering. Simi-
lar to the bootstrapped data sampled case above, the accuracy of the extracted luminosity
is below the permille level and is statistically compatible with generated value.
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Figure 34: Fit results for the ideal scenario with the antiproton momenta aligned with the z-axis
and the IP coincides with the P̄ANDA origin. The left column shows results at a beam
momentum of 1.5GeV/c while the right column for 15GeV/c.
Top: reconstructed angular distribution simulated with the PandaRoot software
Center: luminosity fit model w/o divergence smearing and with the luminosity param-
eter obtained from the fit while the accelerator beam tilt parameters are fixed to zero
Bottom: bin-wise normalized residuals of the luminosity fit model and the recon-
structed angular distribution
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5.2 systematic effects of the beam and target

So far idealistic parameterizations for the accelerator beam momentum and IP distri-
bution in form of the delta functions δ3(~plab) with ~plab = (0, 0,plab) and δ3( ~IP) with
~IP = (0, 0, 0) were used. Now realistic parameterizations are examined. Figure 35 shows
a sketch of a scattering process with a displaced interaction point and for a tilted incom-
ing beam particle with respect to the z-axis.

tilted beam

shifted beam

target region z-axis

scattering angles
IP

Figure 35: Beam shift and tilt sketch. A shifted IP scenario is shown in green, while the case
drawn in blue arises from a tilted accelerator beam.

Obviously for position changes of the IP the angular distribution of the scattering
process is not effected. However even though the scattering angles of the outgoing an-
tiprotons are identical, the paths of the individual particles through the experimental
setup are now different. As a consequence, the detector efficiency changes since previ-
ously reconstructed particles on the edge of the detector may now miss the sensor planes
and vice versa. It is crucial that the magnetic field maps of the PandaRoot software repre-
sent the magnetic fields of the experiment, otherwise systematic errors in the luminosity
determination can occur. The P̄ANDA experiment will perform a high precision scan
measurement of the magnetic fields [111]. Hence this influence is classified as uncritical.

For an incoming particle with an inclination to the z-axis, its scattering angle in the
laboratory system θ ′ now differs from the one of the physics process θ. The physics and
laboratory coordinate systems are no longer aligned, hence the angular distribution of
a scattering process is directly effected. However only the amount of particles scattered
into the angular elements change and the individual particle paths remain the same.
Therefore the detector acceptance remains unchanged. Strictly speaking the antiproton
paths originating from the same angular scattering region before and after a tilt may
vary, since they have different momenta due to the different momentum transfer to the
proton.

In general this shift and tilt is different for each event and will follow distributions
described by the IP distribution and accelerator beam divergence.

5.2.1 IP Distribution

The IP distribution is the overlap of the accelerator beam distribution and the target
beam distribution, while mean displacements of the IP distribution are neglegted in this
section. For a correct description one relies on the information of these two distributions,
either from simulations or measurements. For the accelerator beam position a normal
distribution in the xy plane is used. Estimations on the accelerator beam parameters are
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summarized in tables 2 and 3. For the target beams there are two possible systems, the
cluster jet target and pellet target. As the former will be used in the beginning of the
P̄ANDA runtime and measurements for the target beam distribution exist, this system
was chosen in this study. The target hydrogen clusters follow the distribution given in
equation 6, with a slightly elongated shape in the z direction, while newest measure-
ments even suggest a wider gaussian distribution[112]. Because the antiproton beam is
costly to create and high reaction rates are desired, the target beam is usually broadened
in the xy plane to have a good overlap with the antiproton beam. Therefore the dimen-
sions of the IP distribution in the x and y direction are dictated by the size of the more
narrow accelerator beam when performing the overlap. Hence a normal distribution for
x and y with widths of σx = σy = 0.8mm is used. Along the beam direction the distribu-
tion is dominated by the target beam profile and would be described best by equation 6.
However for reasons of simplicity a gaussian distribution with a similar width was used
instead. The 2σ interval of the normal distribution should roughly equal the 13.1mm
size in z direction, therefore 4σz ≈ 13.1mm→ σz = 3.5mm. The distribution of the pel-
let target beam is similar in xy, and therefore also the IP distribution parameterization.

Figure 36: Angular acceptance of the LMD in the θxθy coordinate system for fully reconstructed
tracks at a beam energy of 1.5GeV/c (left) and 15GeV/c (right). The interaction ver-
tices follow normal distributions in all three dimensions with standard deviations of
σx = σy = 0.8mm and σz = 3.5mm.

The angular acceptances of the LMD with the gaussian IP distribution are shown in
figure 36 for both extreme beam momentum cases. At a first glance the acceptances look
similar to the ones with a delta function like IP distribution shown in figure 29, showing
all of the previously discussed shapes and detector layout features (see 4.4). On a more
precise comparison a difference becomes apparent. Now the acceptances are smeared,
which can be seen from the borders as well as the inefficient areas of the detector indi-
cated by the blue areas in figure 23. The previously appearing two-fold structure of the
inefficiencies is no longer visible due to the smearing from the IP distribution.

Figure 37 shows a reconstructed angular distribution at 1.5GeV/c generated with the
IP distribution as mentioned above. Two luminosity fit models are shown, one assumes
a point-like IP and the other uses the efficiency with the correct IP distribution. When
comparing these two models no difference is visible by eye. Only when performing
luminosity fits a systematic error of roughly 0.4% becomes apparent in the case of not
correcting for the IP distribution.
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If the distribution of the IP is taken into account in the fit model, the deviation of the
reconstructed luminosity in comparison to the generated luminosity is below 0.1%. Of
course determining the true IP distribution is a difficult task, because of the smearing
from the detector resolution. But since even a dramatically wrong description, here using
a delta function instead of a gaussian function, the systematic error stays well below the
percent level. Hence a rough knowledge of the IP description suffices.

The same study has been performed for the beam momentum of 15GeV/c and the
results are shown in figure 38. Different to the 1.5GeV/c case is that the IP distribution
does not influence the precision on the luminosity determination.

As both the target system and the accelerator will be adjusted to create this desired IP
distribution in order to achieve the design luminosity, this parameterization parameters
for the IP distribution are used for all further studies.



62 luminosity determination results and systematic studies

Figure 37: Fit results with the IP mean at the origin and no antiproton beam divergence and tilt
at 1.5GeV/c. The left column shows results for with the point-like IP model, while the
right column shows the results with the correct IP distribution.
Top: reconstructed angular distribution simulated with the PandaRoot software with
the IP distribution (same for both cases)
Center: luminosity fit model
Bottom: bin-wise normalized residuals of the luminosity fit model and the recon-
structed data
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Figure 38: Fit results with the IP mean at the origin and no antiproton beam divergence and tilt
at 15GeV/c. The left column shows results for with the point-like IP model, while the
right column shows the results with the correct IP distribution.
Top: reconstructed angular distribution simulated with the PandaRoot software with
the IP distribution (same for both cases)
Center: luminosity fit model
Bottom: bin-wise normalized residuals of the luminosity fit model and the recon-
structed data



64 luminosity determination results and systematic studies

5.2.2 IP Displacements

In addition to a distribution of the interaction point, it can also exhibit a mean displace-
ment with respect to the origin of the P̄ANDA laboratory frame. This is visualized in
figure 35, in which a shifted1 beam scenario is drawn in green. In general, both the tar-
get and antiproton beam have to be shifted as a unit to achieve a IP displacement without
changing the interaction rate or the IP profile. During the operation of the experiment,
both beams will be positioned to achieve a maximal overlap giving the highest interac-
tion rates. With their finite positioning resolutions an offset of several hundred µm up to
the order ofmm can be expected (see section 2.2.1). To probe the influence of the IP offset
on the luminosity determination, various simulations with a shifted IP in the xy plane,
were generated. The magnitudes of the displacements are either 1mm or 3.5mm, while
the same IP distribution as in the previous section was used. Those values resemble an
expected and extreme shift of the IP. The strong forward angles of the scattered antipro-
tons suppress the influence of shifts in the z direction. Also only minor systematic effects
in the xy position are introduced due to this approximation. Therefore it is possible to
work without the determined mean offset in the z dimension.

At first these simulated angular distributions with IP offsets are fitted assuming there
was no displacement to determine the severity of the systematic effects on the extracted
luminosity. The results are shown in figure 39. Immediately visible is the point symmetry

Figure 39: Relative precision of the fitted luminosity for various displacements of the IP without
applying correction procedures (left: plab = 1.5GeV/c; right: plab = 15GeV/c). 1mm
and 3.5mmmagnitudes for the offsets were simulated, while the former is an expected
shift and the latter an extreme scenario. The diameter of the points are scaled with an
arbitrary factor to additionally visualize the severity of the deviation of the luminosity
between various displacements. µ(Lerrfit) is the mean statistical error on the obtained
luminosity from the fit for all displacement scenarios.

around the origin, with the largest relative deviations of up to 10% on the diagonal at
xip = yip = ±3.5mm. For expected displacements of 1mm the systematic uncertainty of
the luminosity determination is in the order of 1%, precise to about 0.08%. This states
the need for a correction procedure. If the offsets of the IP can be extracted from the
reconstructed measured tracks, a data sample with these displacement values can be
simulated and used to determine the acceptance and resolution. Even though only the
scattered antiproton track is measured the displacement of the IP can still be determined,

1 The terms displacement, offset and shift are used interchangeably for IP displacements.
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by studying the xy distribution of the reconstructed tracks in the proximity of the ori-
gin. From the backtracking procedure the interaction vertex is determined via the closest
point of approach (CPA) with respect to the origin of the P̄ANDA laboratory frame.
The distributions of the reconstructed x and y IP positions for an exemplary data sam-
ple are show in figure 40. The mean displacements are determined by fitting gaussian

Figure 40: Reconstructed IP distributions of xIP (left) and yIP (right) using the CPA during back-
tracking for a shifted IP scenario simulated with µ(xIP) = µ(yIP) = −3.5mm. The red
lines indicate a gaussian function fit, with the mean of the gaussian and statistical error
listed.

functions to these distributions and only small deviations between the functions and the
distributions can be recognized. The description of the gaussians is appropriate and the
extraction of the mean only shows a small systematic uncertainty from the true value.
When performing this procedure on all of the previously cases in figure 39, the precision
on the IP determination can be studied.

Figure 41: Reconstructed mean displacements xIP,yIP and the statistical errors obtained from the
gaussian fits (left: plab = 1.5GeV/c, right: plab = 15GeV/c). The attached graphs on the
right and bottom show the difference ∆x and ∆y to the generated mean IP displace-
ments. A small constant spacing between points with identical true xIP or yIP was
introduced. The order of the points is defined by the less than relation of the values in
the other dimension, e. g. yIP for ∆x.

Figure 41 summarizes the results. The accuracy of the measured offset in y direction
is below 20µm and 6µm for the lab momenta 1.5GeV/c and 15GeV/c respectively. Also
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no mean systematic deviation is visible. However it can be seen that the deviation to the
ideal value is dependent on the y displacement itself, as the shift is in general overesti-
mated for positive values and vice versa. On the contrary the measured offset in the x
direction does not show this dependency as prominently. Though, in this case the mea-
sured values for xip are systematically underestimated with about −30µm for 1.5GeV/c,
and slightly worse for 15GeV/c with −43µm. The reason for this underestimation is
the false assumption of the momentum of the tracks in the back propagation procedure,
as discussed in section 3.5. Since the reconstructed tracks possess a momentum slightly
smaller than the beam momentum, their deflection would be stronger in reality. Overall
the mean positions of the IP can be extracted with a precision of below 50µm.

Finally, simulations with the measured IP displacements are used to obtain the cor-
rected angular acceptance information, which is used in the luminosity fits. The overview
of the fit results when using the offset corrected angular acceptances is shown in figure 42.
The original accuracy on the determined luminosity of below 0.1% is restored. Further-

Figure 42: Relative precision of the fitted luminosity for various displacements of the IP using
the correction procedure (left: plab = 1.5GeV/c; right: plab = 15GeV/c). 1mm and
3.5mm magnitudes for the offsets were simulated. The diameter of the points are
scaled with an arbitrary factor to additionally visualize the severity of the deviation of
the luminosity between various displacements. Note that a different color scale is used
here. µ(Lerrfit) is the mean statistical error on the obtained luminosity from the fit for
all displacement scenarios.

more the deviation from the generated luminosity for all offset scenarios is compatible
with the statistical error of 0.07% obtained from the minimizer Minuit2 [113]. However
figure 42 also suggests a small underestimation of the luminosity after the offset correc-
tion, as the relative differences appear slightly more frequently below zero.

5.2.3 Accelerator Beam Tilt

Similar to the offsets of the two beams, their tilts can influence the precision of the
extracted luminosity. Since the target beam velocities are by magnitudes smaller than
the velocities of the accelerator beam particles, the target can be viewed as fixed without
concerns and possible tilts of the target beam can be neglected. A scenario of a tilted
accelerator beam is sketched in figure 35, indicated with the blue tracks. Obviously the
measured angular track distribution is directly altered, since the physics reference frame
no longer coincides with the laboratory system, but are instead rotated with respect to
each other. The beam tilt effect can be studied by generating data for various scenarios in
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the θxθy tilt plane and fitting with the assumption of a nonexistent accelerator beam tilt.
In the simulations the standard IP distribution is used, but the mean of the IP distribution
is kept at the origin.

Figure 43: Relative precision of the fitted luminosity for various accelerator beam tilts without ap-
plying correction procedures (left: plab = 1.5GeV/c; right: plab = 15GeV/c). 0.1mrad
and 0.35mradmagnitudes for the tilts were simulated, while the former is an expected
tilt and the latter an extreme scenario. The diameter of the points are scaled with an
arbitrary factor to additionally visualize the severity of the deviation of the luminosity
between various tilts. µ(Lerrfit) is the mean statistical error on the obtained luminosity
from the fit for all scenarios.

Figure 43 gives an overview of the effect of a tilted beam, which produce systematic
relative differences of the luminosity of up to 6% for the larger tilts of 0.35mrad at plab =

1.5GeV/c. At higher beam momenta the systematic deviations are reduced to about 0.2%.
The higher accuracy of the extracted luminosity for the higher beam momenta is based
on the flattening of the elastic cross section (see figure 25). Similar to the studies of the
shift of the interaction point, a point symmetry is present. Furthermore for the low beam
momentum case all of the scenarios overestimate the actual luminosity.

The tilt of the accelerator beam merely implicates a rotation of the coordinate system.
Once the tilting of the accelerator beam is introduced into the model according to equa-
tions 23 and 24, the tilted measured angular distribution can now be described correctly.
In addition, also the accelerator beam tilt parameters are a result of the luminosity fit.
The extracted tilt parameters and their errors for all of the scenarios are shown in figure
44.

For both the lowest and highest beam momentum case no systematic deviations from
the generated tilt values can be seen. An upper bound for the accuracy is 3µrad and
30µrad respectively. Regarding the statistical errors obtained from the fit, the actual
accuracy is likely below this upper bound. In addition no dependency on the beam
tilts of the relative luminosity is visible. Despite the lower sensitivity of beam tilts on
the luminosity with respect to IP offsets, the beam tilt parameters are determined with
excellent accuracy.

The overview of the relative luminosity uncertainties are shown in figure 45. Again,
the luminosity is determined correctly and the deviations to the generated values are
compatible with the statistical errors of 0.07%. Also judging from figure 45 the deter-
mined luminosity is slightly underestimated on a sub per-mille level. With the two tilt
parameters the estimator space is increased to three dimensions, and the minimization
problem becomes more complex, thus reducing the fitting speed.
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Figure 44: Reconstructed beam tilt tiltx, tilty and their statistical errors obtained from the lumi-
nosity fits (left: plab = 1.5GeV/c, right: plab = 15GeV/c). The attached graphs on the
right and bottom show the difference ∆tiltx and ∆tilty to the generated beam tilts. A
small constant spacing between points with identical generated tiltx or tilty was intro-
duced. The order of the points is defined by the less than relation of the values in the
other dimension, e. g. tilty for ∆tiltx.

Figure 45: Relative precision of the fitted luminosity for various accelerator beam tilts using the
correction procedure (left: plab = 1.5GeV/c; right: plab = 15GeV/c). 0.1mrad and
0.35mrad magnitudes for the tilts were simulated. The diameter of the points are
scaled with an arbitrary factor to additionally visualize the severity of the deviation
of the luminosity between various tilts. Note that a different color scale is used here.
µ(Lerrfit) is the mean statistical error on the obtained luminosity from the fit for all
scenarios.

5.2.4 Accelerator Beam Divergence

In analogy to the distribution of the interaction point, the accelerator beam particles
are distributed around the mean tilt. This distribution is also known as the beam diver-
gence. Similar to the tilt, the beam divergence will also directly influence the elastic cross
section. More precisely, the physics coordinate system is now no longer the same for
the individual beam particles, as it has to be aligned to the flight direction. Because the
physics scattering process is independent on the orientation of the coordinate system, the
beam divergence is identical to a smearing of the elastic cross section by the divergence
distribution in the reference frame aligned to the mean beam tilt.

Again the influence of the beam divergence on the accuracy of the luminosity de-
termination can be studied by generating data samples from simulations with various
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divergences, while assuming no divergence when performing the luminosity fit. For the
parameterization of the divergence a two dimensional normal distribution was chosen,
as this is to be expected. Additional insight about the parameterization of the divergence
can later be gained from beam measurements by the HESR group. Three different values
for the standard deviation of the distributions divx,y = 0.1, 0.2, 0.35mrad, independently
in the θx and θy dimension, were simulated.

Figure 46: Relative precision of the fitted luminosity for various accelerator beam divergences
without applying correction procedures (left: plab = 1.5GeV/c; right: plab = 15GeV/c).
A two dimension normal distribution is used for the parameterization of the diver-
gence. Multiple scenarios with three different standard deviations, 0.1mrad, 0.2mrad
and 0.35mrad, were simulated. The diameter of the points are scaled with an arbitrary
factor to additionally visualize the severity of the deviation of the luminosity between
various divergences. A different scaling factor for the two momentum cases was used.
µ(Lerrfit) is the mean statistical error on the obtained luminosity from the fit for all
scenarios.

The fit results for these scenarios are shown in figure 46. In the 1.5GeV/c case the rela-
tive deviation of the luminosity changes with the divergence as expected. For the largest
beam divergence of divx = divy = 0.35mrad also the largest systematic deviation from
the generated luminosity of 5.4% can be observed. The systematic overestimation of the
luminosity is below 2.0% for realistic divergences of 0.2mrad or lower. On the other
hand the influence of the beam divergence for beam momenta of 15GeV/c is almost
negligible. The largest observed relative deviation is 0.18% at divx,y = (0.1, 0.35)mrad.
Analogous to the case with only the tilted beam, the reason for the varying severity of
this systematic influence at the different beam momenta is the shape of the elastic scat-
tering cross section in the angular range of the LMD. In general, the more structure and
asymmetry is present in the elastic scattering cross section, the stronger the modifications
from the divergence smearing. While the cross section has a large slope at scattering an-
gles in the LMD range for 1.5GeV/c beam momentum, it is comparatively flat at higher
momenta (see figure 25). This flatting already occurs at a beam momentum of 4.06GeV/c,
so that the influence of the divergence on the extracted luminosity becomes negligible.

