
The Pure TEXMACS Plugin

Albert Gräf

Email: dr.graef@t-online.de

Web: http://pure-lang.googlecode.com/

November 12, 2012

Table of contents

1. About Pure . 1

2. Pure Sessions . 2

3. Completion and Help . 4

4. Pure and Reduce . 5

5. Mathematical Input and Output . 6

5.1. Basic expressions . 9
5.2. Trees . 12
5.3. Lists . 13
5.4. Big operators (integrals, limits, sums, etc.) . 15
5.5. Differentials and integrals . 16
5.6. Programming . 18
5.7. Caveats . 21

6. Pure and Octave . 22

7. PostScript Output . 25

8. Pure Scripting . 25

1. About Pure

Pure is a modern-style functional programming language based on term rewriting. It offers
equational definitions with pattern matching, full symbolic rewriting capabilities, dynamic
typing, eager and lazy evaluation, lexical closures, built-in list and matrix support and an easy-
to-use C interface. The interpreter uses LLVM as a backend to JIT-compile Pure programs to
fast native code.

Pure is by itself a very advanced language for symbolic computations. In addition, both Octave
and Reduce can be run as embedded components in Pure, which creates a nicely integrated and
powerful environment for scientific computing. But Pure gives you much more than that; it pro-
vides you with a full-featured functional programming environment with a fairly comprehensive
collection of add-on modules for all major areas of computing, and the ability to interface to
other 3rd party software quite easily if needed.

The integration with TEXMACS adds another dimension by letting you write Pure programs in a
style which looks just like mathematical definitions. And these formulas don’t just sit there
looking nice, they can be executed, too! The plugin supports all major features of the TEXMACS

interface, including Pure sessions and scripting, completion of Pure keywords and function
names, accessing the Pure online help facility, as well as mathematical input and output (the
latter is implemented using the Reduce tmprint package and thus requires Reduce). The exam-
ples in this document show off some of Pure’s symbolic computing capabilities in TEXMACS,
using Pure’s onboard facilities as well as the Reduce interface which nicely integrates with Pure
and TEXMACS.

1

1

http://pure-lang.googlecode.com/
http://llvm.org/
http://www.octave.org/
http://reduce-algebra.com/

Acknowledgments. Thanks are due to Kurt Pagani who provided much help, mission-critical
Reduce/Lisp code and documentation for the Reduce and TEXMACS interfaces. Without his per-
severance, insight and encouragment this plugin wouldn’t exist.

2. Pure Sessions

You can insert a Pure session as usual with Insert | Session | Pure.

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

> fact n = if n>0 then n*fact (n-1) else 1;

> map fact (0..10);

[1,1,2,6,24,120,720,5040,40320,362880,3628800]

> show fact

fact n = if n>0 then n*fact (n-1) else 1;

As with other TEXMACS session inserts, these snippets aren’t just verbatim Pure code, they are
real interactions with the Pure interpreter, so you can rerun the calculations or enter your own
code. By these means you can use TEXMACS as a frontend for the Pure interpreter; please check
the TEXMACS documentation, section “TEXMACS as an interface”, for details. To make this work,
you’ll have to install the plugin first so that TEXMACS knows about it; instructions for that can
be found in the Pure installation instructions. The distributed configuration actually defines
various different types of Pure sessions, each with their own options for the Pure interpreter,
and it’s easy to add your own if needed.

Sessions can be formatted in different ways. Here we use the TEXMACS varsession style package
for a somewhat fancier formatting. It’s also possible to globally override formatting options such
as the color of prompts, input and output fields, by defining the pure-input and pure-output

macros accordingly; see the TEXMACS manual, section “Writing TEXMACS style files”, for details.
An example can be found in the accompanying pure-session-styles.ts file; install this in
your ~/.TeXmacs/packages directory if you want to give it a try.

Here’s another session showing plain text formatting and subsessions.

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

> fact n = if n>0 then n*fact (n-1) else 1;

1. Note that the examples in each section are to be executed in the given order, as some calculations rely on ear-
lier definitions.

2 The Pure TEXMACS Plugin

This is a subsession.

> map fact (1..10); // This is a plain text comment with math: n!=1×
 × (n− 1)×n.

[1,2,6,24,120,720,5040,40320,362880,3628800]

> show fact

fact n = if n>0 then n*fact (n-1) else 1;

>

> fact fact;

<stdin>, line 4: unhandled exception ’failed_cond’ while evaluating ’fact

fact’

> fact 30L;

265252859812191058636308480000000L

> quit

 Dead

Another session type (pure-debug, this runs the interpreter in debugging mode):

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

> fact n = if n>0 then n*fact (n-1) else 1;

> break fact

> fact 5;

** [1] fact: fact n = if n>0 then n*fact (n-1) else 1;

n = 5

(Type ’h’ for help.)

: h

Debugger commands:

a auto: step through the entire program, run unattended

c [f] continue until next breakpoint, or given function f

h help: print this list

n next step: step over reduction

p [n] print rule stack (n = number of frames)

r run: finish evaluation without debugger

s single step: step into reduction

t, b move to the top or bottom of the rule stack

u, d move up or down one level in the rule stack

x exit the interpreter (after confirmation)

. reprint current rule

! cmd execute interpreter command

Albert Gräf 3

? expr evaluate expression

<cr> single step (same as ’s’)

<eof> step through program, run unattended (same as ’a’)

: s

** [2] (>): x::int>y::int = x>y;

x = 5; y = 0

: s

++ [2] (>): x::int>y::int = x>y;

x = 5; y = 0

--> 1

** [2] (-): x::int-y::int = x-y;

x = 5; y = 1

: s

++ [2] (-): x::int-y::int = x-y;

x = 5; y = 1

--> 4

** [2] fact: fact n = if n>0 then n*fact (n-1) else 1;

n = 4

: r

120

Note that TEXMACS always runs plugins in the current working directory in which it was started,
which is also the directory from which the Pure interpreter will read its startup files. If you
start TEXMACS from the GUI, this will most likely be your home directory. It often makes more
sense to run the interpreter in the directory of the TEXMACS document hosting the Pure sessions,
so that you can keep scripts and other files needed by your sessions in the same directory.
Unfortunately, TEXMACS offers no help with this; there’s simply no way to specify a working
directory when running a session. Thus you’ll either have to run TEXMACS in the right directory
(by invoking it from the command line), or change the working directory manually inside the
Pure session. To help with the latter, the TEXMACS-hosted interpreter offers a special cdd (“cur-
rent document directory”) command:

