
Releasing the PSYCO: Using Symbolic Search in Interface
Generation for Java

Malte Mues
Clausthal University of
Technology, Germany

malte.mues@tu-
clausthal.de

Falk Howar
Clausthal University of
Technology, Germany

falk.howar@tu-
clausthal.de

Kasper Luckow
Carnegie Mellon University

Silicon Valley, Mountain View,
CA, USA

kasper.luckow@sv.cmu.edu

Temesghen Kahsai
NASA Ames Research Center,

Moffett Field, CA, USA
teme.kahsai@sv.cmu.edu

Zvonimir Rakamarić
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ABSTRACT

The Java PathFinder extension Psyco generates interfaces
of Java components using a combination of dynamic sym-
bolic execution and automata learning to explore different
combinations of method invocations on a component. Such
interfaces are useful in contract-based compositional verifi-
cation of component-based systems. Psyco relies on testing
for validating learned interfaces and currently cannot guar-
antee that a generated interface is correct. Instead, it simply
returns the most recent learned interface once a user-defined
time limit is exceeded. In this paper, we report on ongoing
work that was performed during the 2016 Google Summer
of Code. The aim of this work is to extend Psyco with
symbolic search. During symbolic search, Psyco uses fully
symbolic method summaries for exploring the state space of
a component symbolically. We plan to eventually use sym-
bolic search to compute a termination criterion for Psyco

that guarantees the correctness of learned interfaces (e.g.,
by using symbolic search as a basis for symbolically model-
checking a component against a learned interface).
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1. INTRODUCTION
In the context of a NASA-funded project we are inter-

ested in developing an automated framework for the gen-
eration of assume-guarantee-style formal contracts for com-
ponents of flight-critical systems [9]. This endeavor is mo-
tivated by a need for scaling the formal analysis effort on
component-based flight-critical systems to the level of com-
plexity found in industrial-scale systems. The design and
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implementation of software systems used in aviation are of-
ten contracted out to external companies. For example, the
FAA rarely develops its air traffic software internally; it usu-
ally acquires it from contractors who develop new systems
in accordance with the FAA’s requirements. The delivered
products usually do not include intermediate artifacts such
as design models or source code, which would allow the FAA
to take advantage of advanced verification techniques (e.g.,
formal verification methods). As a consequence, the only
means of verifying these external components is black-box
testing, which provides no formal guarantees.

Technically, our approach is centered on contract-based
compositional verification, where contracts are elicited au-
tomatically from component design models, prototype im-
plementations, and system-level properties. The proposed
approach is based on techniques developed in the area of au-
tomata learning, invariant generation, model checking, and
automated assume/guarantee reasoning. One of the corner-
stones of this project is the generation of component inter-
faces (i.e., contracts) from prototypical implementations of
components.

The Java PathFinder extension Psyco [7, 8] generates in-
terfaces of Java components using a combination of dynamic
symbolic execution and automata learning to explore differ-
ent combinations of method invocations on a component.
Such interfaces are useful in contract-based compositional
verification of component-based systems.

The current version of Psyco iterates between two modes
of operation: generating conjectured interfaces (using au-
tomata learning and dynamic symbolic execution) and val-
idating interfaces (using model-based testing and dynamic
symbolic execution). Since Psyco relies on testing for vali-
dating conjectured interfaces, it currently cannot guarantee
that a generated interface is correct. Instead, it simply re-
turns the most recent learned interface once a user-defined
time limit is exceeded during testing.

Concretely, Giannakopoulou et al. [7], define an interface
to be k-full if it is correct (i.e., safe, permissive, and tight)
for all method sequences of length up to k ∈ N. Correspond-
ingly, validation of interfaces is done by checking k-fullness
for increasing k. The current version of Psyco terminates
once an interface was proven full for a fix k or when run-
time exceeds a predefined limit. In [8], Howar et al. were
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class Example {

int x = 0;

void setX( int p ) {

if ( 0 < p && p < 200 ) {

x = p;

} else {

assert false;

}

}

}

Figure 1: Example Java class.

0 π

setX[0 < p ∧ p < 200]

setX [p ≤ 0 ∨ p ≥ 200]

Figure 2: Interface for Class Example.

able to define a termination criterion for a limited set of
cases (based of enumerating concrete states reached during
checking k-fullness).