The extension of the fit model to include the beam divergence was presented in sec-
tion 4.3. Similar to the correction for the IP distribution, the parameterization of the
divergence has to be known for this procedure. Here also a two dimensional normal
distribution is used, which is defined to be zero outside of the ±5σ region. When per-
forming the luminosity fit with the divergence correction, the variables of the divergence
parameterization, in this case the two standard deviations, do not have to be known.
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Rather they can be promoted to fit parameters and simultaneously be extracted with the
luminosity.

Figure 47: Reconstructed beam divergence divx, divy and the statistical errors obtained from the
luminosity fits (left: plab = 1.5GeV/c, right: plab = 15GeV/c). The attached graphs
on the right and bottom show the difference ∆divx and ∆divy to the generated beam
divergences. A small constant spacing between points with identical true divx or divy
was introduced. The order of the points is defined by the less than relation of the
values in the other dimension, e. g. divy for ∆divx. Because the errors on some of
the fits are so large that they would distort the plot scale, these errors are limited to
0.15mrad.

Figure 47 shows the results of the determined divergences with respect to the gen-
erated values. Immediately visible is the comparatively bad precision of the extracted
divergences, especially in the high beam momentum case. Furthermore the accuracy is
lower for asymmetric distributions, in which the divergence is different in both dimen-
sions. For example in the case (divx = 0.35mrad, divy = 0.1mrad) at the beam momen-
tum of 1.5GeV/c, the divergence is determined well in the divx dimension but poorly in
the divy dimension. Also the error estimations from the minimizer are no longer valid.
At higher momenta the accurate extraction of the divergence is not possible. However
this is expected from the small influence of the divergence on the extracted luminosity
(see figure 46).

The stability of the fit was initially reduced when using the divergence correction
and several adjustments in the fitting process were mandatory. Recall that the binned
extended log-likelihood estimator was used for the optimization process (see section A.1).
Crucial for a better convergence behavior was the normalization of the log-likelihood.
The absolute log-likelihood values of the luminosity fit are usually large numbers in the
order of 107. However in the proximity of the minimum this value only changes slightly
with absolute differences below 10−3. In general the location of the minimum does not
change2 when adding an arbitrary constant to the estimator function. By subtracting the
log-likelihood value of the initial or start parameters during the minimization process,
this numerical issue can be resolved and the convergence behavior of the fits improves
greatly. However since the initial parameters can be far away from the minimum, the log-
likelihood values may vary several orders of magnitude when reaching the neighborhood
of the minimum. This restores the original problem, but can be resolved by interrupting
the fit several times on the way to the minimum and using the last parameter set as new
initial parameters of the next iteration.

2 Because the minimum is located at the position at which the derivative is equal to zero.
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Additional stability can be gained by choosing good start parameters in the first place.
Initially a fit without divergence is performed to obtain good values for the beam tilts.
These values are then used in a second level fit with the divergence correction. The
two divergence start parameters are determined by scanning a crude grid of the log-
likelihood space in these variables. After normalizing all log-likelihood scan values to
their mean again, the best divergence parameter set is used as start parameters of the
second level fit.

When using all these fit adjustments the convergence of all fits was restored. The di-
vergence parameters can be successfully extracted, although with varying accuracy of
between 10 µrad and 200µrad depending on the scenario. The influence of the diver-
gence correction on the extracted accuracy of the luminosity can be seen in figure 48.
The luminosity can be extracted with an accuracy of below 0.40± 0.17% for 1.5GeV/c

Figure 48: Relative precision of the fitted luminosity for various divergenc values using the correc-
tion procedure (left: plab = 1.5GeV/c; right: plab = 15GeV/c). 0.1mrad and 0.35mrad
magnitudes for the divergences were simulated. The diameter of the points are scaled
with an arbitrary factor to additionally visualize the severity of the deviation of the
luminosity between various divergences. µ(Lerrfit) is the mean statistical error on the
obtained luminosity from the fit for all scenarios.

and 0.16± 0.10% for 15GeV/c. Most problematic are the asymmetric divergence distri-
butions, in which one dimension has a stronger divergence than the other. Especially for
very small divergences below 0.1mrad, the divergence smearing algorithm becomes in-
effective and the fit is unable to estimate the divergence parameter. Therefore the stated
accuracy can be regarded as upper bounds.

When comparing the accuracy with the mean statistical error estimate of 0.17% from
the minimizer, the upper bound of 0.4% is rather tolerant.

The reason for this insensitivity is that the correction procedure operates on a grid,
which discretizes the models (see section 4.3). This introduces an artificial resolution
of the smearing algorithm and depends on the grid constant, here 26mrad/300 =

0.087mrad. The extreme case of a small divergence illustrates this nicely. In the cor-
rection algorithm the integrals of the divergence function for the bins defined by the
grid give the basis for the redistribution of the corrected elastic cross section. These
modifications vanish, once the divergence distribution is completely contained within a
single bin. For the 2D normal distribution used here, the changes by the divergence cor-
rection become negligible at the one σ threshold of divthres

σ = 0.043mrad. At this point
the minimizer loses the sensitivity to the divergence parameters and is unable to deter-
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mine them accurately. However for small divergences, the influence on the luminosity is
insignificant and the divergence correction is no longer required.

5.3 realistic scenarios

plab IPx IPy IPz σx σy σz tiltx tilty divx divy ∆L/L

/GeV/c /mm /µrad /%

1.5

0.2 -1.3 -0.1 0.8 0.5 3.1 160 140 160 140

0.49± 2.47
0.17 -1.29 0.0 0.8 0.8 3.5 160 138 11 44

-0.6 1.8 0.8 0.6 0.5 3.1 160 -10 90 110

−0.16± 0.23
-0.62 1.82 0.0 0.8 0.8 3.5 158 -14 1 97

4.06

-1.3 0.3 1.3 0.6 0.5 3.8 170 90 150 130

0.59± 0.29
-1.31 0.3 0.0 0.8 0.8 3.5 174 86 60 3

1.7 0.8 -1.4 0.4 1.1 3.7 -20 70 90 80

−0.25± 0.45
1.69 0.81 0.0 0.8 0.8 3.5 -23 67 147 166

-1.5 -2.0 -1.9 0.8 1.0 3.4 170 -100 80 150

−0.61± 0.45
-1.5 -2.01 0.0 0.8 0.8 3.5 172 -102 191 197

1.0 -0.0 -0.1 0.8 1.1 3.6 -20 -150 110 100

0.09± 0.29
1.01 -0.0 0.0 0.8 0.8 3.5 -30 -152 131 4

8.9
0.1 -0.8 1.9 0.5 1.2 3.5 30 -140 190 180

−0.20± 0.23
0.08 -0.79 0.0 0.8 0.8 3.5 21 -133 224 194

15.0

1.8 1.9 0.3 0.7 0.4 3.7 60 -190 60 90

−0.07± 1.86
1.75 1.9 0.0 0.8 0.8 3.5 61 -197 99 11

0.2 0.2 -1.3 0.8 0.4 3.3 -50 -30 80 140

−0.02± 0.12
0.15 0.2 0.0 0.8 0.8 3.5 -86 -14 - -
0.1 -1.2 -0.3 1.1 1.1 3.5 -140 60 100 140

−0.05± 0.12
0.05 -1.19 0.0 0.8 0.8 3.5 -144 35 - -

Table 5: Ten fit results of the luminosity determination and the IP determination procedure are
shown. Every pair of rows represents a scenario with a random generated accelerator
beam momentum plab, tilt tiltx,y, divergence divx,y and IP parameters IPx,y,z and σx,y,z.
The first row shows the generated or true values, while the second row gives the val-
ues for all of the determined parameters. In the last column the relative deviation to
the generated luminosity value with the statistical error obtained from the minimizer is
shown. The values for IPz, σx,y and σz for the fit model are assumed and not extracted
by the fit. Two fits at 15GeV/c failed initially, after which the divergence correction was
automatically turned off.

Previously the systematic influences of the accelerator beam and IP were studied in-
dependently. In reality these effects are coexistent and thus the robustness and accuracy
of the luminosity fit has to be studied. Ten data samples with random values for the IP
offset, IP distribution, beam momentum, tilt and divergence were generated. The param-
eters are randomly chosen from intervals that spread over the expected value ranges. For
the beam momenta only four distinct possibilities 1.5, 4.06, 8.9 and 15GeV/c are used,
at which the magnetic field maps are known with the highest accuracy. Each of these
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data sets resembles a realistic P̄ANDA runtime scenario and contains 10 · 106 DPM elas-
tic scattering events with a lower angular cut-off of 1mrad. Because the integral of the
elastic cross section in the LMD range changes with the beam momentum, the number
of reconstructed tracks also varies for the different scenarios.

Table 5 compares the results of the luminosity fit procedure with the generated pa-
rameters. For each scenario only a single fit was performed. The interaction point shift is
again determined with an accuracy of about 50µm using the procedure mentioned above.
The z-offset cannot be determined in this way and was assumed to be not present in the
fit model. Normal distributions with fixed widths of σx,y = 0.8mm and σz = 3.5mm
were used for the modeling of the interaction region.

The antiproton beam tilts and divergence are determined from the fit with varying
accuracy, so that they need to be studied more detail. Furthermore for two of the 15GeV
beam momentum cases the fits failed to converge and had to be rerun without the di-
vergence correction. Hence no divergence parameters are available for these scenarios.
Additional fits with three different settings were performed on the ten scenarios to study
the importance of including the tilt and divergence in the fit. Their influence on the
luminosity, as well as their accuracy and precision are analyzed. One setting is without
the divergence correction, another without the divergence correction and keeping the
tilts fixed to zero and finally also a fit setting with values of the divergence fixed to the
generated values. Table 6 compares the results of all fit settings.

case
plab ∆tiltx ∆tilty ∆L/L

/GeV/c /µrad /%

normal

1.5
0± 3 −2± 3 0.49± 2.47

−2± 3 −4± 3 −0.16± 0.23

4.06

4± 4 −4± 4 0.59± 0.29
−3± 4 −3± 4 −0.25± 0.45
2± 4 −2± 4 −0.61± 0.45

−10± 4 −2± 4 0.09± 0.29
8.9 −9± 8 7± 9 −0.20± 0.23

15.0
1± 21 −7± 20 −0.07± 1.86

−36± 20 16± 20 −0.02± 0.12
−4± 20 −25± 20 −0.05± 0.12

no div.

1.5
0± 3 −2± 3 0.53± 0.18

−3± 3 −3± 3 0.04± 0.18

4.06

4± 4 −4± 4 0.66± 0.23
−1± 4 −2± 4 0.64± 0.23
0± 4 −5± 4 0.74± 0.23

−10± 4 −2± 4 0.43± 0.23
8.9 −11± 9 −1± 9 0.25± 0.19

15.0
3± 20 −7± 20 −0.07± 0.12

−36± 20 16± 20 −0.02± 0.12
−4± 20 −25± 20 −0.05± 0.12
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no tilt & div.

1.5
- - −0.18± 0.17
- - 1.87± 0.17

4.06

- - 1.17± 0.23
- - 0.55± 0.23
- - −0.28± 0.23
- - 1.01± 0.23

8.9 - - 0.44± 0.19

15.0
- - −0.06± 0.12
- - −0.01± 0.12
- - −0.02± 0.12

with gen. div.

1.5
0± 3 −3± 3 −0.45± 0.17

−4± 3 −4± 3 −0.40± 0.18

4.06

3± 4 −6± 4 −0.06± 0.23
−2± 4 −2± 4 0.36± 0.23
0± 4 −2± 4 0.23± 0.23

−10± 4 −1± 4 0.01± 0.23
8.9 −10± 8 5± 8 −0.10± 0.19

15.0
2± 20 −7± 20 −0.07± 0.12

−35± 20 16± 20 −0.04± 0.12
−2± 20 −23± 20 −0.07± 0.12

Table 6: Influence of various fit settings on the beam tilts and luminosity. In addition to the nor-
mal case identical to the results shown in table 5, the results of three other cases are given.
These are luminosity fits without divergence correction, another with no divergence cor-
rection including the fixing of the beam tilt parameters to zero and finally a fit setting
in which the divergence parameters a set to the generated values. The residuals for the
two tilt parameters and the relative luminosity with respect to the generated value are
denoted.

The accuracy of the tilt has to be classified into the lower and higher beam momenta.
For all kinds of fits the tilt is extracted with an accuracy below 10 µrad for momenta
up to about 4.06GeV/c. Above, larger deviations to the generated tilts of up to 40 µrad,
as well as a lower precision, are evident. An identical behavior was already visible in
the independent beam tilt study. The reason is the flattening of the elastic cross section
in the angular range of the LMD. Because of this missing structure in the cross section
distribution, the influence from the beam tilts decreases.

When comparing the determined tilt values from all fit settings, a high extraction
stability is proven. In general the extracted luminosities are statistically compatible with
the generated values and the deviations for the relative difference are below the percent
level. Only for the case of fixing the tilts to zero, one can see larger deviations of up to
1.9% for the extracted luminosity. Therefore it is not recommended to fix the beam tilts,
unless the values are well known from other measurements.

For the divergence also a separation of the results in the lower and higher beam mo-
mentum range has to be made. From the uniformity of the elastic cross section in the
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LMD region, also a minor influence of the divergence on the extracted luminosity at
larger beam momenta can be concluded. This fact is nicely supported from the results
in table 6 and 5. Even though the divergence is determined poorly for all scenarios, the
deviations of the luminosity relative to the generated value become smaller at higher
antiproton momenta. However in accordance with section 5.2.4, the low accuracy of the
determined divergence is to be expected.

The dependence of the divergence on the extracted luminosity accuracy increases in
the lower momentum sector for momenta of about 4.06GeV/c and below. An accurate
extraction of the divergences is difficult for present divergences of 200µrad and below.
This was already discussed in section 5.2.4. Table 6 shows that comparable results are
achieved, when not using the divergence correction. Then also the statistical error esti-
mation for the extracted luminosity is more stable. A higher accuracy for the luminosity
can be achieved in the low beam momentum case, when using precise divergence values,
for example from measurements by the HESR.

The single fit results shown in table 5 indicate that the luminosity is determined with
an accuracy below the percent level. This is concluded from the largest deviations of
approximately 0.6% in the 4.06GeV/c case, which posses estimated statistical errors
of about 0.29 and 0.45%. A more quantitative statement on the accuracy and also the
correctness of the error estimation can be made, when performing a systematic study.

For this purpose the scenario with the largest deviation in the luminosity of −0.61%
was selected3. The complete data of this scenario was bootstraped to yield 120 samples
each containing 70% of the data. All of these samples are fitted and the extracted pa-
rameters are compared with the generated values. The residuals for the parameters of
the luminosity fit are shown in figure 49. Except tilty all parameters show a bias. Most
importantly the accuracy for the extracted luminosity lies between 0.33%-0.49% with a
95% confidence level. Overall the minimizer estimates the statistical errors reasonably
well. This can be seen when comparing the mean estimated errors with the RMS value
of the residuals. More specifically for the luminosity, a slight overestimation is present.
In summary it can be concluded that the luminosity is determined with an accuracy of
below 0.5% in a stable manner.

3 This corresponds to the fifth scenario, counting from the top of the table
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Figure 49: Residuals of all luminosity fit parameters of the 3rd 4.06GeV/c realistic scenario from
table 5 determined from 120 bootstrapped data samples. In the first row is the residual
of the relative luminosity. The second row shows residuals of the tiltx,y parameters,
while the residuals for divx,y are in the last row.

5.4 background sources

Further systematic deviations of the luminosity can arise from background sources. Even
though the background was studied in full detail in [98], each category is discussed
briefly in connection with the LuminosityFit framework. The background can be classi-
fied into three categories, the inelastic, elastic and secondary background.
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inelastic background : The inelastic background arises from all events in which
the antiproton does not scatter elastically on the target, but undergoes an inelas-
tic reaction. Because there is no PID information available for the particle tracks
reconstructed by the LMD, all of the inelastic channels are possible background.
This might seem like an immense source of background, fortunately the kinematic
phase space of the inelastic and elastic channels have very little overlap. Hence the
majority of particles from inelastic reactions are deflected into other directions by
the magnetic fields. Studies with the DPM generator showed that only 5% of the
particles remain, which pass through the LMD [98, p.141]. After the two stage track
filtering of the LMD track reconstruction software, this background is reduced to
0.2%.

This fraction of inelastic background particles carries a similar momentum as the
elastically scattered antiprotons and they cannot be distinguished. Further reduc-
tion is possible with the additional term to the elastic cross section in equation 13,
which resembles the inelastic contribution of the total cross section

dσ

dt
=
dσel

dt
+
B

S
· dσinel

dt
. (30)

The factor BS is a ratio of the inelastic background with respect to the elastic sig-
nal cross section. Such an inelastic background function is already forseen in the
LuminosityFit software, but this has to be implemented. The parameterization of
the inelastic background is a very difficult task. Measurements from the KOALA
experiment are helpful. However, due to the low remaining background fraction of
0.2%, the influence on the luminosity extraction is rated as uncritical.

elastic and secondaries background : Another rather unexpected background
source are elastically scattered antiprotons at larger angles, which are reflected on
the beam pipe and are then successfully reconstructed by the LMD. Secondary par-
ticles are created by reactions of the particles and material along the path to the
LMD, mostly created close to the LMD itself. Particles for either of these two cate-
gories mostly lie within a different region of the kinematic space and can therefore
be removed with high purity and efficiency by the two stage track filtering parts
of the LMD track reconstruction software. In total the background from these two
sources can be reduced to about 1% and is mostly elastic [98, p.156]. Furthermore,
since these particles are also produced in simulations used for the generation of the
2D angular efficiency, this information is also contained within the efficiency and is
therefore automatically corrected by the luminosity fit. This of course assumes the
simulations resemble the physics realistically and that the modeling of the LMD is
perfect. In conclusion the systematic deviation on the luminosity is expected to be
well below the percent level and can be neglected.

more background sources : An additional source of background can arise from
noisy pixels that create ghost tracks. Since the noisy pixel rate corresponds to a
single noise pixel per track reconstruction time frame [20, p.87], this background
source is negligible. Furthermore the option of performing simulations with noisy
pixels is available, which allows for corrections via the luminosity fit.
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5.5 discussion & outlook

It was shown that for an ideal beam scenario, regarding the IP and antiproton beam
momentum distribution, the LuminosityFit software is able to extract the luminosity
with an accuracy of below the permille level. Also the cross section, corrected with the
acceptance and detector resolution, is able to describe the angular distribution of the
reconstructed tracks perfectly, as no systematic deviation between them is visible.