> pwd

/home/ag

> cdd

> pwd

/home/ag/.TeXmacs/plugins/pure/doc

3. Completion and Help

Completion of Pure keywords and functions is fully supported in TEXMACS. Just type Tab as

usual and TEXMACS displays a list of possible completions in its status line. Pressing Tab again
you can cycle through the completions and pick the one that you want. For instance, you can
try this yourself on the following input line by placing the cursor behind the f and hitting the
Tab key repeatedly:

> f

4 The Pure TEXMACS Plugin

The Pure help command also works in TEXMACS. This pops up a new TEXMACS window with
the help file in it. Search terms also work as usual; you might want to try the following to find
out how the Pure help system works (this may take a while to load, so be patient):

> help online-help

Note that Pure’s online help is in html format by default. While TEXMACS can load html files, it
has to convert them to its own format first, which at least in the current version of TEXMACS is
quite slow and the rendering isn’t perfect. As a remedy, there’s TEXMACS-formatted online docu-
mentation available on the Pure website, see the Pure installation instructions for details. If
these files are installed then the Pure help can also be accessed using the corresponding options
in the Pure plugin menu which automatically appears when the cursor is inside a Pure session.
If you still prefer the html documentation, then it’s also possible to use an external graphical
html browser instead. Just set the PURE_HELP shell environment variable accordingly, the inter-
preter will then use that command to display the online help.2

4. Pure and Reduce

The following example shows how to run the Reduce computer algebra system in Pure (to make
this work, you also need to have the pure-reduce module installed; this is available as an addon
from the Pure website).

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

> using reduce;

Reduce (Free CSL version), 03-Nov-12 ...

> simplify (df (sin (x^2)) x);

2*cos (x^2)*x

Up to now we’ve only been running Pure in verbatim a.k.a. program mode. But the Pure plugin
also fully supports math input and output. These are enabled as follows:

• To use math input , you can toggle the input line between math and program (verbatim)
mode using the Ctrl+$ key combination. This isn’t a standard TEXMACS keybinding, but
is defined at the beginning of the pure-init.scm script for your convenience; you can
edit the script to change this according to your preferences. Of course, you can also use
the corresponding Focus | Input options | Mathematical input menu option or the equiva-
lent toolbar item; these become visible when the cursor is located at the input line. Or
you can make math input the default by putting the following Scheme command into
your my-init-texmacs.scm file:

(if (not (session-math-input?)) (toggle-session-math-input))

2. Note that the PURE_HELP environment variable also works outside of TEXMACS, i.e., when the interpreter is run
from Emacs or the shell. The BROWSER environment variable, however, does not change the way that the help

command works in TEXMACS, so you can use this variable instead to specify a browser program for use outside of
TEXMACS only.

Albert Gräf 5

• To enable math output , you’ll have to invoke the math function from the Pure texmacs

module. This module is always loaded when running Pure inside TEXMACS. The math

function uses the Reduce tmprint package, so the pure-reduce module must be installed
to make this work.

The verbatim function switches back to verbatim Pure output. Verbatim output is also
used as a fallback in math mode for all Pure expressions which cannot be printed through
the Reduce interface (typically because they aren’t valid Reduce expressions).

To make math output the default, you can also run a pure-math session (Insert | Session |
Pure-math) which works like a regular Pure session but enables math output and loads
the reduce module at startup.

At present this is still a bit experimental and work in progress, but it seems to work pretty well
already, as shown below. (If you notice any bugs or missing features in math input and output,
please submit a bug report on the Pure website.)

> math;

()

> simplify (df (sin (x2))x);

2 cos (x2)x

> simplify (intg (cos (x+ y)2)x);

cos (x+ y) sin (x+ y)+ x

2

A more detailed account on math input and output can be found in the following section.

5. Mathematical Input and Output

For the purposes of this section, let’s start up a regular Pure session and load the math and
reduce modules.

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

> using math, reduce;

Reduce (Free CSL version), 03-Nov-12 ...

> simplify (df (sin (x^2)) x);

2*cos (x^2)*x

To enter an expression like the one above as a mathematical formula, we must first switch the
input line to math input mode. To do that, you can go search the toolbar for Input Options |
Mathematical Input and check it, or type the key combination Ctrl $ defined by the Pure plugin.
Another useful convenience is the ? prefix operator (defined in texmacs.pure) which simplifies
its expression argument, which is quoted automagically. Here’s how the expression ? df (sin

(x^2)) x) looks like when typed in math input mode:

6 The Pure TEXMACS Plugin

> ?df (sin (x2))x;

2*cos (x^2)*x

This is pretty much the same as:

> simplify (′df (sin (x2)) x);

2*cos (x^2)*x

But it’s a lot easier to type, and the ? operator uses simplifyd rather than just simplify,
which also supports some customary notation for limits, integrals and differentials commonly
used in TEXMACS. The ?: operator does the same, but evaluates its argument; you want to use
that if the expression includes some Pure functions which should be evaluated before submitting
the result to Reduce. Note the difference:

> foox=x+1;

> ?intg(foox)x;

*** foo declared operator

intg (foo x) x

> ?: intg(foox)x;

(x^2+2*x)/2

Note that both ? and ?: are at the lowest possible precedence level in Pure so that their argu-
ments don’t have to be parenthesized (but this also means that you’ll have to parenthesize the
entire ? or ?: expression if you want to use it in the context of a larger expression).