In this paper, we report on ongoing work that was per-
formed during the 2016 Google Summer of Code. The aim
of this work is to extend Psyco with symbolic search. Dur-
ing symbolic search, Psyco explores the state space of a
component symbolically in breath-first fashion until exhaus-
tion. We use the JDart [11] dynamic symbolic execution
extension of Java PathFinder to produce fully symbolic sum-
maries of methods of an analyzed component. These sum-
maries can then be used for computing a symbolic transition
system of the component.

Symbolic exploration of this transition system (using a
variant of the symbolic search algorithm presented in [1])
allows us to use Psyco to symbolically model-check com-
ponent implementations for errors, e.g., assertion violations.
In a second step (after Google Summer of Code) we plan
to use symbolic search as a basis for symbolically model-
checking a component against a learned interface in order
to determine the correctness of the interface.

Related Work. Describing program states symbolically by
Boolean formula and using transitions between states as
edges yields a graph on which Breath-first search (BFS) can
be applied. This is described, for example, by Edelkamp et
al. [4] or Alur [1]. Edelkamp just mentions the symbolic BFS
in a few words and continues directly with binary decision
diagrams (BDDs) which are an established solution solving
the search on huge state spaces. Alur provides more details
for the symbolic BFS and describes a variant using existen-
tial quantification to simplify state descriptions after each
application of the transition system. We use Alur’s version
as theoretical baseline for our implementation.

Farzan et al. [6] have introduce JavaFAN a tool adapt Java
source code to the maude LTL model checker [5] which ap-
plies BFS on finite state systems to explore them completely.
Maude uses term rewriting to do so but does not expose
the state model and guides the search to verify occurrences
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Figure 3: Constraints tree produced by symbolic
execution of method setX(int p) of class Example.
Leafs labeled ’Error’ correspond to executions that
ended with assertion violations. The path to the leaf
labeled ’OK’ represents a successful execution.

of a single error, so it is not suitable for Psyco purpose.
Within the Java PathFinder ecosystem JPF-Statechart has
been introduced by Mehlitz [12] to verify UML state charts
translating them to Java and exploring the state machines
by executing them step by step until all paths are explored.
Contrary to our implementation JPF-Statechart does not
benefit from symbolic state descriptions and therefore has
to enumerate concrete state which can lead to state explo-
sion quickly.

2. PRELIMINARIES
In this section, we briefly describe how Psyco generates

interfaces of Java components and how symbolic search can
help deciding when to stop Psyco. We base our presentation
on a simple example. We refer to previous work [7, 8], for a
more in-depth description of the Psyco algorithms.

Psyco generates temporal interfaces for components that
include methods with parameters. We illustrate how Psyco

works on the Example class shown in Figure 1. The class
has one member x, which is initialized to 0. There is one
method setX(int p) which will set x to p if p is within
certain bounds and otherwise fail with an assertion violation.

The interfaces generated by Psyco are finite-state au-
tomata whose transitions are labeled with method names
and guarded with constraints on the corresponding method
parameters. The guards partition the input spaces of pa-
rameters, and enable a more precise characterization of legal
orderings than was previously possible in a fully automatic
fashion. Figure 2 shows the interface for the Example class
shown in Figure 1. The interface has two states, the initial
state 0, and an error state π. Transitions are labeled by setX

(the name of the only method) and guards. In this simple
example, the guard corresponds exactly to the condition of
the if-statement in the setX method.

Psyco uses automata learning [2, 10] to create sequences
of calls to methods of a component; these sequences are then
turned into programs. JDart [11] is used to analyze these
programs. From the resulting path constraints, Psyco ex-
tracts guards for transitions in the generated interfaces. In
our example, the most trivial example for such a sequence
would be a single invocation of setX(int p) with a sym-
bolic parameter p. This would yield two error paths and
one successful path as shown in Figure 3.



Algorithm 1 Symbolic Search

Input: Initial State Init, Transitions Trans
Output: Max. required symbolic exploration depth k

1: Reach← Init

2: New← Reach

3: k ← 0
4: while New 6= ∅ do ⊲ Check for Emptiness
5: k ← k + 1
6: Next← Post(New, Trans)
7: New← Next \Reach ⊲ Compute Difference
8: Reach← Reach ∪New

9: end while
10: return k

After running a number of these generated programs, the
automata learning algorithm used by Psyco produces a con-
jecture for the interface of the component. The learning
algorithm can not decide if the conjectured interface is cor-
rect, it merely guarantees that it is the most concise inter-
face consistent with the observations made during running
the programs.