In addition the influence of the IP distribution and displacement, as well as the ac-
celerator beam tilt and divergence, were studied systematically. If not correcting for the
distribution of the interaction point, excluding a mean displacement, a systematic error
of about 0.4% is present for the lowest beam momentum of 1.5GeV/c. At higher beam
energies the influence diminishes quickly and no systematic deviation was noticeable
at 15GeV/c. Even though the IP distribution cannot be determined by the LMD, an ex-
pected distribution can be used to obtain corrected results that push the accuracy of the
luminosity fit again below the permille level. Later the P̄ANDA experiment can deliver
IP distribution information, which shall be used for a realistic parameterization.

Despite not being able to measure the mean displacements of the IP in beam direction
(z-direction), it is possible to extract the information in x and y dimension with an ac-
curacy of 50µm. When not correcting for the IP shifts, the deviation of the determined
luminosity is approximately 2% for realistic displacements of about 1.5mm and can be
as large as 10% for a very dramatic scenario of a 5mm IP-offset. Again the effect in the
high momentum case is much less profound. Applying the correction procedure the orig-
inal accuracy of the determined luminosity below the 0.1% level is recovered. Further
optimizations such as exploiting the missing IPz information are possible, but were not
pursued because the accuracy is already sufficient.

Analogously the influence of the accelerator beam tilt was studied systematically. At
first no correction procedures were applied for the various data samples with tilted an-
tiproton beams. Also the systematic shifts on the extracted luminosity are most dramatic
for the 1.5GeV/c case. Here the systematic deviations lie between 1.5% for expected
beam tilts and 5.5% for extreme scenario tilts of 0.5mrad. For the 15GeV/c case the
deviation of the extracted luminosity is still below 0.3%. Because the tilt-correction is
simply a coordinate transformation, the beam tilt parameters are extracted from the fit
with high accuracy of 3µrad and 30µrad for 1.5GeV/c and 15GeV/c respectively. Fur-
thermore the accuracy of the luminosity again goes below 0.1% after this correction.

The studies of the beam divergence show similar results. When applying no correc-
tions the systematic deviations range from 1.5% for realistic beam divergences to 5.5%
for the extreme case at 1.5GeV/c. The systematic error at 15GeV/c beam momentum
is less severe and lies below 0.2%. A normal distribution parameterization was used
for the correction procedure, while the standard deviations are promoted to fit parame-
ters. The conclusion here is that divergences are determined best for large divergences
with an accuracy of about 20 µrad for the 1.5GeV/c case. However the accuracy de-
creases quickly, the stronger the asymmetry in the divergence distribution becomes. In
addition small beam divergences are difficult or impossible to extract in general, due to
the discretization introduced by the correction algorithm. At higher beam momenta the
beam divergence cannot be extracted. Despite the inaccurate extraction of the divergence
parameters, the upper bounds of the systematic deviations of the luminosity after the
correction are 0.4% and 0.15% for the two respective extreme beam momenta.
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Finally realistic scenarios were studied, that combine all of the above IP and accelerator
beam properties. Here also intermediate momenta of 4.06 and 8.9GeV/c were examined.
It was shown that the determination procedure is robust and delivers the luminosity
with an accuracy of about 0.5% for beam momenta up to 5GeV and 0.1% for the high
momentum regime. The accuracy and momentum dependency of the IP offset, beam tilt
and divergence are all in accordance with the individual systematic studies. In general it
is recommended to use the LuminosityFit software with all correction procedures. How-
ever for higher beam momenta of about 9GeV and above, the dependence of the beam
divergence is negligible and the correction is ineffective. In consequence the divergence
correction is not necessary and can be omitted in this case. When switching off the diver-
gence correction the statistical error estimations from the minimizer also become more
reliable. Furthermore the fitting procedure is less stable for smaller divergences of below
200µrad, due to the discretization of the fit model. Improved luminosity results can be
obtained in the low momentum sector when using accurate divergence parameters and
fixing these in the luminosity fit. The HESR could supply this information.

Further systematic deviations in the determined luminosity can arise from various
background sources and was studied in [98]. The background reduction during the track
reconstruction is able to minimize the influence. Additionally two background sources
are automatically handled by the efficiency correction procedure. The remaining inelastic
background contribution amounts to 0.2% [98, p.156]. Therefore the luminosity would
be slighly overestimated by this fraction. To further minimize this contribution a corre-
sponding correction term is already forseen in the luminosity fit model.

Taking together the systematic effects presented here, the accuracy of the luminosity is
dominated by the uncertainty of the hadronic elastic scattering part of the cross section
of up to several percent. A more precise parameterization is of need and will be carried
out by the KOALA experiment. With all remaining effects an upper bound of 0.5% for
the luminosity accuracy at beam momenta of about 5GeV/c and below is reached. In
the higher momentum range the accuracy is on the 0.1% level. The statistical error on
the luminosity depends on the dataset size. For the realistic scenarios the reconstructed
dataset sizes are different, and the statistical errors lie between 0.1%-0.5%. This corre-
sponds to roughly 3 seconds of data taking for the low beam momentum case, and 30
seconds of data taking for the high momentum case. For future studies, the influence
of the magnetic fields and the detector geometry on the accuracy of the luminosity are
interesting and should be examined in detail.





6
H E L I C I T Y F O R M A L I S M I N T H E C o m P WA
F R A M E W O R K

When trying to extract information on bound states produced in particle reactions the
partial wave expansion is a powerful method, which gives access to a broad spectrum of
particles, since the theoretical formulation is general. Furthermore the extraction of the
spin and parity of states, next to their mass and width, is possible.

However more than one theoretical description for such processes exist and the com-
parison between the results of these various models on data-sets is of high value, as it
can provide information on their interpretation, accuracy, limits, etc. The Common Par-
tial Wave Analysis (ComPWA) framework can achieve such comparisons with its high
modularity [23]. By providing this project with the helicity formalism, a first general and
well established model is made available and serves as a foundation for diverse analysis.
This allows the study of the isoscalar states f0, f2, f4 in the radiative decay J/Ψ→ γπ0π0.
In the scope of this thesis, the analysis of BESIII data for this process using the helicity
formalism is prepared, starting with the implementation of the helicity formalism itself.
For this channel a model independent study [23] as well as an analysis in the radiative
basis [51] was already performed.

The implementation of the helicity formalism in ComPWA is covered in this chapter.
With the use of an expert system, a novel approach for the realization is presented. The
extensive validation of the helicity formalism implementation is shown in the next chap-
ter. This chapter begins with introduction of the theoretical fundamentals of the partial
wave expansion and the helicity formalism.

6.1 the method of partial waves

In order to probe the structure of particles, interaction with them, in form of scattering
experiments, is indispensable. All of the interesting physics information is contained
within the scattering matrix S. Often it is convenient to work in the basis of free par-
ticle states where all of their quantum numbers are discrete, except their momentum
pi and energy Ei [91, p.151f]. Defining the discrete quantum number free particle state
as
∣∣ΦE,p,N

〉
, where all the discrete quantum numbers are absorbed in the label N, the

S-matrix can be expressed as

〈Φ−
E ′,~p ′,N ′ |S|Φ

+
E,~p,N〉 = δ(E ′ − E)δ3(~p ′ − ~p)SN ′,N(E,~p). (31)

|Φ+
E,~p,N〉 and 〈Φ−

E ′,~p ′,N ′ | are the in and out states defined at times t → −∞ and t → ∞
with respect to the interaction. SN ′,N is a unitary matrix and is related to the matrix
MN ′,N, which contains the complete interaction information, by

SN ′,N = δN ′,N − i2πMN ′,N(E,~p). (32)

81
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When the operator M is rotation invariant, it commutes with the angular momentum
operators J2 and Jz, and the transition amplitude A := Mfi = 〈Φ−

E ′,~p ′,N ′ |M|Φ+
E,~p,N〉 can

be expanded in terms of the orbital angular momentum L.
Especially useful are the two-particle states, which are discussed with the example of

the two-body decay

1 2 3.

This derivation follows the definitions and conventions of reference [114]. Consider the
decay of particle 1, with spin J and spin projection m1 into two particles with spin s2
and s3 and projections m2 and m3. All of the spin projections are defined with respect to
an arbitrarily chosen quantization axis. The state of particle 1 at rest is denoted by |Jm1〉.
This also corresponds to the center-of-mass system for the particles 2 and 3, in which
they have opposite momenta ~p2 = −~p3 with the direction given by the angles (θ,φ).
Their free particle state is defined as |θφm2m3〉. The spin quantum numbers, and others
such as the electric charge, isospin etc., are now dropped for reasons of convenience.
Previously they were included in the label N.

The amplitude of the two-body decay can be written as

AP(s, θφ;m1,m2,m3) = 〈θφm2m3 |M(s) | Jm1〉
= 〈θφm2m3 | JMLS〉 〈JMLS |M(s) | Jm1〉
∼
∑
L,S

(s2m2, s3m3|SmS)(LmL,SmS|Jm1)

· YmL

L (θ,φ) · aJL,S(s) (33)

with

〈θφm2m3 | JMLS〉 =
∑
L,S

(s2m2, s3m3|SmS)(LmL,SmS|Jm1)Y
mL

L (θ,φ)

and

aJL,S(s) = 〈JMLS |M(s) | Jm1〉 .

Here |JMLS〉 denotes the two particle state with total spin J and spin projection M. To-
gether with the center-of-mass energy

√
s, the direction of flight of the decay products

(θ,φ) defines the kinematics of the decay. The normalization was dropped here as it is
not important when only the kinematic distribution of the transition amplitude is of in-
terest. The spins of the two decay products s2, s3 form the total intrinsic spin S using the
Clebsch-Gordan coefficient (s2m2, s3m3|SmS). In similar fashion this spin S can be cou-
pled with the angular momentum L to the total spin of the two particle state J = L⊕ S.
Since the spin projections of the initial and final state are given, the spin projections
mS = m1+m2 and mL = mJ−mS are defined by angular momentum conservation and
hence their summation index is dropped.

Naturally there is a splitting of the angular part YmL

L (θ,φ) and the dynamical part
which is encoded in the canonical matrix elements aJL,S(s). As the latter contain the
interesting information from a physical point of view, their properties are in the focus of
attention.
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6.2 helicity formalism

In the helicity basis a particle state is defined by its spin J and the helicity λ, which
quantizes the spin along the direction of flight. Because of the invariance of the helicity
operator λ = ~J · ~p

|~p| under rotations and boost along ~p
|~p| , this formalism is also suitable for

relativistic problems. Returning to the two-body decay, the two particle final state is now
defined by the helicities λ2 and λ3 as |Jm1λ2λ3〉. They are correlated to the canonical two
particle states by

|Jm1λ2λ3〉 =
∑
LS

(
2L+ 1

2J+ 1

)1/2
(L0Sλ|Jλ)(s2λ2s3-λ3|Sλ) |Jm1LS〉 (34)

|Jm1LS〉 =
∑
λ2λ3

(
2L+ 1

2J+ 1

)1/2
(L0Sλ|Jλ)(s2λ2s3-λ3|Sλ) |Jm1λ2λ3〉 (35)

and the decay amplitude in the helicity basis is given by

AH(1→ 23) = 〈θφλ2λ3 |M(s) | Jm1〉
=

∑
λ ′2λ

′
3

〈
θφλ2λ3

∣∣ Jm1λ ′2λ ′3〉 〈Jm1λ ′2λ ′3 ∣∣M(s)
∣∣ Jm1〉

=

(
2J+ 1

4π

)1/2
D∗Jm1,λ(φ, θ, 0)FJλ2λ3(s) (36)

with

〈θφλ2λ3|Jm1λ ′2λ ′3〉 =
(
2J+ 1

4π

)1/2
D∗Jm1,λ(φ, θ, 0)δλ ′2λ2δλ ′3λ3

and

FJλ2λ3 = 〈Jm1λ2λ3 |M(s) | Jm1〉 .

The Wigner-D function D∗Jm1,λ(φ, θ,ψ = 0) with λ = λ2 − λ3 carries the angular in-
formation of the decay, with a conventional choice of the third Euler angle ψ = 0 [115].
Meanwhile the information of the interaction is captured within the helicity amplitude
FJλ2λ3(s). It is rotation invariant and only depends on the helicities and the total spin
J [114, p.16]. It should be noted that both the spin projection of the initial state m1 and
the helicities of the final state particles are regarded as known quantities in this decay
amplitude, hence there is no sum over these variables.

For every two-body decay the helicities of the daughters 2 and 3 are restricted by

J > |λ2 − λ3|. (37)

If parity is conserved in the decay, then

FJ-λ2-λ3
(s) = η1η2η3(−1)

s2+s3−JFJλ2λ3(s) (38)

with the intrinsic parities denoted as ηi. This relation reduces the number of independent
amplitudes by a factor of almost 2. For the special case of a decay into two particles with
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λ2 = λ3 = 0, the possibility of a vanishing amplitude FJ00 = −FJ00 → FJ00 = 0 can exist. In
the following equations the variable of the center-of-mass energy

√
s is dropped in the

helicity amplitudes for reasons of convenience.
By definition the decay amplitude is independent of the projection of the angular

momentum between the two product particles mL [116], as its operator ~L = ~r × ~p is
perpendicular to the momentum and therefore the quantization axis. This also becomes
noticeable when comparing equations 33 and 36. The sum over LS has vanished in the
latter and is included in the amplitude FJλ2λ3 . In other words an amplitude in one basis
is a linear combination of amplitudes of the other basis and vice versa [114, p.11]. Using
equations 34 and 35, equations 36 and 33 give the linear combinations

FJλ2λ3 =
∑
LS

(
2L+ 1

2J+ 1

)1/2
(L0Sλ|Jλ)(s2λ2s3-λ3|Sλ)aJL,S (39)

and

aJL,S =
∑
λ2λ3

(
2L+ 1

2J+ 1

)1/2
(L0Sλ|Jλ)(s2λ2s3-λ3|Sλ)FJλ2λ3 . (40)

Also the number of amplitudes in a specific transition is the same for both bases [116,
p.6].

Compared to the canonical basis, the main advantage of the helicity formalism is that
decay amplitudes can easily be extended to more complex decays with a larger number
of final state particles. Using the assumption of the isobar model, which asserts that N
particle decays are described by a number of successive two-body decays, the full decay
into a three body final state is modeled as

1 2 3

4 5

and results in the decay amplitude

A(1→ 345) = 〈θ4φ4λ4λ5 |MB | s2m2 = λ2〉 〈θ2φ2λ2λ3 |MA | Jm1〉

=
∑
λ2

(
2J+ 1

4π

)1/2(
2s2 + 1

4π

)1/2
D∗Jm1,λ2−λ3

(φ2, θ2, 0)FJA,λ2λ3

D∗s2m2,λ4−λ5
(φ4, θ4, 0)Fs2B,λ4λ5

. (41)

The angles φ2, θ2 are measured in the rest frame of 1 with respect to an arbitrarily
chosen quantization axis for m1. A spherical coordinate system is used, while θ is the
polar angle1 and φ the azimuthal angle. On the contrary the angles φ4, θ4 are defined in
the rest frame of particle 2 not to an arbitrary axis, but with respect to the momentum
direction of particle 2 in the rest frame of particle 1 so that m2 = λ2. These angles are
sketched in figure 50. A sum over all allowed intermediate state helicities according to
the selection rule formulated in equation 37 is performed, in this example λ2. Similar
to the extension of equation 36 to 41, the procedure can be applied to decays with an
arbitrary number of final state particles.

1 Also known as the helicity angle in literature.
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Figure 50: Sketch visualizing the definition of the angles for a sequential two-body decay in the
helicity formalism.

So far it was assumed that the decay proceeds only over a single intermediate reso-
nance, however in reality there can be several and equation 41 is extended to

A(1→ 345) = 〈θ4φ4λ4λ5 |MB | s2m2 = λ2〉 〈θ2φ2λ2λ3 |MA | Jm1〉

=
∑
R,s2,λ2

(
2J+ 1

4π

)1/2(
2s2 + 1

4π

)1/2
D∗Jm1,λ2−λ3

(φ2, θ2, 0)FJA,λ2λ3

D∗s2m2,λ4−λ5
(φ4, θ4, 0)FR,s2

B,λ4λ5
. (42)

Next to the sum over the spin s2 of the intermediate resonance, an additional summa-
tion index R is introduced to allow for multiple resonances of the same spin quantum
numbers. In general this is not required as the amplitude FR,s2

B,λ4λ5
could describe an ar-

bitrary amount of states as long as their spin properties are equal. Nevertheless such a
splitting into individual resonances is common and convenient, and valid as long as the
resonances are well separated. In order to compare the model to measured angular final
state distributions only the intensity of the decay amplitude

I =
2J+ 1

4π

2s2 + 1

4π

∑
RR ′s2s2 ′λ1λ2λ2 ′λ3λ4λ5

D∗Jλ1,λ2−λ3
(φ2, θ2, 0)DJλ1,λ2 ′−λ3

(φ2, θ2, 0)FJA,λ2λ3
F∗JA,λ2 ′λ3

D∗s2λ2,λ4−λ5
(φ4, θ4, 0)Ds

′
2

λ2 ′ ,λ4−λ5
(φ4, θ4, 0)FRs2B,λ4λ5

F
∗R ′s2 ′
B,λ4λ5

(43)

is relevant. In general the initial and final state particles can have several helicity configu-
rations so that additional sums over their possible helicity orientations appear. However
these sums are incoherent in contrast to the intermediate states, which are summed co-
herently [116, 117].

The parameterization of the helicity amplitudes FA, FB are the main interest, as they
contain the physics information about the interaction. In general each such amplitude

Fi = gi ·Hi

consists of a dynamical function H, describing the interaction, and a complex parameter
g, composed of the magnitude A and phase φ. While the magnitude gives the general
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strength of the amplitude, the phase adjusts the interference among different amplitudes.
For a single resonance far from any open thresholds, the Breit-Wigner formula

H(s) =
mRc

2 · Γ
(mRc2)2 − s− i

√
s · Γ (44)

is a good approximation for the dynamical function and can be derived from almost the
unitarity condition alone [9, p.563f]. Here mR denotes the mass of the resonance, Γ its
width and

√
s the center-of-mass energy of the two decay product particles. When open

thresholds are near, the Breit-Wigner parameterization has to be modified, also known
as the Flatté parameterization [9, p.563f]. For more than a single resonance in a single
partial wave or amplitude, the sum of Breit-Wigner functions is in general an incorrect
description as it violates unitarity. Nevertheless it can still be used in case the resonances
have negligible overlap. However it is preferable to use other formalisms such as the
K-matrix formalism [9, p.567f].

For a mathematically unique description and physics reasons several parts of the com-
plex parameters gi can be fixed. At first all except one complex parameter can be fixed
for each amplitude product as they are mathematically redundant. Additionally for each
coherent sum a global phase can be fixed as only the intensity can be observed, or in
other words, only relative phases can be measured. In case of parity conservation, two
complex parameters become related and the total number of independent parameters is
further reduced. Finally one global magnitude can be fixed as the unbinned log likeli-
hood estimator is insensitive to global scaling (see appendix A.1.2), therefore stabilizing
the fitting procedure.

Now that the basic theoretical knowledge on the helicity formalism is complete, its
implementation in the ComPWA framework can be discussed.