Once we change to math output mode, simplifications of expressions are done automatically by
the pretty-printer, so we can often do without explicitly using the simplify, ? and ?: opera-
tions. We’ll do the rest of this session in this mode, so let’s switch to it now. As explained in
the previous section, this is done by invoking the math function from the texmacs module.3

> letmath;

> df (sin (x2))x;

2 cos (x2)x

Note that the df term got simplified, but that’s only in the display:

> verb ans;

df (sin (x^2)) x

To actually obtain a simplified result which can be processed further in Pure land (passed to
Pure functions or assigned to Pure variables), you still need to use ?, ?: etc.:

> ?df (sin (x2))x;

2 cos (x2)x

> verb ans;

3. Note the let keyword before the call to math. In Pure this normally indicates a global variable definition, but
if the left-hand side is omitted, the interpreter executes the right-hand side expression as usual and skips the
printing of the result, similar to what the $ terminator does in Reduce. We’ll use this trick a lot in the following,
to suppress uninteresting evaluation results.

Albert Gräf 7

2*cos (x^2)*x

Note that the function verb from the texmacs module lets us peek at how the verbatim result
looks like, without actually switching to verbatim mode. Similarly, the mth function temporarily
switches the output mode to math mode when in verbatim mode.

There are some Pure expressions (such as strings, lambdas and pointers) which are always
printed verbatim. However, the pretty-printer will try to print as much of the result in math
mode as it can. For instance:

> (\x->x^2),"abc",df (sin (x^2)) x*y;

#<closure 0x7f1db00e3580>,"abc",2 cos (x2)x y

There are in fact two different variations of math output mode. Just calling math is the same as
algebraic which corresponds to Reduce’s algebraic mode and causes printed expressions to be
simplified before they are printed. In contrast, symbolic employs Reduce’s symbolic mode to
pretty-print the raw expressions without simplifying them.4 Likewise, there are functions alg

(which is a synonym for mth) and symb to temporarily switch to the algebraic and symbolic
math output modes, respectively. For instance:

> df (sin (x2))x; // still in algebraic math mode

2 cos (x2)x

> symb ans; // the same in symbolic math mode

∂ sin (x2)

∂ x

> verb ans; // the same as a verbatim Pure expression

df (sin (x^2)) x

Note that there are some kinds of symbolic expressions (specifically, the logical expressions other
than equality) which aren’t by default valid in Reduce’s algebraic mode, but work in symbolic
mode:

> x> y∧ y > 0;

x>=y&&y>0

> symb ans;

x≥ y ∧ y > 0

> ?x> 0;

***** > invalid as algebraic operator

***** > invalid as algebraic operator

x>0

As a remedy, you can just declare the logical operations as Reduce operators; this won’t actu-
ally convince Reduce to simplify them, but at least it gets rid of those annoying error messages
and also makes the pretty-printer do a nicer job in algebraic mode:

4. Note that these commands don’t actually change Reduce’s internal mode of operation, they only affect the dis-
play mode in TEXMACS.

8 The Pure TEXMACS Plugin

> declare operator [(�), (<), (>), (6), (>), (¬), (∧), (∨)];

()

> x> y∧ y > 0;

x≥ y ∧ y > 0

> ?x> y ∧ y > 0;

x≥ y ∧ y > 0

5.1. Basic expressions

Most mathematical expressions are mapped to corresponding Pure expressions in a sensible way.
We start out by declaring a few additional operators to be used below, so that they are known
to Reduce. (This isn’t strictly necessary, but silences the “declared operator” messages from
Reduce.)

> let declare operator [above, below, binom];

> (\x→ 2 x+α) 5; // lambdas

α+10

> xk, x
k, xk , xk , x

k
, x

k
; // sub- and superscripts

x!k,xk,x!k,xk,below(x, k),above(x, k)

>
x

y
,
x

y
,
x

y
, /x y, x/y; // fractions

x

y
,
x

y
,
x

y
,
x

y
,
x

y

> 189÷ 30; // exact division p%q, yields Pure rationals

63

10

>
(

n− 1
k− 1

)

+
(

n− 1
k

)

; // binomials

binom(n− 1, k− 1)+ binom(n− 1, k)

>

(

a b

b −a

)

,
a b

b −a
,
a b

b −a
; // matrices and tables (various formats)

(

a b

b −a

)

,

(

a b

b −a

)

,

(

a b

b −a

)

>

∣

∣

∣

∣

a b

b −a

∣

∣

∣

∣

; // determinants

−(a2+ b2)

> (a b c),

a

b

c

; // vectors

Albert Gräf 9

(a b c),

a

b

c

> exp (x)α+ β; // arithmetic

exα+ β

> x2+ y2
√

, x3
√

; // roots

x2+ y2
√

, x3
√

> ¬A∧ (B ∨C); // logic

¬(A)∧ (B ∨C)

> x> y, x< y, x> y, x6 y, x� y, x� y; // comparisons

x> y,x< y,x≥ y,x≤ y,x� y,x� y

> ′(x≡ y, x
 y); // syntactic equality (=== / ~== in Pure)

x===y,x~==y

> eval ans;

0,1

> [1, 2, 3]; // lists

[1, 2, 3]

> 1	 10; 1: 3	 11; // arithmetic sequences

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 3, 5, 7, 9, 11]

> [a+1 | a=1	 10; amod 2]; // comprehensions

[2, 4, 6, 8, 10]

> (a, b+1); [a, b+1]; 〈a, b+1〉; Ja, b+1K; ⌊n/2⌋; ⌈n/2⌉; |x|; ‖x‖; // various brackets

a,b+1
[a , b+1]
a,b+1
[a , b+1]

floor
(

n

2

)

ceiling
(

n

2

)

abs(x)
norm(x)

> let declare operator [hat, tilde, bar, vect, check, breve, dot, ddot, acute, grave];

> x̂; x̃; x̄ ;xR ; x̌; x̆; ẋ; ẍ; x́; x̀;′x;′′x;x;∼x; // accents, primes, etc.

hat(x)
tilde(x)
bar(x)