Psyco uses a combination of dynamic symbolic execution
and model-based testing for validating the correctness of the
interface: it uses the interface as a basis for generating se-
quences of guarded methods. These sequences are translated
into programs with test oracles (based on the interface). The
programs are then analyzed with JDart until a difference
between the behavior of the program and the interface is
found. Such a difference (a so-called counterexample) can
be exploited by the learning algorithm for refining the con-
jectured interface. The method sequence setX(p1) setX(p2)
with constraints (0 < p1∧p1 < 200) and (p2 ≤ 0∨p2 ≥ 200)
on symbolic values p1 and p2 is an example for such a test.
In this case, the expectation would be that all paths explored
by JDart end in assertion failures.

Test programs are generated in a structured fashion from
the conjectured interface: Starting with length k = 1, all
sequences of guarded methods of length k are generated and
checked. Then, k is increased by 1 and sequences of this
length are checked. In the current version of Psyco, there
is no facility for deciding when enough tests were gener-
ated from the interface. Psyco instead requires the user to
specify a limit on the runtime or on k. Once this limit is
reached, Psyco terminates and returns the latest conjecture
as interface along with values kmin and kmax . There, kmin is
the value of k at which the last counterexample was found
and kmax is the greatest length k for which all sequences of
guarded methods were tested.

In this work, we aim at improving this last part of Psyco,
the validation of the interface. The basic idea is that we can
unroll the transition system of a component using symbolic
search. When symbolic search terminates, we know that
no new states can be reached in the component. We plan to
use this symbolic exploration of the state space as a basis for
symbolically checking the correctness of a learned interface.
We detail our implementation of symbolic search in the next
section.

3. SYMBOLIC SEARCH
Our implementation of symbolic search is based on the

algorithm that is presented in Alur’s textbook on the prin-

Paths =











( Error, (p ≤ 0) )

( Error, (p ≥ 200) )

( OK, (0 < p) ∧ (p < 200) ∧ (x′ = p) )

Figure 4: Fully symbolic summary of method
setX(int p) of class Example. Primed variables de-
note updated values. Every path is a pair of execu-
tion result and path condition including post condi-
tions on class members.

ciples of cyber-physical systems [1]. We modified parts of
the algorithm to improve performance in our concrete sce-
nario and with the concrete constraint solver (Z3 [3]) we use.
For example, we replaced quantifier elimination in one step
of the original algorithm by tests over quantified formulas
which are better supported in Z3 than is quantifier elimina-
tion (at least for our use cases). In this section, we present
our modified version of symbolic search on a symbolic tran-
sition system. As discussed in the previous section, Psyco
relies on the dynamic symbolic execution engine JDart for
extracting the symbolic representation from Java compo-
nents.

Algorithm 1 shows the pseudo-code of our symbolic search
at the abstract level of sets of states. The algorithm takes
as input a transition system, consisting of an initial con-
dition Init and a set of transitions Trans. The algorithm
maintains the current depth of exploration k, a symbolic
characterization of the set of reachable states (Reach), and
a symbolic representation of states that became reachable
in the previous iteration (New).

In every iteration the algorithm first checks if the set of
newly discovered states is empty (i.e., if New is unsatisfi-
able). If there are no new reachable states at some point,
the algorithm terminates and returns k as the depth required
for complete symbolic exploration. In case that there are
new states, the algorithm increases k and then computes
the set Next of states that can be reached from New by
applying Trans. Following this, the set of newly reachable
states New is computed as the difference between Next and
Reach.

Finally, these states are added to the set of reachable
states (as disjunction of the symbolic formulas for Reach

and New). Working with logic formulas, the computation
of New requires the negation of Reach. Since the formu-
las we work with are over Integers and Reals and contain

x = 0

π

0 < x ∧
x < 200

setX[0 < p ∧ p < 200]

setX[0 < p ∧ p < 200]

setX [p ≤ 0 ∨ p ≥ 200]
setX [p ≤ 0 ∨ p ≥ 200]

Figure 5: Symbolic State Space of Class Example.



Example X-Psyco (runtime: 1h) Symbolic Search Errors
Name |M| |αM | |QI | kmin kmax kfull ksym Emptiness of New [ms] Runtime [ms] Reachable/Code

AltBit 3 6 6 4 298 d/k d/k 937 21,202 4 / 4
Stream 5 6 4 1 54 d/k 2 17 146 4 / 4
Signature 6 6 5 1 2 2 2 6 97 3 / 3
IntMath 8 9 3 1 1 1 1 0 522 263 / 263
AccMeter 9 12 8 2 7 d/k d/k 16,394 16,893 23 / 23
CEV 19 27 34 5 16 d/k d/k 42,846 48,245 32 / 32
CEV V2 20 21 8 2 4 d/k 7 5,215 20,120 75 / 251
Socket 55 56 42 2 4 d/k 8 132,971 162,393 52 / 60