6.3 helicity formalism implementation in ComPWA

ComPWA is a flexible and modular partial wave analysis (PWA) framework for various
use-cases [118]. In contrast to most other available PWA frameworks or tools, ComPWA
will not solely be used by a single experiment, but also for various other experiments,
to provide a common tool which is stable, efficient and provides comparable results. It
even allows combined fitting of data from different experiments. This is possible due
to its high modularity, that was achieved by thorough planning and discussions with
experts from different experiments and the testing of different technologies. Also instead
of specializing the modules for a specific experiment the focus lies on generality of their
implementation. The high standard that was required in the software design lead to a
good foundation for the framework [23].

An overview of the ComPWA design is illustrated in figure 51. Quite naturally the
framework consists of the following main categories of modules. The data modules han-
dle experiment specific information, as for example data input and output, but also data
generation. All physics models and formalisms, e. g. the helicity formalism, are con-
tained in the physics category. When validating a theory, a comparison of the physics
model with a measured data set has to be made, which is performed by estimator mod-
ules. Finally the optimizer modules are responsible for finding the optimal values of free
parameters of a physics model to best match the observations. In general each of these
categories consists of various modules.
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Figure 51: Modular design overview of the ComPWA project [118].

The helicity formalism of ComPWA belongs to the category of physics modules and is
based on three sub-modules, the HelicityAmplitude, the DecayTree and the Dynamical-
Functions. They are depicted in the overview figure 52. The DecayTree and HelicityAm-
plitude modules are the core constituents of the helicity formalism implementation. In
the first module, basic information about the reaction which is to be analyzed, such as
the initial and final state, is processed in the ComPWA expert system into decay trees.
Each decay tree contains all of the relevant physics information of the reaction for a
specific wave, representing a single element of the sum in equation 42. The HelicityAm-
plitude module uses the decay trees to create the corresponding amplitudes. During
the construction of an amplitude, the DynamicalFunctions module is used to obtain re-
quested parameterization of the dynamical parts from a selection. Currently only the
Breit-Wigner parameterization is implemented. Both of the core modules are discussed
in more detail below.

6.3.1 Helicity Amplitude Module

Following the high modularity and flexibility standard of ComPWA, the HelicityAmpli-
tude module consists of several components, which belong to one of the two categories.
In the first category the individual amplitude classes with varying granularity, ranging
from the lower level two-body decay amplitude to the high level coherent amplitude
are defined. The second category focuses on the automated construction of the various
amplitudes. Altogether there are four levels in this amplitude hierarchy.

two-body decay amplitude : It describes the decay of a mother particle into two
daughter particles. It is composed of an angular and a dynamical amplitude and a
complex parameter, that specifies the strength of the decay (see equation 36). The
angular amplitude is proportional to the Wigner D-function while the dynamical
amplitude is generated by a factory within the DynamicalFunctions module. Cur-
rently only the Breit-Wigner parameterization as in equation 44 is used.
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Figure 52: Overview of the ComPWA helicity formalism modules.

sequential two-body decay amplitude : This class defines a sequence of two-body
decays, in form of a list of two-body decay amplitudes.

topology amplitude : Every two-body decay of a sequential decay is considered as
a decay node. The decay topology is defined by assigning a list of the downward
connected final state particles to every decay node. Here, downward connected
means only going along the links to daughters and not upwards to the mother.
Hence, for a three particle final state there are three decay topologies. In the special
case of having two undistinguishable final state particles, the number of topologies
is reduced to two. Using the J/ψ→ γπ0π0 decay as an example, they are

1.
J/ψ X γ

π0 π0

2.
J/ψ X π0

γ π0.

Each sequential two-body decay amplitude belongs to one of the possible decay
topologies. This allows the topology amplitude to group together all sequential
decay amplitudes with the same topology. Since the decay topologies have a unique
set of kinematic variables for all of its decay nodes, the construction and evaluation
of the full intensity can benefit from this. For example all sequential two-body
decay amplitudes with the same topology can be evaluated with the identical set
of kinematic variables.

coherent amplitude : Ultimately every decay process from an initial state to a final
state is described by an intensity according to formula 43, the coherent amplitude.
The coherency of this amplitude can be adjusted completely to the users needs.

An overview of this amplitude hierarchy is also depicted in figure 53.
The components belonging to the second category of the HelicityAmplitude module

are responsible for the automated construction of the amplitude hierarchy for the re-
quested decay from decay trees. The decay trees are created by the DecayTree module
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Figure 53: Overview of helicity amplitude hierarchy in ComPWA. On the lowest level is the two-
body decay amplitude. A sequential two-body decay amplitude consists of multiple
two-body decay amplitudes. The topology amplitude groups together sequential two-
body decay amplitudes, based on their decay topology. Finally the coherent amplitude
defines the intensity.

described in the next section. Each decay tree contains the complete set of information
required to create a sequential two-body decay, which is realized by the topology factory.
The factory also sorts the created sequential two-body decays into the appropriate topol-
ogy group, the topology amplitude. Within the factory connections between complex
helicity amplitudes Ui (dynamical part times complex parameter) are established. This
takes care of parity conservation, as stated in equation 38. Finally the coherent amplitude,
which corresponds to the intensity according to equation 43, can be constructed from a
list of topology amplitudes.

Decay Tree Initializes Topology Amplitude Factory
Creat

es

Coherent Amplitude

Topology Amplitude

Initializes

Figure 54: Overview of the creation of coherent amplitudes in ComPWA.

Figure 54 summarizes this workflow. The coherent amplitude is based on the ComPWA
function tree [23], which harmonizes with the construction of the intensity while ensur-
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ing a high fit performance. According to the principle of ComPWA the construction of
the intensity is implemented in a flexible way. Recall that the intensity is an incoherent
sum of parts, while each part is a coherent sum of sequential two-body decay amplitudes.
Each particle or state occurring in the amplitudes is assigned with a coherency flag. The
assessment if two sequential two-body decay amplitudes are summed coherently, now
becomes trivial: For two sequential two-body decay amplitudes, all particles flagged as
incoherent (not coherent) have to match in both amplitudes for all quantum numbers. In
this way coherency is treated individually and generally and is easily comprehensible at
the same time.

Coherent Amplitude KinematicsData Storage

DataPoint

Event

Retrieves kinematic 
variables

Figure 55: Overview on the evaluation procedure for a Coherent Amplitude in the helicity for-
malism in ComPWA.

The details of the evaluation of the intensity is shown in diagram 55. When the coher-
ent amplitude is evaluated, the function tree decides which parts have to be recalculated,
based on the changes in its leaves. By changing the depth of the function tree, the level of
caching can be adjusted in an elegant way. The leaves are on the one hand the parameters
of the model, such as masses and widths of resonances and their strengths. Another type
of leaves are the kinematic variables, such as invariant masses and decay angles. While
the former are direct parameters of the intensity, the latter are domain variables and are
retrieved from the data storage. It contains the kinematic variables of all events required
from all occurring two-body decays. As an event usually consists of a set of four mo-
menta matching the final state particles, a corresponding kinematics class has to convert
this general information into all of the kinematic variables needed by the coherent am-
plitude first. These kinematic variables are contained in the data point structure. In the
helicity formalism the relevant kinematic variables are the helicity angles and invariant
masses for each two-body decay. They are calculated by the appropriate boosts and ro-
tations, so that the previously described conditions are satisfied. Because the kinematics
class possesses the information about the occurring topologies, only the necessary vari-
ables are calculated. These variables have to be calculated only once in a minimization
process. With the help of the ComPWA function tree, the caching of these variables is
also performed automatically. For the example of the J/ψ→ γπ0π0 decay, the two decay
toplogies result in the two following possible final state particle combinations.

1. J/ψ : [γπ01π
0
2]

X : [π01π
0
2]

2. J/ψ : [γπ01π
0
2]

X : [γπ01], [γπ
0
2]

Due to the indistinguishable π0, topology 2 has two valid combinations of invariant
masses for the decay of the intermediate state X that are used in the evaluation: [γπ01]
and [γπ02]. Unique indices are assigned to the indistinguishable final state particles in
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order to detect such combinatorics. The coherent amplitude automatically handles this
matter, by evaluating the amplitude with both sets of kinematic variables

(D · F)fsc = g ·
(
D(θγπ01

,φγπ01)H(m
2
γπ01

) +D(θγπ02
,φγπ02)H(m

2
γπ02

)
)

.

6.3.2 Decay Tree Module and ComPWA Expert System

As stated above the decay trees are a requirement in order to construct a coherent am-
plitude instance that resembles the helicity intensity (see figure 54). Similar to the Helic-
ityAmplitude module the decay trees are constructed by a decay tree factory, which is ini-
tialized with all necessary decay information from the decay configuration. An overview
of the decay tree creation process is shown in figure 56. Optionally the decay configura-

XML
ConfigReader

Decay
Configuration

DecayTree
Factory DecayTreeInitializes Creates

Read

Write

Figure 56: Flowchart of the creation of decay trees.

tion can be loaded from or stored to a file. The decay configuration contains the complete
physics information of the decay process that are grouped into two parts:

• All appearing particles, which are assigned with a unique id, all unchangeable
quantum numbers (here everything except helicity), as well as an identifier for
the dynamical amplitude description. This identifier is used by the factory in the
DynamicalFunctions module to generate the appropriate model.

• A list of decay trees, that consist of multiple decay nodes. Each decay node consists
of a mother and daughters, and specifies the remaining quantum numbers (here
the helicity), plus a complex phase. A decay node is uniquely identified by the
quantum numbers of the mother and daughters and their helicities. The nodes are
connected to each other via their unique ids.

There are no restrictions on the complexity of the trees from the implementation, hence a
decay tree node could in general be directly connected to any number of daughter nodes.
The restrictions of two-body decays in the helicity formalism arises from the isobar model
assumption.

At last the origin of the configuration information remains to be discussed. It is ob-
tained as advice from the novel ComPWA expert system, based on C Language Inte-
grated Production System (CLIPS) [119]. An expert system consists of two main compo-
nents, the knowledge base and the inference engine. The knowledge base of the expert
system is condensed into the former component as a set of rules. A rule consists of re-
quirement part and an execution body, very similar to the common if-then statement in
computer programming. The requirements of rules can be a set of specific facts. A fact
can be regarded as a piece of information. When a user asks for the advice of an expert
system, usually the so called initial facts have to be supplied. They correspond to the
question asked to the expert system. The inference engine starts to process these facts
by executing any valid rules. During the execution of rules new facts may be created
and others may be deleted or retracted. In CLIPS the execution order of the rules can be
adjusted with the salience parameter, which assigns the priority level to rules. Once the
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rules are not able to process the information any further, the execution halts and the user
can retrieve the advice of the expert system. A more in-depth introduction to expert sys-
tems is given in appendix A.2. The creation process of the configuration is summarized
in diagram 57.

Decay
Configuration

Decay
Generator

Expert System

Two Body Decay 
Generation Rules

Conservation 
Law Rules

Initializes

Retrieves 
Decay Trees

Fills

Figure 57: Flowchart of the creation of the decay configuration. The user supplies the expert
system with the constraints and basic information of the physics process of interest
and obtains the result as advice from the expert system.

In this case of the ComPWA helicity formalism expert system, the initial facts are

• the initial and final state

• the strictly conserved quantum numbers

• a list of restricted value ranges for quantum numbers like the angular momentum
L or spin J

• the spin projection constraints for particles (useful for unequal population of the
initial states)

• a list of allowed particles as intermediate states.

With this information the decay generator initializes the expert system and the inference
engine begins its execution and processes the supplied information with the help of the
knowledge base. The helicity formalism knowledge base is filled with rules, that belong
either to the decay creation or the conservation law group. All rules belonging to the first
group are responsible for the creation of various decay trees, that are retracted by rules
of the second category.

In more detail instead of working with particle states (e. g. f0(980)), the expert system
uses spin states (e. g. 0++). They are defined as associated lists of quantum number and
value pairs. Unlike the particle state the spin state does not have the mass attribute. There-
fore following the JPC scheme, the f0(980) and the f0(1500) are both 0++ spin states, but
different particle states. In the following decay is used as a synonym for two-body de-

Mother
-charge: 0

Daughter
-charge:  +1 -charge:  -1

Daughter Mother
-charge: 0

Daughter
-charge:  +1 -charge:  +1

Daughter

Figure 58: Example for a basic decay, here for the electric charge quantum number. When charge
conservation is active the right charge decay example is forbidden and will be retracted
by the expert system charge conservation rule.

cay. Also the term decay tree is used equivalently for a sequential two-body decay. In
the beginning rules from the decay creation category, create basic decays for each quan-
tum number. These decays are then checked by the rules of the second category, which
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implement the conservation laws. All quantum numbers e. g. spin, angular momentum,
parity, C-parity, charge are regarded as independent in general, but can be connected or
correlated to other quantum numbers. Figure 58 shows two examples of basic decays for
the electric charge. Here the decay on the right is forbidden and would be removed. All
of the remaining basic decays are then used to construct spin state decays.

Starting from the initial state also called top decay node, its quantum number content
is matched with the mother decay node of all possible basic decays. This creates the
spin state decays of the initial state, and during this process the conservation law rules
for correlated quantum numbers are executed and remove prohibited decays. Ultimately
only decays allowed by the constraints of the user remain. This procedure is applied
successively until the required number of final state particle is reached and the spin state
decay trees are obtained. An example of a spin state decay is shown in figure 59. As a
last step the quantum numbers of the final state supplied from the user are compared
to all created spin state decay trees, and only the matching ones remain. All possible
combinations for decay trees are created in this way. Currently implemented are the
following physics laws:

• angular momentum or spin conservation:
|s1 − s2| 6 s 6 |s1 + s2|

m = m1 +m2
and the Clebsch-Gordan-Coefficient relations for s1,m1 and s2,m2 coupling to s,m

• parity conservation: (see equation 38) and
ηP = ηP1η

P
2 (−1)

L

• C-parity conservation:
ηC = ηC1 η

C
2

• isospin conservation:
|I1 − I2| 6 I 6 |I1 + I2|

Iz = Iz,1 + Iz,2

and the Clebsch-Gordan-Coefficient relations for I1, Iz,1 and I2, Iz,2 coupling to I, Iz

• electric charge conservation:
q =

∑
i qi

• Fermi/Bose state symmetrization:
if the decay daughters are identical particles, the parity of the mother must satisfy
ηP = +1 for boson
ηP = −1 for fermion

With the introduction of quantities or quantum numbers which are currently not imple-
mented, e. g. the G-parity, the use of an expert system can reach its full potential. Then
simply a rule for the checking of G-parity conservation has to be created, without other
alterations.

Once the expert system has ended its calculations, the decay generator asks for the
advice and retrieves the results. At this point the spin states of the corresponding de-
cay trees are now instantiated with all possible particles fitting the spin state quantum
number description. Afterwards the particle state decay trees can be filtered to allow for
requirements on the particle instance level. Currently decay trees are removed, in which
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-charge: 0
-spin: 2
-parity: +1
-C-parity: +1
-isospin: 0
-helicity: +2

Mother Daughter 1
-charge: 0
-spin: 0
-parity: -1
-C-parity: +1
-isospin: 1
-helicity: 0

Daughter 2
-charge: 0
-spin: 0
-parity: -1
-C-parity: +1
-isospin: 1
-helicity: 0

Figure 59: Example of a spin state decay, resembling a 0(2++) → 1(0−+) + 1(0−+) decay. The
number in front of the brackets corresponds to the isospin, while all particles have no
electric charge. This can correspond to for example a f2(1270) → π0π0 decay, when
inserting actual particle states.

the net-mass of the decay products is larger than the mass of the decaying state itself to
enforce energy conservation. Finally these decay trees are stored into the configuration,
which can be saved to a file.

Because the laws of physics are equivalent to the rules of an expert system, the use
of such a system is quite natural. The spin state decay trees, that contain the complete
physics information of the helicity formalism, are constructed solely by the expert system
in a very elegant way. With the separation of the physics knowledge from the construc-
tion and evaluation of helicity amplitudes, a high level of structure and transparency to
the user is attained. The high modularity, also within the expert system, implicates high
flexibility and maintainability. By changing the initial facts, the analyst is able to adjust
the decay channel and the underlying physics according to the conservation laws. Of
course the expert system can also be used to ask for advice, such as checking the validity
or the conservation laws which might be violated for decay trees created by the user.

The use of an expert system for such a field of application is ideal. In the following
an examplary test of the expert system is shown, beside the verification and test of the
implementation of the ComPWA helicity formalism.



7
VA L I D AT I O N O F T H E H E L I C I T Y
F O R M A L I S M I M P L E M E N TAT I O N

In this chapter the implementation of the helicity formalism in the ComPWA framework
is validated. At first the results of the ComPWA expert system are verified. Afterwards
the angular distributions for single waves of the J/ψ → γπ0π0 reaction are compared
to theory. Then systematic studies in form of input-output checks, comparisons of the
angular distributions as well as the analysis of normalized residuals of the fit parameters
are performed. This is exercised first for a relatively simple model. Then the complexity
of the amplitude model is increased in a second step to reach a similar amplitude that
was previously used to describe the BESIII dataset [120]. For this model also data samples
were generated with the PAWIAN software package [121], that were in turn fitted with
the ComPWA framework. Here also the angular distributions are compared and the
normalized residuals of the fit parameters are verified. At last, the first fit result on a
large BESIII dataset of the J/ψ → γπ0π0 is presented. This dataset originates from a
previously performed analysis that is also used as a reference [51, 120]. No full analysis
of the BESIII data is performed, as this goes beyond the scope of this thesis.

For all of the fits presented in this chapter, an unbinned log likelihood estimator
was used (see equation 54 in appendix A.1.2). The optimization is performed with the
MINUIT2 library [113]. Regarding the helicity amplitude models presented in this chap-
ter, the Breit-Wigner parameterization as stated in equation 44 was used for all of the
intermediate resonances.

7.1 test of the expert system

As described in the previous chapter the ComPWA expert system is used to obtain the
decay trees that contain the physics information for the reaction of interest, here J/ψ →
γπ0π0. The initial facts that have to be supplied to the expert system are declared within
a configuration file, e. g.

"initial_state": [ "jpsi" ],

"final_state": [

"gamma",

"pi0",

"pi0"

],

"allowed_spins": [ 0, 1, 2 ],

"spin_z_components": {

"jpsi": [ 1, -1 ]

}.

The most basic configuration file only includes the mandatory information, the initial
and final state as well as a list of allowed spins that may occur. More constraints like

95
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the conserved quantum numbers and spin projections for particles, etc. can be specified
in the configuration file (see section 6.3.2). In this example configuration the spin for
particles is restricted to J = 0, 1, 2 and the spin projection of the J/ψ of 0 is removed as
this is not present for e+e− collisions. This condition is used throughout this chapter.

J/ψ : 0(1−−)

0([0, 2]++) γ : 0(1−−)

π0 : 1(0−+) π0 : 1(0−+)

f0, f2

J/ψ : 0(1−−)

0, 1(1−−) π0 : 1(0−+)

γ : 0(1−−) π0 : 1(0−+)

ω, ρ0

Figure 60: Two examples of decay trees as obtained by the ComPWA expert system for the reac-
tion J/ψ → γπ0π0. The tree on the left shows the interesting isoscalar intermediate
states. On the right the other topology is shown. The I(JPC) notation is used.