10 The Pure TEXMACS Plugin

vect(x)
check(x)
breve(x)
dot(x)
ddot(x)
acute(x)
grave(x)
x

’x

¬(x)
¬(x)

> x⊕ y;x⊖ y;x⊗ y;x⊘y;x± y;x∓ y;x÷ y;x∩ y;x∪ y;x⊎ y; // infix operators

x oplus y

x ominus y

x otimes y

x oslash y

x pm y

x mp y

x%y

x cap y

x cup y

x uplus y

> α; Γ;Z; z;0; C;F; u, v,w;Q; // Greek symbols, special glyphs

α

Γ
Z

z

0
C

F

u,v,w

QQ

> foo, bar, baz, gnu, gna, gnats; // special markup

foo,bar,baz,gnu,gna,gnats

> A,B , A,B, A,B ,A,B , A,B,A,B ,A,B ,A,B ,A,B ; // various sizes

A,B,A,B,A,B,A,B,A,B,A,B,A,B,A,B,A,B

More examples using list and matrix comprehensions (these are all plain Pure evaluations,
Reduce is only used for the pretty-printing here):5

> ‖X< matrix‖= sum [x2|x=X]
√

;

> ‖(1 2 3 4)‖;

5.47722557505

> [2 x+1|x=1	 5];

5. Note that in order to get the single vertical bar | in math mode, you’ll have to type either Shift+F5 | or

Alt+M | (the latter gives you a “big” | symbol which automatically expands with the brackets surrounding it).

Albert Gräf 11

[3, 5, 7, 9, 11]

> eyen=(i� j |i=1	n; j=1	n);

> eye 3;

1 0 0
0 1 0
0 0 1

Here’s an example of an infinite list, a prime sieve:

> letP = sieve (2	∞)with sieve(p: qs)=p: sieve[q |q= qs; qmod p]& end;

> P !!(0	 20);

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
, 73]

> list (take 20 (drop 100P));

[547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641 , 643, 647, 653, 659]

5.2. Trees

TEXMACS has a nice and convenient notation for labelled trees. These are handled gracefully in
Pure as well:

> let declare operator tree;

> a

b c x

y z

;

tree(a, b, c, tree(x, y, z))

Because tree is variadic (a tree may have any number of subtrees), it’s denoted as an uncurried
function in Pure. The first argument of tree is always the label of the root node, the remaining
arguments are the subtrees and/or leaves beneath the root node. The simplest way to translate
this into a nested Pure list for easier processing is to just define tree as the standard Pure func-
tion list:

> tree= list;

> a

b c x

y z

;

[a , b , c , [x, y , z]]

This corresponds to a preorder traversal of the tree. If you prefer to have the labels of the
branches as separate arguments then you might use a definition like the following instead:

> clear tree

12 The Pure TEXMACS Plugin

> declare operator branch;

()

> tree (x, ys< tuple)= branch x (list ys); tree (x, y)= branch x [y];

> a

b c x

y z

;

branch(a, [b , c , branch(x, [y , z])])

Note that the way we defined tree, branch is in fact a curried constructor; the uncurried nota-
tion is an artifact of the pretty-printing here. As a verbatim Pure term the result looks like this:

> verb ans;

branch a [b,c,branch x [y,z]]

If the trees denote valid Pure terms then you might wish to get rid of all the extra baggage and
just translate them to plain Pure applications. Here’s a third variation of tree which does this:

> clear tree

> treex= foldl1 ($) (listx);

> f

a b (×)

y z

;

*** f declared operator

f (a, b, y z)

> verb ans;

f a b (y*z)

With this definition of tree you can now enter arbitrary Pure expressions as trees if you like:

> (ˆ)

(+)

a b

2

;

a2+2 a b+ b2

> verb ans;

(a+b)^2

5.3. Lists

List and vector/matrix data can be exchanged between Pure and Reduce in a seamless fashion.
This makes it easy to inspect and manipulate compound results returned by Reduce, such as
lists of partial fractions:

Albert Gräf 13

> let p=2/((x+1)2 (x+2)); p;

2

x3+4x2+5x+2

> let off exp; p; // expansion switched off

2

(x+2) (x+1)2

> let pfs=?: pf p x; pfs;

[

2

x+2
,

−2

x+1
,

2

(x+1)2

]

> map (\y→ df y x) pfs;

[

−2

(x+2)2
,

2

(x+1)2
,

−4

(x+1)3

]

> let on exp; ans; // expansion switched back on again

[

−2

x2+4 x+4
,

2

x2+2x+1
,

−4

x3+3x2+3x+1

]

Let’s consider another typical example, equation solving:

> let eqn= log (sin (x+3))5� 8; eqn;

log (sin (x+3))5� 8

> let solns=?: solve eqn x;

> #solns; take 2 solns;

10
[

x� 2 arbint(5)π+ arcsin

(

exp
(

23/5 cos
(2π

5

))

exp
(

23/5 sin
(2π

5

)

i
)

)

− 3, x� 2 arbint(5) π−

arcsin

(

exp
(

23/5 cos
(2 π

5

))

exp
(

23/5 sin
(2 π

5

)

i
)

)

+ π− 3

]

> let solns=?: reduce_with [arbint⇒ cst 0] solns; take 2 solns;

[

x� arcsin

(

exp
(

23/5 cos
(2 π

5

))

exp
(

23/5 sin
(2π

5

)

i
)

)

− 3, x� −arcsin

(

exp
(

23/5 cos
(2 π

5

))

exp
(

23/5 sin
(2 π

5

)

i
)

)

+π − 3

]

> check (u� v) (x� y)= eval(?: reduce_with [x⇒ y] |u− v |);
> ∆s= check eqn s; let ε= 10−8;

> [y |x� y= solns; ∆(x� y)� 0]; // exact zeros

[

arcsin
(

e2
3/5
)

− 3, − arcsin
(

e2
3/5
)

+π − 3
]

> [y | s@(x� y) = solns; ∆s� 0∧∆s6 ε]; // inexact zeros

[

arcsin

(

exp

(

23/5 cos

(

2 π

5

)

+23/5 sin

(

2 π

5

)

i

))

− 3

]

14 The Pure TEXMACS Plugin

> [y⇒∆s| s@(x� y)= solns; ∆s> ε]; // what’s up with these??