In the first stage of the expert system, the results are given in form of spin state decay
trees. Figure 60 summarizes the advice of the expert system by grouping it into the
two toplogies. On the left the interesting isoscalar 0++, 2++ intermediate states appear1.
This topology is restricted to these quantum numbers by isospin conservation, as well
as parity conservation and state symmetrization and finally C-parity conservation. The
expert system is able to correctly predict the allowed solutions when the rules for these
conservation laws are activated. The found 0++, 2++ intermediate spin states correspond
to f0 and f2 particle states. On the right of figure 60 the results for the other decay
topology are shown. Here the amount of solutions are comparatively large, and the user
is required to narrow down the possibilities using additional reasoning. Both the isospin
conserving (I = 1) and violating (I = 0) results are presented. Because the decays are
EM, the isospin conservation is not given and both decays occur in nature. However
by looking at the branching ratios, one decay can be favored to the other, in this case
into the ω or 0(1−−) intermediate state. Also the BESIII dataset indicates evidence for
the ω intermediate state, but these ω bands were removed because they are too narrow
compared to the mass resolution. The physically interesting states here are the 0++ and
2++ isoscalars, which appear in the other decay topology.

7.2 angular distributions

For the verification of the implementation of the helicity amplitudes in ComPWA, first a
general test is performed. Angular distributions for specific decay modes which can also
be calculated analytically were generated with ComPWA helicity formalism modules.
The data generation is carried out with hit-and-miss MC sampling of the various helicity
amplitudes. All examples shown below relate to the J/ψ→ γπ0π0 process and as already

1 Note that because the spin is restricted to 2 or below, the 4++ intermediate state do not appear.
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mentioned only two topologies exist, one with the π0π0 and the other with the γπ0

subsystem. The relevant kinematic variables are cos(θsa) and φsa, denoting the angles of
a in the rest system of s. Both a and s are systems of final state particles. For example
with a = π0π0, cos(θcms

π0π0
) and φcms

π0π0
are the angles of the π0π0 system in the s =

γπ0π0 = cms system. Similarly a = π0, s = π0π0 denotes the angles of a π0 in the π0π0

rest frame.

zJ/ψ

γ

f

π0

π0

θcms
π0π0

θπ
0π0

π0

Figure 61: Definition of the θ angles in the J/ψ → γπ0π0 decay via a π0π0 sub-system in the
helicity formalism.

Figure 61 demonstrates the definitions of the angles θcms
π0π0

and θπ
0π0

π0
, in analogy to

the general definitions. To obtain the angles of the γπ0 topology simply a π0 has to be
exchanged with the γ.

For all of examples shown in this section an incoherent sum over the initial state
(λJ/ψ = ±1) and final state helicities (λγ = ±1) has been performed. Figure 62 depicts
the angular distributions for a resonance with 0++ quantum numbers in the π0π0 subsys-
tem. Evidently the ComPWA generated distributions are in perfect agreement with the
analytic solutions, calculated according to the helicity intensity given by equation 43. In
addition the cos(θcms

π0π0
) shows the expected modulation for a spin 1 particle, the J/ψ of

the initial state, while the cos(θπ
0π0

π0
) distribution is uniform in accordance with the spin

0 intermediate state. Both of the φ distributions are flat, because the amplitude consists
only of a single term and hence the φ dependence cancels out (see equation 43). Because
the performed comparisons in the following also use single resonances with only one
helicity setting, the φ distributions are uniform as well and are omitted.

When simulating the decay of the J/ψ into a photon and a f2 or f4 resonance, which
subsequently decays into the two neutral pions, the angular distributions become more
interesting. The cos(θ) distributions for the decay of the J/ψ initial state into the γ and the
intermediate resonance are again in agreement with those of a spin 1 particle. However
there are two different versions as can be seen in figure 63. For |λ| = 0, 2 the distribution is
identical to the f0 case, but for |λ| = 1 the f2/f4 and γ are preferably emitted orthogonal
to the quantization axis of the J/ψ. Only these two possibilities for these distributions
exist, so that the focus now turns to the kinematic distributions of the subsequent decay.

Figure 64 shows the cos(θ) distributions for the intermediate decay of a f2 or f4 for var-
ious helicities. Here the structure of the distributions is rather complicated but matches
perfectly the calculated theoretical description. For the λ = 0 case there are exactly as
many positions of zero intensity as the degree of the spin. Unlike the λ = 0 distribution,
the intensities for λ 6= 0 vanish at the boundaries ±1. The zeros within the spectrum
decrease with higher orders of the helicity until finally for the highest possible helicity
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Figure 62: Angular distributions for the J/ψ → γf0 → γπ0π0 reaction, generated with the
ComPWA framework using the HelicityAmplitude module. λ = 0 denotes the helicity
of the intermediate state X. The left shows cos(θ) and the right φ distributions, in the
top for the π0π0 system w.r.t. the γπ0π0 rest system and in the bottom for π0 w.r.t. the
π0π0 rest system. The expected theoretical distribution is indicated by the red curve.
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Figure 63: cos(θcms
π0π0

) distributions for the J/ψ → γX → γπ0π0 (X = f2, f4) reaction, generated
with the ComPWA framework using the HelicityAmplitude module. On the left with
helicity λ = 0, 2 and on the right with λ = 1 for the intermediate resonance. Because the
λ = 2 distribution is identical to that of the λ = 0, it is not shown here. The calculated
theoretical distribution is indicated by the red curve.
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Figure 64: cos(θπ
0π0

π0
) distributions for the J/ψ → γX → γπ0π0 (X = f2, f4) reaction, generated

with the ComPWA framework using the HelicityAmplitude module. On the left for f2
and on the right for f4 as the intermediate resonance. The top shows helicity λ = 0,
the middle |λ| = 1 and the bottom |λ| = 2 for the intermediate state X. The calculated
theoretical distribution is indicated by the red curve.
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Figure 65: cos(θγπ
0

γ ) distributions for the J/ψ → π0ω → γπ0π0 reaction, generated with the
ComPWA framework using the HelicityAmplitude module. On the left with λ = 0
and on the right with |λ| = 1 for the intermediate resonance. The calculated theoretical
distribution is indicated by the red curve.

only the zeros at the boundaries are present. Due to helicity conservation, the helicities
for the f4 resonance are limited to 2 and below.

Finally also the distributions in the other decay topology can be verified. For this
data samples with a 1−− intermediate resonance, which then decays into the γπ0, were
created. The cos(θγπ

0

γ ) distributions of the decay of the intermediate state are shown
in figure 65. Since this is also a spin 1 resonance, just like the mother state J/ψ, their
distributions are also identical. Note that the distributions for the λ = 0 and |λ| = 1

case are swapped in comparison to the distributions of the J/ψ decay. The reason for
this is, that the Wigner D functions are evaluated differently with the denoted λ variable
for these two decays. In the J/ψ decay λ refers to the helicity of a decay product, in
contrast to the decay of the intermediate state, where λ belongs to the decaying state
itself. Therefore the λ variable swaps index positions in the Wigner D functions for these
two different decays, which induces the interchange of the distributions. Also it should
be noted that the λ = 0 case does not occur for a parity conserving decay, as the decay
of the J/ψ into a π0 and the ω with λ = 0 is forbidden. The agreement of the angular
distributions with the theory is again perfect.

This perfect agreement was visible consistently, also for rather complex amplitudes of
particles of spin 4, which means that the implementation of the angular distributions
for single decay channels is implemented correctly. Refer to appendix C.2 for a complete
listing of the angular distributions. There also the kinematic distributions in the opposing
subsystems are shown, which cannot be calculated analytically and are in general non-
trivial distributions with kinematic reflections from the intermediate state subsystem.

7.3 first validation with a simple model

As a next step in the validation process, input-output checks of the HelicityAmplitude
module are performed. For this an amplitude model is constructed that is used for both
the data generation and fitting with ComPWA. In this section a simple amplitude was
created, using only the f0(2020) and the f2(1270) resonance. The choice of these specific
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f resonances is based on their strong presence in the BESIII data [120]. All possible
helicities for the occuring states are used, except for the spin projection component of
the J/ψ equal to zero, as noted above. In addition a coherently added background term,
distributed uniformly in phase space, is introduced.

The parameters of the helicity intensity chosen for the data generation are displayed in
table 7. Here the values for the masses and widths of the resonances are taken from the
Particle Data Group (PDG) [9]. In total 600 independent data samples, each with 20000
events, were generated with the the hit-or-miss MC method. For the normalization of the
amplitudes in the log-likelihood of the fit, independent phase-space MC data samples
with ten times more events are used.

Parameter Value Fixed

f0(2020)
Aλ=0 1.0
φλ=0 3.1416

f2(1270)

Aλ=0 0.75 x
φλ=0 1.5708 x
Aλ=1 0.5
φλ=1 0.0
Aλ=2 0.25

φλ=2 -1.5708

coh. phsp.
A 0.05

φ 0.7854

Table 7: Parameters of the simple model for the reaction J/ψ → γπ0π0 including f0, f2 as inter-
mediate resonances. For the masses and widths of the intermediate resonances the PDG
values are used [9].

Each sample is fitted 7 times with random start values for the fit parameters listed
above. The masses and widths are chosen at random from a [−20, 20]% interval around
their PDG values. Similarly the start parameters for the magnitudes and phases are ran-
dom variables of the uniform distributions ranging from [0, 5] and [−π, π] respectively.
The coherent phase space magnitude was limited to [0, 0.1] . As denoted in table 7 the
λ = 0 component of the f2 wave was chosen to be fixed in the fits. This is allowed
and needed to stabilize the fitting procedure as explained in the previous chapter. For
each data sample only the best fit, based on the likelihood value, was selected and used
further. This procedure increases the probability of having found the global minimum.

At first the kinematic distributions of the generated datasets and their fit results can be
compared. For this, one of the 600 samples with its best fit result was chosen at random.
To visualize the helicity intensity of this fit result another data sample was produced
using the weighted MC method. A good overview of the goodness-of-fit is given by the
Dalitz plot comparison, which is shown in figure 66

2.
From the Dalitz plot of the input data (hit-or-miss MC), the two resonances in the π0π0

subsystem can be seen nicely. This is indicated by the two bands at around 1.7GeV2/c4

and 4GeV2/c4. Also their spin properties can be identified when comparing the distri-

2 Refer to appendix C.1 for basic information about the kinematics of a Dalitz plot
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Figure 66: Dalitz plot of the reaction J/ψ → γπ0π0 including f0, f2 as intermediate resonances
from a MC generated data sample (left) and the normalized residual with the best fit
result (right).

bution along the bands with figures 62 and 64. While the f0 state at a higher mass shows
no modulation, which is compatible with a spin 0 particle, the f2 state at the lower mass
resembles the angular distribution for a spin 2 particle with λ = 0. This can be seen from
the peaking at the phase space boundaries. However in this case a more distinct bump in
the center of the f2 band should be present. This in turn is explained by the destructive
interference of the λ = 0 and λ = 2 waves of the f2, which is supported nicely by the
parameter values given in table 7.

To obtain an impression on the goodness-of-fit, a normalized residual of the Dalitz
histogram of the input data and the fit data sample was created. This is also shown in
figure 66. Clearly the fit is able to describe the generated data, since no areas of over- or
underestimation are visible.

In the invariant mass spectra of the two possible kinematic combinations π0π0 and γπ0,
intermediate states can often already be identified. By looking at the Mπ0π0 spectrum
in figure 67, the two peaks can nicely be assigned to the f2(1270) and f0(2020) states.
However extracting quantitative information from such invariant mass spectra is difficult,
due to interference between resonances which can shift and alter the shape of these peaks.
In addition so called kinematic reflections of states in one invariant mass combination can
generate peaks in the other combination. This can be seen from the Mγπ0 invariant mass
spectrum, where a small accumulation of events is visible at around 2.7GeV/c2. The
peaking structure in the cos(θ) distribution of the f2 wave with λ = 0 at ±1 produces this
effect. When imagining a projection of the Dalitz plot in figure 66 on the M2

γπ0
axis, such

reflected peak structures are easily comprehensible in a visual way. When comparing
the fit result with the generated data in the invariant mass spectra, their consistency is
confirmed.

Finally the angular distributions of the decay products are compared. This is shown
in figure 68 for cos(θ) of the π0 and γ in the corresponding π0π0 and γπ0 subsystems.
As before the agreement between the generated MC data and the fit result is excellent.
The shape of the cos(θπ

0π0

π0
) distribution can be compared to the analytic calculations in

figure 62 and 64. Some insight on the spin properties can be gained, but a comparison
in slices of the π0π0 invariant mass is favorable here to avoid the mixture of two f
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Figure 67: Invariant mass spectra of the π0π0 (left) and γπ0 (right) subsystem of the reaction
J/ψ→ γπ0π0 including f0, f2 as intermediate resonances. While the blue distribution
is the MC generated data, the red curve is a weighted MC sample using the best fit
result. Below the binwise normalized residuals are shown.

Figure 68: cos(θπ
0π0

π0
) (left) and cos(θγπ

0

γ ) (right) distributions of the reaction J/ψ → γπ0π0 in-
cluding f0, f2 as intermediate resonances. While the blue distribution is the generated
MC data, the red curve is a weighted MC sample using the best fit result. On the
bottom the binwise normalized residuals are shown.
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states. In the γπ0 subsystem the cos(θ) distribution is non-trivial even though there is
no resonance structure present. The reason are the reflections from the other final state
particle combination, here π0π0, that generate this non-uniform distribution and obscure
the interpretation.

Important quantities of the validation process are the accuracy and the error estima-
tion of the extracted parameters. They can be determined from the normalized residuals
of the parameters using the 600 generated MC datasets. A selected subset of residuals
is shown in figure 69. The complete normalized residual information can be found in
the appendix C.4.1. If the extracted parameters are accurate with respect to the gener-
ated ones shown in table 7 then the mean x̄ should be statistically compatible with zero.
A RMS value of one implies a correct error estimation. When reviewing all of the nor-
malized residuals, the mean values are reproduced very well while the majority of RMS
values are marginally higher then the required value of 1. Therefore the parameter errors
from the fit results, as determined by the minimizer, are slightly underestimated.

From the normalized residuals no measure on the extracted absolute precision is pos-
sible. This can be extracted from the unnormalized residuals, for example for the f2
mass parameter shown in figure 70. The RMS value of 3.56(73)MeV/c2 defines the 1σ
error interval of the fit parameter, under the assumption of a normal distribution. For a
data sample of the simple model with 20000 events, the f2 mass is determined with a
precision of approximately 0.3%.

When observing systematic shifts in pull3 distributions, the parameter correlations are
useful indicators for possible difficulties in the optimization process. For two random
variables X and Y, their correlation is defined as

ρXY = E[(X− µX)(Y − µY)]/(σXσY) (45)

with their mean values µX, µY and their standard deviations σX, σY . Here E denotes
the expectation value operator. The parameter correlations can be collectively visualized
in the correlation matrix, which is displayed in figure 71. Here a pair of parameters are
independent if their correlation value is zero. Negative or positive values correspond
to an anti- or correlation of these parameters, while the magnitude of the correlation
scales between 0 and 1. Of course each parameter is fully correlated to itself, hence the
diagonal elements are ones. Because this matrix is symmetric the other half is omitted.
In general the optimization problem becomes more difficult when the number of fit
parameters increase and their correlations are stronger. Consequently the stability of
the minimization process decreases. The correlations in the simple model are almost
negligible except for example the f2 mass and the phase of the f0 or coherently added
phase-space. Hypothetically, the anti-correlation of the former and the latter could be
reflected in systematic shifts in the normalized residuals of these two variables, but in
opposite direction. However when inspecting figure 69, no systematic shifts for these
two parameters are apparent and the minimization process can be regarded as stable. In
general the instability of a fit increases with the correlations of parameters, which in turn
increases with the dimensionality of the fit parameter space.

3 The terms pull and normalized residuals are used as synonyms.
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Figure 69: Normalized residuals for a selected subset of parameters in the simple model of the
J/ψ → γπ0π0 decay. The blue distributions are created from the best fits results of all
generated samples. Drawn in black is a gaussian curve, which indicates the optimal
distribution with mean equal to zero and a standard deviation of one. The mean x̄ and
the RMS values of the distributions are displayed in the plots.
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Figure 70: Residual of the f2 mass in simple model. The mean and RMS values are given in units
of MeV/c2.

Figure 71: Correlation matrix of the best fit result on a simple model dataset for the reaction
J/ψ → γπ0π0 including f0 and f2 as intermediate resonances. The black lines serve
as visual aids for the grouping of the various states. For for the f2 state the λ = 0
components are not available as they were fixed parameters in the fit.
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7.4 validation with complex model

In the validation of the implementation of the ComPWA helicity formalism we proceed
with the second, more complex model. In this benchmark model more intermediate
states compared to the simple model are used. In total three f0, two f2 and one f4
resonance appear in the sequential decay. The choice of resonances is inspired by the
analysis performed in the reference [51], with the exception that a few resonances with
fit fractions below 1% were removed. In exchange a f4 state was inserted to also test the
software with higher spin states. The parameters of the benchmark model used for the
data generation are listed in table 8. Note that the strength and phases chosen here are
arbitrary and do not resemble the parameters of the reference model.

Analogous to the simple model, 600 independent data samples were generated. Each
sample contains 50000 events and the corresponding phase-space MC data samples have
a factor of ten higher statistic. Every sample was fitted seven times with random start
parameters, using the same intervals as specified for the simple model. Again only the
best fit results are analyzed further and a total of 551 data samples were used. Some
samples could not be used, because at least two successful fits were required in order
to make a decision on a better fit result. Consequently the optimization is sometimes
not able to find a valid minimum. A minimum is here declared as valid, when the Hesse
algorithm successfully probes the minimum region found by the gradient decent method.
Two aspects improve the stability of the fit: At first by increasing the ratio of events in a
sample to the free parameters of the model, and secondly a reasonable choice of the start
parameters.

Figure 72: Dalitz plot of ComPWA generated MC data of the reaction J/ψ → γπ0π0 including
f0, f2, f4 as intermediate resonances (left) and the normalized residual with the best
ComPWA fit result (right).