[

arcsin

(

exp
(

23/5 cos
(2π

5

))

exp
((

23/5 sin
(2π

5

))

i
)

)

− 3⇒ 7.8764,

(

−arcsin

(

exp
(

23/5 cos
(2 π

5

))

exp
((

23/5 sin
(2π

5

))

i
)

)

+π

)

−

3⇒ 7.8764,

arcsin

(

1

exp
(

23/5 cos
(π

5

)

+
(

23/5 sin
(π

5

))

i
)

)

− 3⇒ 7.8764,

(

−

arcsin

(

1

exp
(

23/5 cos
(π

5

)

+
(

23/5 sin
(π

5

))

i
)

)

+ π

)

− 3⇒ 7.8764,

arcsin

(

exp
((

23/5 sin
(π

5

))

i
)

e
23/5cos

(π

5

)

)

− 3⇒ 7.8764,

(

−arcsin

(

exp
((

23/5 sin
(π

5

))

i
)

e
23/5cos

(π

5

)

)

+ π

)

− 3⇒

7.8764,
(

−arcsin

(

exp

(

23/5 cos

(

2π

5

)

+

(

23/5 sin

(

2π

5

))

i

))

+ π

)

− 3⇒ 7.8764

]

5.4. Big operators (integrals, limits, sums, etc.)

Big operators (Insert | Symbol | Big operator in math mode) are mapped to corresponding Pure
expressions, generally using a Reduce-compatible form:

>

∫

sin xdx;

−cos (x)

> reduce::load "defint"; // we need this for the definite integrals

0

>

∫

a

b

x2dx;

∫

a

b

x2dx;

−a3+ b3

3
−a3+ b3

3

> lim
x→0

(1/x), lim
x→∞

(x sin (1/x)), lim
x→∞

1

x
;

∞,1,0

>

∫

sin xdx,

∫

a

b

x2dx,

∫

a

b

x2dx;

−cos (x),
−a3+ b3

3
,
−a3+ b3

3

>
∑

k=1

n

(2 k− 1),
∏

k=1

n

(2 k− 1);

Albert Gräf 15

n2,
2 γ (2n)

2n γ(n)

>
∑

k=0

n−1

(a+ k r),
∏

k=1

n
k

k+2
;

n (2 a+n r− r)

2
,

2

n2+3n+2

Sums and products with known (i.e., non-symbolic) bounds are translated to the appropriate
aggregates of Pure list comprehensions so that they can be computed directly in Pure:

>
∑

k=1

5

(2 k− 1),
∏

k=1

5

(2 k− 1);

25,945

This is always the case if the entire generator clause is given as a subscript and the superscript
is absent:

>
∑

k=1	 5

(2 k− 1),
∏

k=1	 5

(2 k− 1);

25,945

Note that the above is equivalent to the following verbatim Pure code:

sum [(2*k-1)|k=1..5], prod [(2*k-1)|k=1..5];

The same holds for a number of other big operators, such as the big wedge and vee, which have
no counterpart in Reduce. These aren’t predefined in Pure either, but we can implement some
useful Pure operations with them, for instance:

> bigwedge= foldl (∧) true; bigvee= foldl (∨) false;

>
∧

k=1

n

(xk−1> 0),
∨

k=1

n

(xk−1< 0)whenx=−3	 3;n=#x end;

0,1

5.5. Differentials and integrals

Both differentials and integrals can be specified using customary mathematical notation which
gets translated to invocations of the Reduce df and int operators (the latter is actually named
intg in Pure, to avoid a name clash with the built-in Pure function int). They are constructed
according to the following syntactical rules:

• The differential operator is written as d x, which may be denoted either as a function
application (with a space between d and x) or as a product with an (invisible) multiplica-
tion sign * between d and x. Instead of d, you can also use the upright d symbol (\mathd
or d Tab Tab in math input mode), in which case no delimiter between d and x is needed.
In the case of differentials you may also use the partial symbol ∂ (\partial or d

Tab Tab Tab) instead.

• Integrals take the form
∫

f d x (\big int or Shift+F5 Shift+I) with the appropriate
delimiters between f , d and x (either invisible multiplication signs or spaces; again these
may be omitted if the special upright d symbol is used).

16 The Pure TEXMACS Plugin

• Differentials are written as a quotient df/dx, using either the / operator or an explicit
fraction (\frac or Alt+F).6 Higher-order differentials may be denoted either as an appli-
cation dkf/dxk or with a superscript dkf/dxk. In either case, multiple differentiation
variables can be given as a product of the corresponding differential terms in the denomi-
nator, such as ∂2f/(∂x ∂y). Moreover, the notation d/dx f (with a multiplication sign
between d/dx and f) is provided as an alternative to df/dx.

• Note that if f or x are compound expressions, you may have to put them in parentheses
according to the rules of Pure syntax. (If multiplication signs are used as delimiters and
both f and x are either symbols or function applications, this is usually unnecessary since
these bind stronger than both multiplication and exponents.)

Of course, in either case you may also just write the corresponding Pure/Reduce call, which is
often easier to type, but doesn’t nearly look as nice and mathematical. It is also instructive to
take a look at how Reduce itself renders calls to intg and df; you can always copy such output
to the input line again and it should just work. Here are some examples.

> let declare depend [f , x];

> df fx2, intg fx;

∂2 f

∂ x2
,

∫

f d x

> ∂2 f/∂x2;

∂2 f

∂ x2

>

∫

2 f(x)dx;

2

∫

f(x) d x

>

∫

2 f(x)d (cosx);

2 cos (x) f(x)

> d2(x3)/dx2;

6x

>
∂9(x2 y3 z4)

∂x2 ∂y3 ∂z4
;

288

> d/dx (x+ y)5;

5 (x4+4 x3 y+6x2 y2+4x y3+ y4)

> d/dx (sin (x) cos (x));

6. Note that in the former case the denominator dx has to be parenthesized if it is written in multiplicative form.
This is because the multiplication operators including * and / are left-associative in Pure, so d*f/d*x will be
parsed as ((d*f)/d)*x rather than (d*f)/(d*x). This pitfall can be avoided by just using an explicit fraction
instead.