Again the kinematic distributions between a single dataset and the best fit result are
compared first. The Dalitz plot shown in figure 72 gives a informative overview. Foremost
four bands in the π0π0 invariant mass combination are visible that correspond to all of
the f resonances. Three bands are striking compared to the f0(500) band on the left
edge of the Dalitz plot at 0.25GeV2/c4. A remarkable modulation is present in the band
at 2.3GeV2/c4, because only the f0(1500) is found here and a uniform distribution is
expected. The explanation for the higher spin modulation in this band are the broad f2
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Parameter Value Fixed

f0(500)
Aλ=0 1.0
φλ=0 -1.5

f0(1500)
Aλ=0 1.5
φλ=0 -1.0

f0(2020)
Aλ=0 0.5
φλ=0 -0.5

f2(1270)

Aλ=0 0.5 x
φλ=0 -1.5 x
Aλ=1 1.0
φλ=1 0.0
Aλ=2 1.5
φλ=2 1.5

f2(1950)

Aλ=0 0.3
φλ=0 0.5
Aλ=1 0.3
φλ=1 0.5
Aλ=2 0.3
φλ=2 0.5

f4(2050)

Aλ=0 1.0
φλ=0 0.0
Aλ=1 1.0
φλ=1 0.0
Aλ=2 1.0
φλ=2 0.0

coh. phsp.
A 0.05

φ 0.0

Table 8: Parameters of the benchmark model used for the data generation of the reaction J/ψ →
γπ0π0 including multiple f0, f2 resonances and one f4 resonance as intermediate states.
For the masses and widths of the intermediate resonances PDG values are used [9].
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and f4 resonances that can interfere with the f0(1500). More interference is expected at
4GeV2/c4, where three intermediate states are overlapping strongly: the f0(2020), the
f2(1950) and the f4(2050). From the Dalitz plot a higher spin resonance is visible, but
also a interference is obvious due to the distortion of the band closer to the phase space
boundaries. When inspecting the normalized residual of the Dalitz plot and the fit result
(see figure 72), a uniform distribution of the residual values in the Dalitz plot area is on
hand. Hence first conclusions on a good description of the data can be drawn.

This excellent agreement is also visible from the comparisons of the one dimensional
kinematic variable distributions shown in figure 73. In the π0π0 invariant mass spectrum

Figure 73: π0π0 invariant mass spectrum and cos(θπ
0π0

π0
) distribution of the reaction J/ψ →

γπ0π0 including f0, f2 and f4 as intermediate resonances from ComPWA generated
MC data. While the blue distribution is the ComPWA generated MC data, the red
curve is a weighted MC sample using the best fit result. Below the binwise normalized
residuals are shown.

three prominent peaks are present, but also a small accumulation at 0.6GeV/c2 is visible.
In this respect all of the f resonances can be found. However at 2GeV/c2 it is impossible
to identify all of the three overlapping resonances. Now the importance of the partial
wave analysis becomes clear. Similar to the Dalitz plot, the cos(θ) distribution in the
π0π0 subsystem suggests higher spin components. But as long as this is not used in
conjunction with a slicing in the invariant mass, no definite spin information for single
resonances can be extracted. This approach was studied in [23]. With regard to the
validation of the helicity formalism implementation, once again a perfect agreement of
the fit result with the generated data is found.

How accurate the fit parameters are with respect to the parameters used for the MC
data generation, is demonstrated by the normalized residual distributions. From the
width of the distributions the error estimation performed by the optimizer can be verified.
All of the mean and RMS values of the normalized residuals are summarized in table
9. The distributions of the normalized residuals can be found in the appendix in section
C.4.2.

Just as in the simple model the RMS values are mostly above one, indicating that the
errors for the parameters are slightly underestimated. The pull mean values are statisti-
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Parameter Mean RMS

f0(500)

M 0.02± 0.05 1.04± 0.07
Γ −0.09± 0.04 1.03± 0.07
Aλ=0 −0.08± 0.05 1.04± 0.07
φλ=0 −0.06± 0.05 1.09± 0.07

f0(1500)

M 0.07± 0.05 1.07± 0.07
Γ −0.06± 0.05 1.08± 0.07
Aλ=0 −0.13± 0.04 1.01± 0.06
φλ=0 0.00± 0.05 1.08± 0.07

f0(2020)

M 0.09± 0.05 1.11± 0.07
Γ −0.12± 0.05 1.14± 0.08
Aλ=0 −0.09± 0.04 1.02± 0.06
φλ=0 0.03± 0.05 1.06± 0.07

f2(1270)

M 0.09± 0.05 1.11± 0.08
Γ −0.02± 0.05 1.07± 0.07
Aλ=1 −0.14± 0.04 1.04± 0.07
φλ=1 0.06± 0.05 1.08± 0.07
Aλ=2 −0.13± 0.04 1.03± 0.06
φλ=2 −0.02± 0.05 1.06± 0.07

f2(1950)

M −0.06± 0.05 1.06± 0.07
Γ −0.06± 0.05 1.10± 0.07
Aλ=0 −0.02± 0.05 1.05± 0.07
φλ=0 0.06± 0.04 1.00± 0.06
Aλ=1 0.01± 0.04 1.03± 0.07
φλ=1 −0.04± 0.04 0.99± 0.06
Aλ=2 −0.07± 0.04 1.04± 0.07
φλ=2 0.00± 0.04 1.04± 0.07

f4(2050)

M −0.12± 0.05 1.10± 0.07
Γ 0.01± 0.05 1.12± 0.08
Aλ=0 −0.13± 0.04 1.03± 0.07
φλ=0 0.03± 0.05 1.07± 0.07
Aλ=1 −0.14± 0.04 1.03± 0.07
φλ=1 −0.01± 0.05 1.07± 0.07
Aλ=2 −0.15± 0.04 1.03± 0.07
φλ=2 −0.03± 0.05 1.06± 0.07

coh. phsp.
A −0.14± 0.04 1.01± 0.06
φ 0.01± 0.05 1.08± 0.07

Table 9: Normalized residual mean and RMS values for the fit parameters of the benchmark
model on ComPWA generated MC data for the reaction J/ψ→ γπ0π0 including multiple
f0, f2 resonances and a f4 resonance as intermediate states. The values are taken from
the appendix C.4.2.
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cally compatible with zero taking into account the errors. However it should be noticed
that the majority of pull mean values for the magnitude parameters are constantly below
zero on a 2 to 3σ level. This suggests a small bias of the model parameters determined
by the fit. However the bias is negligible with respect to the used statistics for this test
and is therefore unproblematic.

In conclusion the fit is able to accurately determine the correct parameters. Only a
insignificant underestimation of the parameters from MINUIT2 was identified.

7.5 validation of the complex model using PAWIAN

So far mainly the self-consistency of the helicity formalism implementation was checked,
since a ComPWA helicity amplitude is used for both the data generation and the fitting.
To complete the validation of the implementation the correctness of the physics has to
be proved. In the beginning of the chapter already the angular distributions for single
amplitudes were verified by the comparison with analytic calculations from theory. To
ensure a correct description of the physics of this helicity formalism implementation, the
validation is extended by an additional step. The data sets are generated with an existing
helicity formalism implementation from another software package. This input data is
then fitted with ComPWA. The comparison of the fit results with the input data gives
information on an identical physics description of the two software packages.

For the data generation the previously defined benchmark model with the same pa-
rameter set as stated in table 8 was used in the PAWIAN software package [121]. Because
PAWIAN does currently not support background which could be added coherently, this
was removed from the model. In total 400 data samples of 30000 events were generated.
Again each sample was fitted seven times and only the best fit result, based on the best
likelihood value, was used for further analysis. Due to invalid minima found by the min-
imizer, some results are rejected and only 259 samples with their corresponding best fit
results are used in the following. A minimum is declared as invalid, if the Hesse calcu-
lation fails, which scans the minimum region obtained by the gradient descent method.

Figure 74: Dalitz plot of PAWIAN generated MC data of the reaction J/ψ → γπ0π0 including
f0, f2, f4 as intermediate resonances (left) and the normalized residual with the best
ComPWA fit result (right).
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At first the decay kinematics of a randomly selected generated data sample is validated.
From the resemblance of the Dalitz plots first evidence for an equal description of the
helicity formalism in ComPWA and PAWIAN is found. Figure 74 shows the PAWIAN
data Dalitz plot, while the one for the ComPWA data was shown in figure 72. The only
obvious difference is the missing data at values above 6GeV2/c4 for M2

π0π0
, which is

expectable from the absent coherently added phase space term. A more quantitative
validation is given by the comparison of the ComPWA fit result with the PAWIAN data,
visualized by the normalized residual plot. Here no regions of under- or overestimation
are visible, and a good description of the data can be concluded.

However because the Dalitz plot does not visualize all of the kinematic information of
this reaction (see appendix C.1), a more thorough validation is needed. Figure 75 shows
distributions for two selected variables not observable in the Dalitz plot.

Figure 75: cos(θcms
π0π0

) and φπ
0π0

π0
distributions of the reaction J/ψ → γπ0π0 including f0, f2 and

f4 as intermediate resonances. While the blue distribution is the PAWIAN generated
MC data, the red curve is a weighted mc sample using the best fit result on the data.
Below the normalized residuals are shown.

Here, the fit result cos(θcms
π0π0

) distribution matches the data well and also the shape
expected by the J/ψ with spin 1 and λ = ±1 is present. Furthermore, because the z
axis was chosen for the spin quantization of center-of-mass system (CMS) decay, the
physics is invariant under rotations about this axis. This freedom of the orientation of
the x and y axis leads to the fact that only differences of the φ variables in the CMS and
the subsequent decay are relevant. With the chosen convention for the evaluation of the
Wigner D functions, this difference is fully mapped to the φ distribution of the π0 in the
π0π0 system. This is also shown in figure 75. Here a non-trivial modulation is visible
and most importantly the fit result correctly describes the distribution. A comparison of
all kinematic variable distributions is shown in the appendix C.3.2.

Finally the entity of the best fit results are examined with the normalized residuals of
the fit parameters. Hereby the correctness with respect to the generated values (see table
8) is checked. The mean and RMS values for all of the normalized residuals are presented
in table 10 (see appendix C.4.3 for the distributions). They give information about the
accuracy of the determined parameters and the correctness of their error estimation.
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Parameter Mean RMS

f0(500)

M 0.18± 0.07 1.03± 0.11
Γ −0.24± 0.07 1.03± 0.11
Aλ=0 −0.09± 0.07 0.98± 0.10
φλ=0 −0.06± 0.08 1.08± 0.12

f0(1500)

M −0.12± 0.08 1.12± 0.13
Γ −0.04± 0.07 1.05± 0.11
Aλ=0 −0.09± 0.07 1.01± 0.10
φλ=0 −0.02± 0.08 1.08± 0.12

f0(2020)

M 0.10± 0.08 1.08± 0.12
Γ −0.24± 0.08 1.11± 0.12
Aλ=0 −0.06± 0.08 1.11± 0.12
φλ=0 0.10± 0.07 1.04± 0.11

f2(1270)

M −0.06± 0.08 1.09± 0.12
Γ −0.03± 0.07 1.02± 0.10
Aλ=1 −0.13± 0.07 1.01± 0.10
φλ=1 0.12± 0.07 1.05± 0.11
Aλ=2 −0.17± 0.07 1.05± 0.11
φλ=2 0.03± 0.07 1.05± 0.11

f2(1950)

M 0.20± 0.07 1.06± 0.11
Γ 0.00± 0.09 1.24± 0.16
Aλ=0 0.05± 0.07 1.01± 0.10
φλ=0 −0.03± 0.08 1.11± 0.12
Aλ=1 −0.03± 0.08 1.08± 0.12
φλ=1 0.12± 0.08 1.10± 0.12
Aλ=2 −0.07± 0.08 1.08± 0.12
φλ=2 0.19± 0.08 1.09± 0.12

f4(2050)

M −0.06± 0.08 1.18± 0.14
Γ −0.14± 0.07 1.01± 0.10
Aλ=0 −0.13± 0.07 1.04± 0.11
φλ=0 0.07± 0.08 1.08± 0.12
Aλ=1 −0.16± 0.07 1.01± 0.10
φλ=1 0.20± 0.07 1.06± 0.11
Aλ=2 −0.13± 0.07 0.97± 0.09
φλ=2 0.07± 0.08 1.15± 0.13

Table 10: Normalized residual mean and RMS values for the fit parameters of the benchmark
model for the reaction J/ψ → γπ0π0 including multiple f0, f2 resonances and a f4
resonance as intermediate states. The fits were performed with ComPWA on PAWIAN
generated datasets. Refer to appendix C.4.3 for pull distributions.
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With respect to the statistical errors the mean values are in agreement with the gener-
ated parameters, implicating a high accuracy of the fit parameters. Just as in the previous
validations, the error are marginally underestimated.

At this point the validation of the helicity formalism implementation in the ComPWA
framework is declared as complete.

7.6 a first fit on the BESIII data

The BESIII dataset of the decay J/ψ → γπ0π0 originates from the reference [51, 120].
Also a corresponding phase space MC dataset for the efficiency correction is available.
It should emphasized that the goal is not a full analysis of the data, but a first real data
test case for the ComPWA helicity formalism implementation. In total the data contains
442562 events and the corresponding acceptance corrected phase space sample amounts
to roughly 1.6 ∗ 106 events.

Figure 76: Dalitz plot of the BESIII data of the reaction J/ψ → γπ0π0 (left) and in logarithmic
scale (right). The ω bands have been removed [120].

The Dalitz plot of the data is shown in figure 76. Immediately noticeable is the strongest
contribution in the π0π0 mass combination at a squared mass of roughly 1.6GeV2/c4.
Comparing this with the previous Dalitz plots (see figure 72), the f2(1270) state can be
foreshadowed. Both the mass and the spin 2 (λ = 0) modulation, with peaks at the phase
space boundaries and the slight bump in the center of the band, match the f2(1270).
Several other resonances in the squared mass range from 2-5GeV2/c4 are also visible by
eye. A relatively strong uniform spin 0 band is located at around 3GeV2/c4. The broad
band at 4GeV2/c4 shows higher spin modulations, thus one would naively suspect mul-
tiple intermediate states with interference. However for precise quantative statements a
partial wave analysis is indispensable.

A helicity intensity was generated with ComPWA including all intermediate states as
stated in the reference [120, p. 109]. A first fit on the data was performed within the scope
of the thesis. In total 48 parameters of the model were optimized by the minimizer. The
parameters are again initialized randomly using the same intervals as for the validation
tests shown in the previous sections. Generally a single fit is not sufficient to guarantee
the finding of the global minimum. In the case of this first fit, the minimizer from the
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optimization library MINUIT2 was able to find a valid minimum region and successfully
stopped the gradient descent procedure. However to validate the minimium, and obtain
a more precise location of the minimum with a symmetric error estimation of fit pa-
rameters, the Hesse algorithm is executed afterwards. This additional Hesse calculation
failed, which could indicate that not the global minimum was found. Hence no particu-
larly good description of the data is expected, and this result should be interpreted with
care. The obtained fit parameters and the errors are listed in table 11.

For most of the parameters the extracted values appear promising, since the masses
and width are reasonably close to the PDG values and the strengths of the individual

Parameter Value PDG Value Reference Value

coh. phsp.
A 0.001± 0.001
φ 0.973± 1.201

f0(500)

m 0.273± 0.001 0.475 0.504± 0.005
Γ 1.084± 0.007 0.550 0.442± 0.008
Aλ=0 8.892± 0.035
φλ=0 −1.258± 84.140

f0(1500)

m 1.462± 0.001 1.504± 0.006 1.436± 0.001
Γ 0.099± 0.002 0.109± 0.007 0.127± 0.002
Aλ=0 4.360± 0.041
φλ=0 −1.618± 84.136

f0(1710)

m 1.777± 0.000 1.723± 0.006 1.751± 0.001
Γ 0.217± 0.001 0.139± 0.008 0.172± 0.003
Aλ=0 7.660± 0.026
φλ=0 −0.482± 84.146

f0(2020)

m 1.945± 0.001 1.992± 0.016 1.988± 0.003
Γ 0.610± 0.002 0.442± 0.060 0.486± 0.006
Aλ=0 10.56 ± 0.02
φλ=0 −2.292± 84.125

f0(2330)

m 2.240± 0.002 2.300 2.284± 0.007
Γ 0.172± 0.004 0.200 0.345± 0.015
Aλ=0 1.682± 0.031
φλ=0 1.757± 83.875

f2(1270)

m 1.255± 0.000 1.275± 0.008 1.264± 0.001
Γ 0.187± 0.001 0.186± 0.002 0.189± 0.001
Aλ=0 11.042± 0.027
φλ=0 2.642± 84.091
Aλ=1 8.938± 0.026
φλ=1 −0.681± 84.145
Aλ=2 5.298± 0.031
φλ=2 2.043± 84.130
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f2(1565)

m 1.649± 0.010 1.562± 0.013 1.549± 0.002
Γ 1.860± 0.012 0.134± 0.008 0.081± 0.003
Aλ=0 1.0

φλ=0 0.0

Aλ=1 1.655± 0.017
φλ=1 1.975± 84.069
Aλ=2 1.844± 0.018
φλ=2 −1.73 ± 84.06

f2(1950)

m 1.944 1.944± 0.012 1.944

Γ 0.472 0.472± 0.018 0.472

Aλ=0 2.451± 0.023
φλ=0 −2.972± 84.110
Aλ=1 2.858± 0.029
φλ=1 −0.308± 83.964
Aλ=2 2.459± 0.024
φλ=2 2.594± 84.090

f2(2150)

m 2.157 2.157± 0.012 2.157

Γ 0.152 0.152± 0.030 0.169

Aλ=0 0.984± 0.032
φλ=0 −3.075± 0.025
Aλ=1 0.552± 0.053
φλ=1 −1.316± 0.087
Aλ=2 0.528± 0.034
φλ=2 −2.964± 0.087

Table 11: Parameters of the helicity amplitude model used for the first fit on the BESIII data of the
J/ψ → γπ0π0 process and their extracted values. Also the PDG [9] and reference [120,
p. 109] values for the masses and widths are denoted. The mass and width parameters
are given in units of GeV/c2 and GeV respectively. Parameters without specification of
their errors have been fixed in the fit or no errors are available.

waves follow the trends of the fit fractions of the reference [120, p. 109]. However
several mass and width values stand out with non-credible values far off the PDG val-
ues. These are the mass and width of the f0(500) and the width of the f2(1565). Actually
for the former state, the PDG does not even specify any mass or width values anymore,
because the Breit-Wigner parameterization is unsuitable [122]. Other formalisms are pre-
ferred foran extraction. Hence it is not surprising that the extraction of these parameters
is not easy. Due to the large deviations from the PDG values, the optimization process
presumably failed to reach the global minimum. Furthermore the immense width of
1.86GeV for the f2 resonance in conjunction with its small amplitude indicates that only
a local minimum was reached. Multiple fits with different sets of initial parameters, with
a proper adjustment of the intervals from which the start parameters are chosen, have to
be performed in the future analysis to ensure the obtainment of the global minimum.
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On a closer look, the agreement of the extracted masses and widths of all intermediate
states with the PDG values is also not statistically compatible. In the dynamical functions
for the f2 states no barrier terms were used, which could explain the shift of the f2(1270)
to lower masses. However it is remarkable that the reference shows deviations to the PDG
values consistent with the result of ComPWA. The same deviation in both fit results
support the correct implementation of the helicity formalism in ComPWA. Finally the
statistical errors for most of the phases are striking with their large values of about 84.
Obviously the error estimation has failed here, which was announced by the optimizer
and underlines that a local minimum was found.

Even though the extracted set of parameters is not credible as a whole, it is nevertheless
interesting to compare the data and the fit result for various kinematic distributions and
obtain a measure for the goodness of the fit.