Albert Gräf 17

cos (x)2− sin (x)2

>

∫

sin (2 x)dx;

−cos (2x)

2

>

∫

x2 (ax+ b)ndxwhen b=0 end;

xn anx3

n+3

It is often convenient to abbreviate parametric Reduce expressions using Pure functions. We’ll
learn about different ways to enter Pure functions in math mode below, but for the moment it
suffices to know that the simplest form is just f x1
 xn = rhs where f is the name of the func-
tion, x1, 	 , xn are the parameters and rhs is the right-hand side (the body) of the definition.
Note the missing parentheses around the parameters. Pure uses the curried notation for function
applications where the parameters simply follow the function, similar to shell command syntax.
For compatibility with Reduce, function calls in Reduce expressions can also be specified in the
usual uncurried form f(x1,	 , xn), but Pure definitions and expressions generally use the curried
form. For instance:

> I a b n=?

∫

x2 (a x+ b)ndx;

Note that we employed the ? operator here so that the I function produces a simplified result
rather than just a literal integral which then needs to be computed when pretty-printed.

> Iabn;

(ax+ b)n (a3n2x3+3 a3nx3+2 a3x3+ a2 b n2x2+ a2 b n x2− 2 a b2nx+2 b3)

a3 (n3+6n2+11n+6)

> Iab0;

x3

3

> I 0bn;

bnx3

3

> Ia0k;

xk akx3

k+3

5.6. Programming

We’ve already seen various simple kinds of Pure programs (i.e., function definitions) throughout
this section. One important thing to note here is that all supported math elements not only
work in expressions to be evaluated, but also when defining functions, on both sides of the defini-
tion. We can make good use of this to make Pure code look like real mathematical formulas.
For instance, let’s define a prettier notation for the list slicing operator (!! in Pure). We’d actu-
ally like to write an ordinary index in math mode, like this:

18 The Pure TEXMACS Plugin

> (xs)1	 n;

xs!(1..n)

As you can see, this kind of expression isn’t readily defined in Pure, so we can do it ourselves:

> (xs< list)ys< list= xs!!ys;

That’s it. Now we can write:

> (”a”	 ”z”)10	 16;

["k","l","m","n","o","p","q"]

> letP = sieve (2	∞)with sieve(p: qs)=p: sieve[q |q= qs; qmod p]& end;

> P99	 117;

[541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619,
631 , 641, 643, 647]

Let’s consider another example, the binomials:

>
(

n

k

)

;

binom(n, k)

This function isn’t predefined in Pure either, so let’s do that now. To get nicely aligned equa-
tions, we’ll use an equation array this time. This is available as \eqnarray in math mode; simi-
larly, the binomials can be entered with \binom in math mode:

>
(

n< int
k< int

)

=
(

n− 1
k− 1

)

+
(

n− 1
k

)

if n>k∧ k > 0;

= 1 otherwise;

> show binom

binom n::int k::int = binom (n-1) (k-1)+binom (n-1) k if n>k&&k>0;

binom n::int k::int = 1;

Let’s calculate the first five rows of the Pascal triangle to see that it works:

>
[[(

n

k

)∣

∣

∣k=0	n
]∣

∣

∣n=0	 5
]

;

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1]]

Of course, the text book formula we used above isn’t the best way to implement binomials. The
following algorithm employing factorials is much faster; it also uses bigints to prevent wrapover.

> clear binom

>
(

n< int
k< int

)

=

(

∏

i=k+1L

n

i

)

div

(

∏

i=1L

n−k

i

)

;

>
(

30
14

)

;

Albert Gräf 19

145422675

As we already saw in the prime sieve example, Pure can deal with “lazy” lists (called streams in
functional programming parlance) just fine. So let’s be bold and just define the infinite stream
of all rows of the Pascal triangle. This is easily done with a nested list comprehension in Pure:

> binomials=
[[(

n

k

)∣

∣

∣k=0	n
]∣

∣

∣n=0	∞
]

;

> binomials; binomials0	 5; binomials30;

[1]:#<thunk 0x7ff6b44e0ef0>

[[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1], [1, 5, 10, 10, 5, 1]]
[1, 30, 435, 4060, 27405, 142506, 593775, 2035800, 5852925, 14307150,
30045015 , 54627300, 86493225, 119759850, 145422675, 155117520, 145422675,
119759850 , 86493225, 54627300, 30045015, 14307150, 5852925, 2035800, 593775
, 142506 , 27405, 4060, 435, 30, 1]

Sometimes we may want to align subterms in expressions or definitions, in order to improve the
readability of a formula. TEXMACS provides the stack construct for this purpose, which arranges
stuff in rows and columns pretty much like a matrix. The Pure converter simply traverses this

construct in row-major order. Thus the
x y
z t

stack will expand to just x y z t in Pure. This

can be used, in particular, to align the parts of an equation or comprehension. For instance:

>

[

(

n

k

)

∣

∣

∣

∣

n = 0	 5;
k = 0	n

]

;

[1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1]

Note that the above produces exactly the same result as the following linear notation:

>
[(

n

k

)∣

∣

∣n=0	 5; k=0	n
]

;

[1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1]

Moreover, the TEXMACS choice construct can be used to write Pure function definitions involving
guards in a compact and pretty way. For instance, here’s another definition of the factorial, this
time entered in math mode:7

> fact(n) =

{

1 if n6 0
n× fact(n− 1) otherwise

;

> map fact (0	 12);

[1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600]

The above definition is in fact equivalent to the following verbatim Pure code (which isn’t all
that unreadable either, as Pure’s function definition syntax already mimics mathematical nota-
tion very closely):

fact(n) = 1 if n<=0; = n*fact(n-1) otherwise;

Of course, the same construct can also be used to define local functions:

7. Note that the if keyword is mandatory here, as it is required by the Pure syntax (as are the semicolons). The
otherwise keyword is just syntactic sugar, however, although it often improves readability.

20 The Pure TEXMACS Plugin

> map fact (0	 12) with fact(n)=

{

1 if n6 0
n× fact(n− 1) otherwise

end;

[1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600]

Last but not least, the choice construct can also be used with Pure’s pattern-matching case

expressions. Note that the closing end of the case expression is omitted, the choice construct
supplies it automatically.

> |xs< list|= case xs of

{

[] = 0
x: xs = 1+ |xs| otherwise

;

> |1: 3	 100|;

50

This defines |xs| (a.k.a. abs xs in Pure notation) to compute the size of a list xs (similar to
what Pure’s # operator does). For instance, let’s count the number of primes up to 5000 (this
may take a little while; alas, our definition of the prime sieve isn’t very efficient!):

> letP = sieve (2	∞)with sieve(p: qs)=p: sieve[q |q= qs; qmod p]& end;

> |takewhile (65000)P |;

669

5.7. Caveats

TEXMACS doesn’t know anything about Pure syntax; as far as it is concerned, Pure’s functions,
operators and keywords are just text. So there are situations in which you may have to help the
converter along by adding parentheses to disambiguate the parsing. This is true, in particular,
for big operators (integrals, sums, etc., especially in conjunction with Pure with and when

clauses) and differentials. Even an invisible bracket (shortcut: (Space) will be good enough. For
instance:

> let math;

Reduce (Free CSL version), 03-Nov-12 ...

> dx2/dx;

*** d declared operator

d(x)

Note the missing bracket around x2. As verb reveals, this yields (d x)^2 instead of d (x^2)

(which is what we want):

> verb ans;

d x^2/d x

The remedy is to just parenthesize the x2 term:

> d(x2)/dx; // use parentheses around x2 to disambiguate

2x

Albert Gräf 21

> dx2/dx; // even an invisible bracket around x2 does the trick

2x

Here’s another snippet which produces a strange error:

>
∑

k=1	 n

(2 k− 1),
∏

k=1	n

(2 k− 1)when n=5 end;

<stdin>, line 6: syntax error, unexpected ’|’, expecting end

The tuple (comma operator) binds stronger than the when clause, so this looks like valid Pure
syntax. What went wrong? Unfortunately, we can’t use verb to reveal how Pure parsed the
expression here, because it couldn’t! But there’s a neat trick to show us what exactly TEXMACS

fed into the Pure interpreter: just copy and paste the entire expression to another input line
operated in verbatim input mode. We get:

> sum [(2*k-1)|k=1..n],prod [(2*k-1) when n |k=1..n]= 5 end;

Note that for TEXMACS the “(2 k − 1)when n” part looks like any other ordinary term belonging
under the product on the right, which is followed by an equals sign and another term “5 end”.
This makes perfect sense for TEXMACS, but it’s not valid Pure syntax. This wouldn’t normally
be a problem (Pure would be able to reparse the expression correctly anyway), if it wasn’t for
the

∏

operator which translates to a Pure list comprehension. So the “(2 k − 1) when n” part
ended up in this list comprehension where it doesn’t belong, hence the somewhat surprising
syntax error.

Placing brackets around either the entire tuple or just the product on the right correctly resolves
the ambiguity. In this case, we might as well use visible parentheses, since they make the
expression easier to parse for human readers, too:

>

(

∑

k=1	n

(2 k− 1),
∏

k=1	n

(2 k− 1)
)

when n=5 end;

25,945

We can copy/paste the modified expression to a verbatim input line again, to confirm that it
was converted correctly this time:

> (sum [(2*k-1)|k=1..n],prod [(2*k-1)|k=1..n]) when n = 5 end;

6. Pure and Octave

It’s also possible to call Octave from Pure in order to do numeric calculations, and use the math
output mode to handle the pretty-printing via Reduce. To do this, you also need to have the
pure-octave package installed. For instance:

__ \ | | __| _ \ Pure 0.56 (x86_64-unknown-linux-gnu)

| | | | | __/ Copyright (c) 2008-2012 by Albert Graef

.__/ __,_|_| ___| (Type ’help’ for help, ’help copying’

_| for license information.)

Loaded prelude from /usr/lib/pure/prelude.pure.

22 The Pure TEXMACS Plugin

> using octave; let math;

Reduce (Free CSL version), 03-Nov-12 ...

> eig x = octave_call ”eig”1 (dmatrixx);
eig2 x = octave_call ”eig”2 (dmatrixx);

> eig

(

1 2
3 4

)

; // eigenvalues only

(

−0.372281323269
5.37228132327

)

> eig2

(

1 2
3 4

)

; // eigenvectors and diagonalized matrix

(

−0.824564840132 −0.415973557919
0.565767464969 −0.909376709132

)

,

(

−0.372281323269 0
0 5.37228132327

)

It goes without saying that this is pretty useful if a problem calls for a mix of symbolic and
numeric algorithms. It’s also possible to call back into Pure from Octave, and thereby into
Reduce. To do this, you need to wrap up the computation as a Pure function which in turn uses
? or ?: to invoke Reduce. Just to illustrate how this works, here’s a (somewhat contrived)
example where we call the Reduce transpose function tp from Octave:

> tpx< matrix=?tp(x);

> octave_call "pure_call" 1 ("tp",{1,2;3,4});

(

1 3
2 4

)

> let octave_eval "pure_call(’tp’,[1 2;3 4])"; // Octave output!

ans =

1 3

2 4

In a similar fashion you might, e.g., have Octave call Pure to solve an equation which Octave
itself can’t handle.