Figure 77: Normalized residual of the BESIII Dalitz plot of the reaction J/ψ → γπ0π0 with the
ComPWA helicity amplitude model fit result.

Figure 77 shows the normalized Dalitz plot residual of the data and the phase space
sample, which was weighted with the intensity of the fit result. Here many regions of
over and underestimation are already visible, implicating that this fit result is not able
to describe the data correctly. The periodic modulation in the π0π0 mass combination,
indicates that the placement of the f resonances and their interference is not properly
described in the fit result. Furthermore the band structure at 1.5GeV2/c4 in the γπ0

mass combination is intriguing, since no resonance is included in our model for this
subsystem.

These effects are more easily comprehensible when observing the invariant mass spec-
tra pictured in figure 78. Overall, regarding the fact that some fit parameters are far off
the PDG values, the agreement of the fit result with the data is surprisingly good. Some
small deviations are visible in the overlap of the distributions, best seen in the normal-
ized residuals below. Because the fit result does not exactly follow the shape of most
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Figure 78: Invariant mass spectra of the the BESIII data for the π0π0 (left) and γπ0 (right) sub-
systems of the reaction J/ψ → γπ0π0. While the blue distribution is the data, the red
curve is the weighted MC sample of the first fit result. Below the normalized residuals
are shown.

of the peak structures, the band structures visible in the above normalized Dalitz plot
residual now become clear.

In the π0π0 invariant mass spectrum, the overestimation at the f2(1270) peak and at
1.5GeV/c2 initially catches the eye. A possible explanation is the dynamical parameter-
ization used here does not include barrier factors. At higher masses the residual also
indicates that the agreement is not perfect. The shoulder in the spectrum at a mass of
2.3GeV/c2 could be an additional state with no counterpart in the model description. At
this mass value also an accumulation of events was visible in the Dalitz plot. The very
good description at low masses is astonishing, as the f0(500) parameters are very far off
the PDG values. Also some kinks in the data, that are not reproduced in the fit solution,
generate bands in the Dalitz plot. This is especially well visible in the γπ0 invariant mass
spectrum with a drop in the data at 1.2GeV/c2. The strong rise near the ω region at
around 800MeV/c2 suggests that the ω band was not cut out good enough. Although a
better solution would be the description of the ω state in the helicity intensity, this may
prove to be difficult due to the very small width.

The comparison of further one dimensional kinematic distributions are shown in figure
79. The agreement of the fit result with the data is also very good. Only a minor deviation
in the description of the cos(θγπ

0

γ ) distribution at around 0.5 is visible, especially when
checking the normalized residual.

Even though this fit result on the data does not resemble the optimal solution, it de-
scribes the main features of the data well. Therefore results of this first fit attempt on real
data support the correct implementation of the ComPWA helicity formalism.



7.6 a first fit on the BESIII data 119

Figure 79: cos(θ) and φ distributions of the BESIII data of the reaction J/ψ → γπ0π0. The left
plots regard the π0π0 subsystem topology, while the right ones are for the γπ0 subsys-
tem. The data is visualized by the blue distributions and the red curve is the weighted
MC sample of the first fit result. Below the normalized residuals are shown.
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7.7 discussion & outlook

In this chapter the helicity formalism implementation of the ComPWA framework was
successfully tested. It was shown that the novel expert system approach is able to cor-
rectly compute all relevant decay trees, from basic information of the J/ψ→ γπ0π0 reac-
tion. By simply enabling or disabling rules, the physics context is modified in a flexible
way. Also information about the conserved and violated quantum numbers is provided
for each individual decay. Although a second stage was used to narrow down the pos-
sible decay trees manually, a growth of the expert system knowledge can improve this
situation in the future. Possible extensions are the provision of branching ratios and the
ability to automatically determine the type of interaction, and therefore the conserved
quantum numbers for each decay. In summary the expert system proves to be a natural
and intuitive solution for the task of constructing relevant decay trees. With its high level
of transparency, the use of an expert system for this task is beneficial, especially for a
large user base.

Next the helicity intensity implementation in ComPWA was verified in a three step
process. At first the angular distributions for the J/ψ → γπ0π0 process with only single
intermediate states and specific helicities were produced. These distributions are per-
fectly consistent with the analytic solutions. Next the accuracy of the fit parameters as
well as their error estimation using the MINUIT2 minimizer was checked. The accuracy
of the parameters is bias free with respect to the statistical errors. Merely the errors are
marginally underestimated. These statements hold for both a simple and a more complex
model, also underlining the stability of the optimization.

To ensure a correct physics description, J/ψ → γπ0π0 data samples were generated
with another software package and fitted with a corresponding ComPWA helicity inten-
sity. Here the data generation was performed with PAWIAN. Also there the systematic
studies showed an excellent agreement of the fit results with the data. Consequently, the
validation of the ComPWA helicity formalism was declared as complete in connection
with the previous steps.

As a first real test-case of the helicity formalism implementation a fit effort on the
BESIII data was made. Regarding that only a single fit was performed, the description of
the data is already quite good. However some problems in the description of data cannot
be disregarded, for example the large deviations in the mass and width parameters of the
f0(500) and some deviations in the invariant mass spectra in general. These observed de-
viations are understandable, when regarding the fact that the minimization process most
likely did not reach the global minimum. Consequently the obtained set of parameters
may not represent the optimal solution. Also the simple Breit-Wigner parameterization
can account for the observed deviations. Nevertheless the agreement is promising and
the extracted parameters are consistent with the results in the reference. A more detailed
analysis of the data with an extension of the available dynamical functions is expected
as the next step.

With the availability of the helicity formalism in the ComPWA project, a cornerstone
for the comparability between various theoretical model descriptions was laid. Analysis
of various reactions across many experiments are highly anticipated.
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Several aspects of the strong interaction still remain nebulous, despite large efforts over
decades. In the low energy regime, the classification of the bound states and deciphering
their structure prove to be difficult in certain areas of the hadron spectrum. Due to the
unique properties of the strong interaction, the meson spectrum cannot be calculated
analytically and effective models are used. Precise measurements of these bound states
and their properties are important, in order to test the validity of the theoretical models.
The mass and width of the 0++ isoscalars are difficult to extract experimentally, because
multiple wide and overlapping states are present. This region is particularly interesting,
since there are more states than expected by the constituent quark model and a light
glueball state is predicted here by lattice-QCD calculations. Also the unexpected X, Y,
Z states in the charmonium sector are compelling, as they are candidates with exotic
content with respect to the regular meson quark-antiquark contribution.

One highly accurate method to determine the line shape, i. e. the mass and width,
of states is the energy scan. The knowledge of the luminosity is essential to normalize
the measured line shape. The energy scans will be performed by the future precision
experiment P̄ANDA, for which the luminosity detector (LMD) measures the luminosity.
When determining the properties of a broader spectrum of states, the partial wave anal-
ysis (PWA) is of great importance. This method allows for the extraction of additional
quantum numbers such as the spin and parity. In the 0++ isoscalar sector the precise ex-
traction of state masses and widths is hindered by complicated structure of the dynamics.
The usual Breit-Wigner parameterization reaches its limits here. To obtain a measure on
the ability of a theoretical model to describe the measured data, a comparison of the
results with other models is important. This is one of the goals of the ComPWA project,
which intends to provide various formalisms and models.

The first part of the thesis was the determination of the luminosity with the highest
possible accuracy and precision for the P̄ANDA experiment from the track information
of the LMD. For this the versatile LuminosityFit software was developed, providing
reliable and accurate luminosity information. Numerous effects influence the stability
and accuracy of the luminosity extraction procedure, for which extensive studies were
performed. These are the track reconstruction efficiency, the detector resolution, and all
effects arising from the distribution and displacement of the IP, as well as the tilt and
divergence of the accelerator beam. Furthermore the implementation and performance of
the accordant correction algorithms are presented. They enable the high accuracy of the
luminosity that is extracted with the fit software. Altogether the luminosity is determined
with an accuracy of about 0.5% for beam momenta up to 5GeV/c and 0.1% for the above
higher momentum regime.

Besides the luminosity, the developed fit software is able to extract further information
regarding the IP and accelerator beam. The mean shift of the IP in the x and y direc-
tion is determined with an accuracy of 50µm. Furthermore the tilt of the anti-proton
beam is obtained from the fit with a high accuracy of about 5µrad for the lower beam
momenta up to 5GeV/c. Going towards higher beam momenta of 15GeV/c the bias of
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the determined tilts is largest with about 30µrad. The extracted divergence information
is only reliable in the case of divergences above 200µrad in the low beam momentum
regime. There, an accuracy of 20µrad is achieved. However the accuracy of the deter-
mined divergence values decreases, when the relative magnitude of the divergence in
the x and y direction is larger than 50%. Then the accuracy of the divergence can be as
low as 200µrad. The additional information on the IP and the accelerator beam, that the
LuminosityFit software is able to provide, is useful for data analysis and for feedback
during the runtime to adjust the reaction rate.

The reason of the splitting into the lower and higher beam momenta for the beam tilt
and divergence, is due to the flattening of the elastic cross section in the LMD range at
higher momenta. Consequently this insensitivity makes the correction for these effects
negligible. In this case especially the divergence correction can be omitted. Alternatively
a fixed parameterization from an external measurement can be used.

Overall the systematic deviation of the luminosity is dominated by the large uncertain-
ties of several percent from the hadronic part of the elastic cross section. The KOALA
experiment will provide a more precise elastic cross section description to reduce this
uncertainty. With the developed LuminosityFit software package, the influence of the
luminosity on the relative uncertainty of line shape and absolute cross section measure-
ments is below 0.5%. This uncertainty includes all effects of the accelerator and target
beam, as well as the detector effciency and resolution, which were presented in this the-
sis. For the measurement of the line shape only the relative luminosity is needed, which
can cancel the influence from uncertainties of the background and the hadronic elastic
scattering parameterization. Therefore with data sizes in the order of 105 events or below,
the limiting factor for the accuracy is not the luminosity, but the counting rate.

The second part of the thesis was the implementation of the helicity formalism in
the ComPWA framework and was presented in detail. A novel expert system was im-
plemented, which is used for the creation of decay trees. They contain the information
required to construct the corresponding helicity intensity. A second module defines a
hierarchy of amplitudes of the helicity formalism, that are combined to form the helic-
ity intensity. The implementation was successfully verified in several steps, using the
reaction J/ψ→ γπ0π0 suitable for the study of the 0++ isoscalars.

It was shown that the rule based expert system is intuitive and ideally suited for this
task. The expert system is able to correctly calculate the occurring intermediate states
of the J/ψ → γπ0π0 decay. Here also details on the conserved quantum numbers are
stated by the system. A high level of transparency was achieved for the implemented
ComPWA modules with the clear separation of the laws of physics and the evaluation
of the helicity intensity. This allows easy adjustments and extension of the physics laws
for a wide range of analysis. The validity and correctness of the helicity amplitudes
were first checked by direct comparisons to the angular distributions of analytical calcu-
lations. Input output checks showed that no statistically significant bias of the extracted
parameters was apparent. Only an insignificant underestimation of the parameter errors
of the MINUIT2 minimizer was identified. The correctness of the implemented physics
was confirmed by fits and comparisons to data generated with the PAWIAN software
package. Also a first fit attempt on the BESIII data gave promising results. Even though
simple dynamical descriptions were used and the estimations of some parameters indi-
cate that not the optimal solution was found, the data is described well. The determined
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parameters and ratios are similar to the results of the reference analysis in the radiative
basis.

With the implementation of the helicity formalism, a first general and widespread
model is made available in ComPWA, and a milestone was laid for the future. In connec-
tion to further implementations in ComPWA the comparability between these various
physics descriptions is possible.

The high accuracy of the determined luminosity, made possible by the LuminosityFit
software, allows for the precise measurement of line shapes at the P̄ANDA experiment.
With the implementation of the helicity formalism in ComPWA, a foundation for the
comparibility of different physics models is established. From this, one expects to be
able to learn more about the dynamics of the hadronic bound states.
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A P P E N D I X - G E N E R A L

a.1 the likelihood estimators

a.1.1 Binominal, Poisson and Normal Distribution Relationship

For a random variable X that follows the binomial statistics, the discrete probability
distribution is defined as

P(X = x) =

(
n

x

)
px(1− p)n−x (46)

with(
n

x

)
=

n!
x!(n− x)!

with n ∈ N the number of trails and p ∈ [0, 1] the probability for a positive outcome. The
mean and variance can be calculated as

E[X] = µ = np

Var[X] = np(1− p).

This probability distribution is important, as usually measurements can be formulated
within this true false categorization. For example take a histogram and select an arbitrary
bin ranging from xl to xh. The probability for the outcome of a measurement ending up
in this random variable range can be associated with p, and with n tries in total, we
expect np entries within this bin.

Often one faces the problem that n, and especially p, are unknown, however the mean
np is known. Furthermore for large n the computation of the exponential and factorials
can become problematic to calculate. In such case the poisson distribution

P(X = x) = λx
e−λ

x!
(47)

is a convenient, with the mean and variance E[X] = Var[X] = λ. For large n and small
p with the condition λ = np the binominal distribution 46 becomes equivalent to the
poisson distribution, with goodness of the approximation improving as n → ∞ and
p→ 0.

Going further, when the mean λ = np is large, so in the histogram example the bin
content is large, the poisson distribution turns into the normal distribution

P(X = x) =
1√
2πσ

e
−

(x−µ)2

2σ2 (48)
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with mean E[X] = µ and variance Var[X] = σ2. In contrast to the binominal and poisson
distributions this is a continuous probability distribution. The transition condition of a
large mean is crucial, as this requires the bin content of histograms to be in in the order
of several hundred events or above. As a consequence of this, the luminosity fit is based
on a extend binned log likelihood (see equation 69), which assumes a poisson distributed
random variable, giving better results than for example a χ2 estimator, which assumes
normal distributed errors.

a.1.2 Unbinned Loglikelihood

p(~x, ~α) =
f(~x, ~α)∫xmax

xmin
f(~x′, ~α)d~x′

(49)

For observing statistically independent events a probability density function (p.d.f)
p(~x, ~α) describes the probability for an outcome ~x in the observable space X, while ~α is
the set of parameters of the p.d.f.. A probability density function underlies the condition
that the sum of probabilities over all individual outcomes is unity.∫

p(~x, ~α)d~x = 1 (50)

Then the Likelihood is built up as the product of individual probabilities for each
made observation ~xi with a total number of observations of Nobs.

L(~α) =

Nobs∏
i

p(~xi, ~α) =
Nobs∏
i

f(~xi, ~α)∫xmax
xmin

f(~x′, ~α)d~x′
(51)

For computational reasons it is advantageous to take the logarithm of the likelihood,
which results in the so call loglikelihood. This is possible due to the strictly monotonic
behavior of the logarithm.

ln(L(~α)) =

Nobs∑
i

p(~xi, ~α) =
Nobs∑
i

ln(f(~xi, ~α)) −N · ln
(∫xmax

xmin

f(~x′, ~α)d~x′
)

(52)

Defining the expected number of events as

λ =

∫xmax

xmin

f(~x′, ~α)d~x′ (53)

and substituting this into equation (54) one ends up with

ln(L(~α)) =

Nobs∑
i

ln(f(~xi, ~α)) −N · lnλ (54)
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a.1.3 Extended Unbinned Loglikelihood

In case the the probability for an individual measurement is small and the total number
of observations large then a poisson statistics factor for the expected number of events λ
can be included in 51.

Lext(~α) =
λNobse−λ

Nobs!

Nobs∏
i

p(~xi, ~α) (55)

=
λNobse−λ

Nobs!

Nobs∏
i

f(~xi, ~α)∫xmax
xmin

f(~x′, ~α)d~x′
(56)

Again taking the logarithm and use the expected number of events 53

ln(Lext(~α)) = Nobsln(λ) − λ− ln(Nobs!) +
Nobs∑
i

ln(p(~xi, ~α)) (57)

= Nobsln(λ) − λ− ln(Nobs!) +
Nobs∑
i

ln[f(~xi, ~α)] (58)

−

Nobs∑
i

ln

(∫xmax

xmin

f(~x′, ~α)d~x′
)

(59)

= Nobsln(λ) − λ− ln(Nobs!) +
Nobs∑
i

ln[f(~xi, ~α)] (60)

−

Nobs∑
i

ln(λ) (61)

= −λ− ln(Nobs!) +
Nobs∑
i

ln[f(~xi, ~α)] (62)

.
Dropping the the constant faculty term that is irrelevant for the minimization proce-

dure one ends up with

ln(Lext(~α)) = −λ+

Nobs∑
i

ln[f(~xi, ~α)] (63)

Note that due to the dropping of this very large negative term, the overall likelihood
will be shifted to higher positive values.

a.1.4 Extended Binned Loglikelihood

With increasing number of observed events Nobs, the minimization computation costs
will eventually reach its limit. In this case binned loglikelihood fits are advantageous. The
measurement range is divided into Nb bins. The ibth bin covers the interval [xL

ib
− xH

ib
]
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with a bin content of Nib . The unbinned extended likelihood function 56 then transforms
to

Lext(~α) =
λNobse−λ

Nobs!

Nb∏
ib

(∫xH
ib

xL
ib

p( ~xib , ~α)

)Nib
(64)

with
∑Nb
ib
Nib = Nobs.

Taking the logarithm once again

ln(Lext(~α)) = Nobsln(λ) − λ− ln(Nobs!) +
Nb∑
ib

Nibln

(∫xH
ib

xL
ib

p( ~xib , ~α)d ~xib

)
(65)

Dropping the constant term and making use of 49 and 53

ln(Lext(~α)) = Nobsln(λ) − λ+

Nb∑
ib

Nibln


∫xH

ib
xL
ib

f( ~xib , ~α)d ~xib∫xmax
xmin

f(~x′, ~α)d~x′

 (66)

= Nobsln(λ) − λ−

Nb∑
ib

Nibln

(∫xmax

xmin

f(~x′, ~α)d~x′
)

(67)

+

Nb∑
ib

Nibln

(∫xH
ib

xL
ib

f( ~xib , ~α)d ~xib

)
(68)

= −λ+

Nb∑
ib

Nibln

(∫xH
ib

xL
ib

f( ~xib , ~α)d ~xib

)
(69)

.
From equation 69 it becomes evident that when comparing the function with the bin

content, the model has to be integrated over the bin boundaries.

a.2 introduction to expert systems

In the branch of artificial intelligence an expert system is a computer system that emu-
lates the decision making ability of a human expert. Its two main components are the
knowledge base and the inference engine. The expertise is filled into the knowledge
base in from of rules. When a non-expert user request advice from the expert system
the inference engine will process available facts with its rules and deliver the result to
user. This concept and workflow is visualized in figure 80. The knowledge is condensed
in the form rules. Each rule can require a set of facts and when they are satisfied, the
body of the rule will be executed. In the execution process facts can be altered, destroyed
and created, and depending on the expert system, control parameters for steering the
execution such as rule priorities and pausing rules are available. This way complicated
knowledge can be modeled efficiently. Since the knowledge exists mainly in form of
rules, the level of maintenance work is minimal, as merely new rules have to be added
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ExpertUser Inference
Engine

Knowledge
Base
-Rules
-Facts

Expert System
query

advice

know

ledge

Figure 80: A general design of an expert system.

to the system in order for it to possess the new knowledge. On the downside, expert sys-
tems are incapable of adapting to advice request outside of the knowledge base territory.
Also the aspect of human common sense is missing in expert systems, which implicates
the requirement of more rules in knowledge base. A simple example of an expert system

Inference
Engine

Decay Fact 1
initial state:
final state:

Decay Fact 2
initial state:
final state:

Rule
(charge conservation)

Requirements:
Decay Fact fact

Execution Body:
check if net charge of
initial and final state are
equal, and retract fact 
otherwise

Figure 81: A simple example illustrating the usage of the expert system, which implements
charge conservation.

is shown in diagram 81, which illustrates the power of expert systems. It implements
charge conservation for reactions. The decay fact, which consists of an initial and a finale
state of particles, contains the information about the reaction. The charge conservation
rule requires a decay fact for its execution. Within its body the net charge for the initial
and final state will be calculated and compared. If they are not equal this decay fact will
be retracted/removed. In this way the only reactions that conserve charge remain.
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b.1 accelerator beam dynamics

The trajectory of a single particle at each position of the accelerator ring s is described by
the two orthogonal spacial dimensions x(s),y(s) with respect to the ideal particle trajec-
tory [123]. Few more words about magnets focusing and defocusing (FODO) These can
be calculated by solving the appropriate Hamilton equations of motion for the accelera-
tor.