With the gnuplot.pure module included in the latest version of the pure-octave package, you
can also make good use of Octave’s Gnuplot interface. There’s a convenience function named
psplot in the texmacs module which grabs an Octave plot in PostScript format and pipes it
into TEXMACS so that it gets inserted directly into the session output. (The psplot function is
in fact just a little wrapper around the Octave print function and the ps function from the
texmacs module described in the following section.)

For instance, here’s how to do a basic function plot. We have to import the gnuplot module
and, since we’re doing all calculations in Pure here, we also need the math module for the sin

and cos functions. Also note that the Octave plotting functions are all in their own gnuplot

namespace, so for convenience we import this namespace. The gnuplot module also provides
various utility functions such as linspace which we use here to generate a vector of x values for
the plot.

> using gnuplot,math;using namespace gnuplot;

Albert Gräf 23

> letx= linspace(0, 4π); let fig1= plot(x,map sinx, x,map cos x); axis ”tight”;

()

> psplot();

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

"/tmp/oct-7P9aFt.eps"

As you can see, the psplot function also returns the name of the PostScript file it generated,
which is a temporary file by default. It’s also possible to explicitly specify a filename and other
options understood by the gnuplot::print command. For instance:

> let fig2= sombrero(); psplot ”sombrero.eps”;

-10

-5

0

5

10

-10

-5

0

5

10-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

"sombrero.eps"

24 The Pure TEXMACS Plugin

The given filename is interpreted relative to the current directory of the interpreter (which is
normally the directory in which TEXMACS was started).

You can also display the Gnuplot window for 3d viewing, and hide it again, as follows (these
operations aren’t part of Octave’s plot functions, but are provided as convenience functions in
the gnuplot module):

> popup();

()

> popdn();

()

Octave’s Gnuplot interface is very comprehensive. Please refer to the Octave manual for a
description of the provided plotting functions. Most of the plotting examples given in the
Octave documentation can be translated to Pure in a fairly straightforward manner. More
examples can be found in the pure-octave package.

7. PostScript Output

Like the Python plugin, Pure can pipe PostScript graphics directly into TEXMACS. This is done
with the ps function from the texmacs module which takes either verbatim PostScript code
(indicated by a %! header) or a PostScript filename as its string argument. In the latter case, if
the PostScript filename doesn’t have a slash in it, it is searched for in all directories on the
TEXMACS_DOC_PATH, and a .eps or .ps suffix is added automatically when needed. Otherwise
the filename is interpreted relative to the current directory of the interpreter (which is normally
the directory in which TEXMACS was started).

Here is a simple example illustrating verbatim PostScript code:

> ps "%!\n%%BoundingBox: 195 295 405 405\n/Times-Roman findfont 20 scalefont

setfont newpath 200 300 moveto 200 0 rlineto 0 100 rlineto -200 0 rlineto 0 -

100 rlineto 235 345 moveto (Hello, world!) show closepath stroke showpage";

Hello, world!

()

8. Pure Scripting

Last but not least, Pure can also be used as a scripting language in TEXMACS. This is done by
enabling the Document | Scripts | Pure option (or Document | Scripts | Pure-math if you prefer
math output; this is what we use here). This enables a few additional options in the Pure plugin
menu, as well as the Insert | Link menu and the corresponding toolbar button. These facilities
are described in more detail at the end of the “TEXMACS as an interface” section in the TEXMACS

online help, so we only give a few basic examples here.

Albert Gräf 25

For instance, you can just select any valid Pure expression in the text and evaluate it with the
Evaluate option of the Pure menu or Ctrl+Return like this: (a+ b)2 → a2+2 a b+ b2. It’s also pos-

sible to create an executable switch such as Pure-script-math df((x+ y)3, x) which can be toggled

between input and computed result by pressing Return inside the field (try it!).

Note that as an additional convenience, the scripting plugins accept a simple expression without
the trailing semicolon as input. This is in contrast to the regular Pure plugins which allow you
to enter definitions and expressions spanning multiple input lines, but also require you to termi-
nate each input item with a semicolon. With the scripting plugins the terminating semicolon is
optional and will be added automatically when needed, but it also doesn’t hurt if you type it

anyway: Pure-script-math df((x+ y)3, x);

There’s also the possibility to work with executable fields and spreadsheets . These offer the
advantage that fields may depend on other fields in the same document.8 For instance, here is an
example of a textual spreadsheet (Insert | Table | Textual spreadsheet) showing some Pure and

Reduce calculations. Type Return in the cells of the last column to reveal the underlying Pure
formulas; also try changing some of the values in the b and c columns and hitting Return to
recompute the corresponding values in the last column.

a1 b c d

2 1 12 1932053504

3 17 33 50

4 sin (x2) x 2 cos (x2)x
5 (x+ y)3 x 3 (x2+2 x y+ y2)

You can also refer to a table field in text like this: 2 cos (x2) x. Here we set the Ref field of the
table to table1; the reference to cell d4 can then be entered with the following series of key
strokes: \ ! \ ? table1-d4 Return .

Executable fields can be used to run arbitrary Pure code. For instance, here’s the PostScript
example from the previous section as a field (again, you can hit Return on the field to reveal the
actual Pure code):

Hello, world!

Note that scripting by default uses its own instance of the Pure interpreter which is separate
from all Pure sessions that might be included in the same document. But with executable
switches it’s possible to hook into any Pure session, so that you can use variables and functions
defined or imported in that session. To do this, you’ll have to create an executable switch for a
specific session type (Insert | Fold | Executable). (Also note that in this case the expressions must

be terminated with a semicolon, just like in a regular Pure session.) For instance, the following
switch hooks into the Octave session from above:

(

−0.824564840132 −0.415973557919
0.565767464969 −0.909376709132

)

,

(

−0.372281323269 0
0 5.37228132327

)

In the same fashion we can also reproduce the plot of the sombrero:

8. Be warned that this might become very slow in large documents; however, it’s possible to work around this
limitation by breaking your document into smaller include files.

26 The Pure TEXMACS Plugin

-10

-5

0

5

10

-10

-5

0

5

10-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Albert Gräf 27