Figure 82: Single particle phase space ellipse

A phase space diagram as illustrated in figure 82 is representing the particle position
offset from an ideal closed orbit x and the corresponding gradient offset x ′ from its
reference direction at a position s in a storage ring. Although the shape of the ellipse
constantly changes as a function of the position s, due to the focusing magnets, its area
stays constant as predicted by Liouville’s theorem. This area of the ellipse is also known
as the beam emittance, and is one of the accelerator performance parameters. It should be
noted that the area of the ellipse is decreased by beam cooling and increased by particle
interactions.

The following equations define the maximum displacement and gradient of particle
tracks at a position s.

xmax =
√
εβ(s) (70)
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x ′max =
√
εγ(s) (71)

These values can be computed with the knowledge of the emittance εx,y and the βx,y(s)

and γx,y(s) functions, often referred to as the Twiss functions. Those functions are pro-
vided by accelerator experts, who solve the equations of motion for each lattice setting in-
dividually. Note that the maximum track displacement equals the beam spot size, while
the maximum gradient offset is better known as the beam divergence.

For small rotations of the ellipse the beam divergence can be expressed as

x ′max =

√
ε

β(s)
(72)

The values for the beam divergence can now be approximated by first calculating the
betatron amplitude or beta function value with equation 70 and then approximating the
divergence with equation 72.

b.2 from momentum transfer t to laboratory frame θ

The theoretical calculations of the cross section for elastic antiproton proton scattering is
expressed as usual in the lorentz invariant four momentum transfer t. In order to com-
pare the model with the measured data, which is the scattering angle in the laboratory
frame, a transformation is required.

p̄cms pcms

p̄ ′cms

p ′cms

θcms

Figure 83: A kinematic drawing elastic p̄p scat-
tering in the cms frame.

As the momentum transfer t is a
lorentz invariant, it can be directly cal-
culated from kinematical variables in the
lab frame. However rewriting the for-
mula to contain only known quantities of
the experiment, the complexity increases
dramatically.

Alternatively one can make use of the
simple relationship of the scattering an-
gle and the 4-momentum transfer t in the
center-of-mass (cms) frame. The kinemat-
ics of the elastic scattering process in the
cms frame are shown in Figure 83. The
the cms frame is defined by the require-
ment of the total momentum to equal
zero. This defines the initial 4-momenta1

of the two scattering partners as

p
p̄
cms =

(
Ecms

~pcms

)
, pp

cms =

(
Ecms

−~pcms

)
(73)

1 Note that in this definition the first dimension is energy/time and the latter three the momentum/space
dimensions. In this compact notation the three momentum/space dimensions are grouped into a single
vector element and the dimension variable of the 4-vector was dropped for simplicity.
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p̄lab

p̄ ′lab

p ′lab

θlab

Figure 84: A kinematic drawing of the lab frame

and the final 4-momenta as

p
′p̄
cms =

(
Ecms

~p′cms

)
, p′pcms =

(
Ecms

−~p′cms

)
. (74)

Using 73 and 74 and the condition of elastic scattering (pcms = |~p′cms| = |~pcms|) the four
momentum transfer in the cms frame is now given by

t =(p
′p̄
cms − p

p̄
cms)

2 = p
′p̄2
cms + p

p̄2
cms − 2p

′p̄
cmsp

p̄
cms (75)

=2m2p − 2(E2cms − ~p′cms · ~pcms) (76)

=− 2p2cms + 2p
2
cms · cos θcms (77)

=− 2p2cms(1− cos θcms). (78)

Next pcms and θcms have to be expressed in terms of laboratory frame variables. A
kinematic drawing of the scattering process is shown in Figure 84

In a fixed target experiment the initial 4-vectors are simply defined as

p
p̄
lab =

(
Elab

~plab

)
, pp

lab =

(
mp

0

)
(79)

The absolute momentum in the cms frame pcms can easily be described by the center
of mass engery s, which is lorentz invariant.

s = (p
p̄
cms + p

p
cms)

2 =

(
2Ecms

0

)2
= 4(mp + pcms)

2 (80)

Using 79 the center of mass energy in the laboratory system can be written as

s = (p
p̄
lab + p

p
lab)

2 = 2m2p + 2Elabmp. (81)

When equating 80 and 81 and solving for p2cms one obtains the following relation.

4(mp + pcms)
2 = 2m2p + 2Elabmp (82)

p2cms = 2mp(Elab −mp) (83)
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Finally the scattering angle in the cms frame θcms has to be expressed as a function of
the lab frame scattering angle θlab. For this we define the scattering plane to be spanned
by the z- and x-axis, while the incoming beam particles travel along the z-axis. Hence the
initial four vectors in the lab frame (see 79) can be rewritten as

p
p̄
lab =


Elab

0

0

plab

 , pp
lab =


mp

0

0

0

 (84)

Next the velocity (or β = v
c ) of the lorentz transformation along the z-axis, that boosts

from the lab to the cms-frame, has to be determined. To obtain the four momenta in the
cms frame this lorentz boost simply has to be applied to both the beam and target four
vectors in the lab frame.

p
p̄
cms =


γ 0 0 −βγ

0 1 0 0

0 0 1 0

−βγ 0 0 γ



Elab

0

0

plab

 =


γ(Elab −βplab)

0

0

γ(plab −βElab)

 ,

(85)

p
p
cms =


γ 0 0 −βγ

0 1 0 0

0 0 1 0

−βγ 0 0 γ



mp

0

0

0

 =


γmp

0

0

−βγmp


From the requirement of the net momentum to be zero, the sum of the z-components

of the momenta of the two particles have to be zero.

γ(plab −βElab) = βγmp (86)

β =
plab

Elab +mp
(87)

To obtain the relation between the cms and the lab scattering angle, the 4 momenta of
the scattered antiproton from the cms definition has to be compared to the lab definition
applied with the boost.

p
′p̄
cms =


γ 0 0 −βγ

0 1 0 0

0 0 1 0

−βγ 0 0 γ




E′lab

p′labsinθlab

0

p′lab cos θlab

 (88)

=


γ(E′lab −βp

′
lab cos θlab)

p′labsinθlab

0

γ(p′lab cos θlab −βE
′
lab)

 (89)
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comparing this to the cms frame scattered antiproton definition

p
′p̄
cms =


E′cms

p′cmssinθcms

0

p′cms cos θcms

 (90)

p′cmssinθcms = p′lab sin θlab (91)

p′cms cos θcms = γ(p′lab cos θlab −βE
′
lab) (92)

tan θcms =
p′lab sin θlab

γ(p′lab cos θlab −βE
′
lab)

(93)

=
sin θlab

γ(cos θlab −β
E′lab
p′lab

)
(94)

So far no approximation was made, everything is perfectly exact! However the scat-
tered antiproton momentum/energy is unknown in the above formula. It differs from
the momentum/energy of the incoming beam particle by the recoil energy of the target
proton. For the small scattering angles the recoil energy is negligible and one can insert
the incoming beam parameters. By inserting equation 94 into 75, one finally ends up
with the complete formula that takes the scattering angle of the laboratory frame θlab

2 to
the 4-momentum transfer t.

t = −2p2cms(1− cos(atan

(
sin θlab

γ(cos θlab −β
Elab
plab

)

)
)) (95)

To improve the computational performance3, this equation is rewritten using the fol-
lowing trigonometrical relation.

cos(θcms) =
1√

1+ tan2(θcms)
(96)

Then equation 95 becomes

t = −2p2cms(1−
1√√√√1+( sinθlab

γ(cosθlab−β
Elab
plab

)

)2 ). (97)

The correct 4 momentum values can be determined by solving the problem numeri-
cally. We define the difference function of the specified θlab and the lab angle calculated
from a boost from a defined θcms angle in the cms coordinate system into the laboratory

2 When elastically scattering two particles of equal mass, the maximal scattering angle in the fixed target
frame (lab frame) is π/2.

3 Roughly a speed gain of 20% per evaluation is achieved with this transformation. Of course this result
depends on the compiler and machine.
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system. Using Newton’s root finding method the correct θcms can be found and inserted
into equation 75. Finally the validity of the approximation can be determined by check-
ing the relative difference between the approximation and the correct transformation,
which is shown in figure 85.
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Figure 85: Relative Difference approximate and correct t versus θlab

It should be clear to the reader that this is very computation intensive, for which
reason this approximation is mandatory in the first place, as this transformation function
is evaluated numerous times during the fit.

b.3 proton recoil energy

In elastic scattering the kinetic energy of the recoil proton can easily calculated using the
4-vectors of the frame in which the particle is initially at rest. In a fixed target experiment
this coincides with the laboratory frame. So defining the initial and final target proton
4-vectors as

pp,lab =

(
mp

0

)
, p′p,lab =

E′p,lab

~p′p,lab

 (98)

the 4-momentum transfer can be calculated to
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t = (p′p,lab − pp,lab)
2 (99)

= p′2p,lab + p
2
p,lab − 2p

′
p,labpp,lab (100)

= 2m2p − 2E′p,labmp. (101)

Using equation 101 and defining the recoil energy as the kinetic part of the final state
recoil proton one obtains

Er = E
′
p,lab −mp = −

t

2mp
(102)

Note that the value of the 4-momentum transfer is defined as a negative number so
the recoil energy is always positive.

b.4 convolution vs . resolution smearing algorithm

In reality the number of scattered anti-protons inside an angular element ∆θ at an angle
θrec is measured. This is described by equation 103.

dN(θrec)

dθrec
= L ·

∫
dθmc

dσ(θmc)

dθmc
· ε(θmc) ·

dRes(θrec − θmc, θmc)
dθrec

(103)

Here dσ(θmc)dθmc
is the probability that the antiproton was scattered into a infinitesimal θ

ring element ∆θmc at a certain θmc value. Propagating this particle through the magnetic
fields and/or material, eventually the particle may leave behind signals in the detectors.
ε(θmc) describes the probability, that the particle within the angular element ∆θmc at
a specific value of θmc is actually reconstructed. Finally due to the detector resolution
and scattering effects in material, the reconstructed angle θrec deviates from the true
angle θmc. The probability for a particle within the angular element ∆θmc at θmc to
be reconstructed at an angle θrec within ∆θrec is given by dRes(θrec−θmc,θmc)

dθrec
. To obtain

the probability of measuring scattered antiprotons inside an angular element ∆θ at an
angle θrec, an integral over all initial scattering angles has to be performed. To obtain the
number of particles scattered into this angular element within a unit of time, the over-
all probability has to be scaled with the time-integrated luminosity. Putting everything
together one ends up with equation 103.

For the special case that dRes(θrec−θmc,θmc)
dθrec

only depends on the difference θrec− θmc,
equation 103 can be simplified to 104.

dN(θrec)

dθrec
= L ·

∫
dθmc

dσ(θmc)

dθmc
· ε(θmc) ·

dRes(θrec − θmc)

dθrec
(104a)

= L · [(σ · ε) ∗ Res] (θrec) (104b)

In this case the integral over θmc turned into the convolution expressed by the op-
erator ∗. Figure 86 visualizes the equality in this special case. Here the red curve is
the probability density function dσ(θmc)

dθmc
· ε(θmc) of particles scattered at an angles θmc
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and leave behind information to be reconstructed by the detector. The black and black
dashed curves are normal distributions with equal widths, which resemble the resolu-
tion of the detector dRes(θrec−θmc)dθrec

. Note that the width of the normal distributions was
set to this arbitrary large value to clarify the mathematical concept. The overall probabil-
ity of measuring a particle in the neighborhood of θrec = 2.5mrad, that originated from
the vicinity of θmc = 4.0mrad, is calculated by the product of the values of the red and
black-dashed functions at these positions. On the other hand the solid black curve shows
the same normal function shifted to the position of 2.5mrad. Evaluating this function at
4.0mrad, one can see that the probability is equal to the dashed black curve at 2.5mrad.
Integrating over all possible θmc, the overall probability is obtained. The integral of the
product of the solid black and red curve is the convolution of these functions evaluated
at the position 2.5mrad.
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Figure 86: Special case of the detector resolution in which the equality to a convolution operation
is obtained. The red curve shows the probability density function before accounting for
smearing. The gaussian functions indicate an examplary special case for the resolution.
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c.1 dalitz plot kinematics

In general the N particle phase space is fully specified by 3N− 4 variables [91, p. 139f].
Each particle has three momentum components and an energy that specifies its kine-
matics. However through the energy-momentum relation E2 = (p · c)2 + (m · c2)2 the
mass of the particle defines its energy by the momentum and only three independent
variables remain. From momentum and energy conservation another four variables can
be eliminated and 3N− 4 particles remain.

In the special case of a scalar initial state, or when averaging over all initial spin states,
the orientation of the initial state with respect to the final state particles is arbitrary. In
consequence the degrees of freedom for a three particle final state can be reduced fur-
ther to two independent variables [9, p. 560f]. Typically two Lorentz-invariant masses are
chosen, e. g. m212 = (p1 + p2)

2/c4 and m223 = (p2 + p3)
2/c4. The visualization of those

variables is more commonly known as the Dalitz plot, with an example shown in figure
87. What makes the Dalitz plot powerful, is its ability to conclude on the existence of
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Figure 87: An example of a Dalitz plot for the decay of a particle with mass M into three particles
with masses m1,m2,m3. The kinematics limits restrict the shape of the Dalitz plot.
Here natural units with c = 1 were chosen [9].

any intermediate states and their spin properties. Here a intermediate state will appear

139
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as a band in a invariant mass combination and the modulation along the band is char-
acteristic for its spin. In section C.2 examples for cos(θ) distributions are shown, which
resemble the angular distributions of the daughters dependent on the spin properties
of the decaying particle. These cos(θ) distributions are visible in the bands of the Dalitz
plot as indicated by figure 88.
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Figure 88: The helicty angle distributions within the Dalitz plot [124]. The extreme values of
cos(θ) are taken at the boundaries of the Dalitz plot.
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c.2 single channel γπ0π0 kinematic distributions
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Figure 89: Angular distributions of the J/ψ → γπ0π0 decay in the f0(λ = 0) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 90: Angular distributions of the J/ψ → γπ0π0 decay in the f2(λ = 0) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 91: Angular distributions of the J/ψ → γπ0π0 decay in the f2(|λ| = 1) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 92: Angular distributions of the J/ψ → γπ0π0 decay in the f2(|λ| = 2) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 93: Angular distributions of the J/ψ → γπ0π0 decay in the f4(λ = 0) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 94: Angular distributions of the J/ψ → γπ0π0 decay in the f4(|λ| = 1) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 95: Angular distributions of the J/ψ → γπ0π0 decay in the f4(|λ| = 2) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve.
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Figure 96: Angular distributions of the J/ψ→ γπ0π0 decay in the ω(λ = 0) channel generated by
the ComPWA framework using the HelicityAmplitude module. The left column shows
distributions in the CMS and the right column for the two particle subsystems. The
analytic solution is indicated by the red curve and the π0 are made distinguishable
here. Note that this decay channel is parity violating.
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Figure 97: Angular distributions of the J/ψ → γπ0π0 decay in the ω(|λ| = 1) channel generated
by the ComPWA framework using the HelicityAmplitude module. The left column
shows distributions in the CMS and the right column for the two particle subsystems.
The analytic solution is indicated by the red curve and the π0 are made distinguishable
here.
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c.3 1d kinematic variable comparisons

c.3.1 ComPWA J/ψ→ γπ0π0 benchmark model MC data and ComPWA best fit result

Figure 98: 1D kinematic distributions of ComPWA generated benchmark model data. The data is
shown in blue while the ComPWA best fit result is indicated with the red line. Below
are normalized residuals.
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c.3.2 PAWIAN J/ψ→ γπ0π0 benchmark model MC data and ComPWA best fit result

Figure 99: 1D kinematic distributions of PAWIAN generated benchmark model data. The data is
shown in blue while the ComPWA best fit result is indicated with the red line. Below
are normalized residuals.
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c.4 normalized residuals for ComPWA fits on J/ψ →
γπ0π0 MC data

c.4.1 Simple model data generated with ComPWA

Figure 100: Normalized residuals of parameters of the simple model from fits on ComPWA gen-
erated data. The black curve indicates the ideal distribution with mean x̄ = 0 and a
RMS value of 1.
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c.4.2 Benchmark model data generated with ComPWA

Figure 101: Normalized residuals of parameters of the benchmark model from fits on ComPWA
generated data. The black curve indicates the ideal distribution with mean x̄ = 0 and
a RMS value of 1.
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Figure 102: Normalized residuals of parameters of the benchmark model from fits on ComPWA
generated data (cont.). The black curve indicates the ideal distribution with mean
x̄ = 0 and a RMS value of 1.
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Figure 103: Normalized residuals of parameters of the benchmark model from fits on ComPWA
generated data (cont.). The black curve indicates the ideal distribution with mean
x̄ = 0 and a RMS value of 1.
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c.4.3 Benchmark model data generated with PAWIAN

Figure 104: Normalized residuals of parameters of the benchmark model from fits on PAWIAN
generated data. The black curve indicates the ideal distribution with mean x̄ = 0 and
a RMS value of 1.
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Figure 105: Normalized residuals of parameters of the benchmark model from fits on PAWIAN
generated data (cont.). The black curve indicates the ideal distribution with mean
x̄ = 0 and a RMS value of 1.
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Figure 106: Normalized residuals of parameters of the benchmark model from fits on PAWIAN
generated data (cont.). The black curve indicates the ideal distribution with mean
x̄ = 0 and a RMS value of 1.
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