Table 1: Preliminary experimental results. Left half of the table reports results of running X-Psyco (from [8]).
|M| is the number of component methods (and also the size of the initial alphabet); kmin the value of k at
which the final interface gets generated; kmax the maximum value of k explored (i.e., the generated interface
is kmax -full); kfull is the value of k at which a correct interface was inferred provably. Right half reports result
of running the symbolic search. ksym is the k at which symbolic exploration was complete. Errors compares
reachable error paths to error paths in the code.

variables that encode method parameters, this step intro-
duces quantifiers. These quantifiers can either be removed
through quantifier elimination, or the underlying constraint
solver has to be able to deal with quantified formulas. In
our experiments, Z3 performed better on quantified formu-
las than with quantifier elimination.

We demonstrate a run of the algorithm on the component
Example from Figure 1. In a first step, we use JDart to
produce fully symbolic summaries of methods of Example,
shown in Figure 4. The execution paths now contain sym-
bolic information about class member x as well.

From these summaries and the concrete initial state of
Example (which can be obtained from JDart as well), we
generate the transition system shown below. We introduce
a Boolean variable err that encodes if an error was reached
on some path.

Init := (x = 0 ∧ ¬err)

Trans := (¬err ∧ p ≤ 0 ∧ err
′) ∨

(¬err ∧ p ≥ 200 ∧ err
′) ∨

(¬err ∧ 0 < p ∧ p < 200 ∧ x
′ = p ∧ ¬err′)

We initialize Reach and New to Init (see Init definition
above). Since New is not empty, we enter the while-loop
in line 4 of algorithm 1 and apply all possible paths for
setX(int p) (see Figure 4) calculating post(New, Trans).
After renaming of updated variables, this yields the term
(err) ∨ (¬err ∧ x = p1 ∧ 0 < p1 ∧ p1 < 200) as Next.
The encoded states are new entirely and we extend Reach

accordingly. In the next round of the algorithm, however, no
new states are found — only the encoding of Next becomes
more complex. The symbolic search terminates with k = 2.

Figure 5 shows the symbolic state space of the component
that has been explored. From the initial state (x = 0), two
states are reachable: the error state π and the state where
the value of x is between 0 and 200.

The symbolic search was implemented in Psyco as part of
a 2016 Google Summer of Code project and will be available
as open-source software by the end of August 2016. We
currently prepare merging the forked version of Psyco back
into the main repository1.

1https://github.com/psycopaths/psyco

In a next step (after Google Summer of Code), we will
implement a synchronized symbolic breath-first search on
component and learned interface. This will allow us to de-
termine if a learned interface is correct and produce coun-
terexamples for the learning algorithm in Psyco otherwise.

4. PRELIMINARY EVALUATION
In this section, we report on preliminary findings from

using symbolic search for symbolically exploring the state
space of examples used in previous evaluations of Psyco.
We have run our new implementation of the symbolic search
for a first evaluation in a virtual Ubuntu x64 machine with
2 virtual cores and 4GB ram which is hosted on a windows
7 machine running on an Intel Core i7-2720QM CPU and
8GB ram. Each run is executed three times and the results
are arithmetically averaged about this three runs for timing
values. All non timing values are identical in each run.

We used the known examples from X-Psyco (see [8]) to
evaluate the search and tried to find for as many example as
possible a termination criterion. Our results are summarized
in Table 1. In five out of our eight examples, we had success
and the search found a fix point. However, for three of the
examples symbolic search did not terminate before running
out of resources.

We then investigated the extracted transition systems of
these three examples further in order to understand why
they do not terminate. AltBit uses a counter internally,
that is not reset. So the search will explore the complete
Integer space for this counter until an overflow error occurs.
AccMeter has also an infinite state space due to the inter-
nal calculation procedure of next state. The third example
that is not finite is the implementation of the crew evacu-
ation vehicle (CEV). We compared the implementation to
the original state machine provided by Mehlitz in [12] and
discovered a bug in the Java implementation.

Regarding runtime, symbolic exploration was able to ter-
minate within minutes on the examples where it terminated
— X-Psyco in comparison ran for one hour. In most cases
checking satisfiability of New requires a significant or even
dominating fraction of the overall runtime. Overall, the
measured runtimes make us confident that a synchronized
exploration of component and interface will also be much
more efficient than the testing done byPsyco andX-Psyco.

https://github.com/psycopaths/psyco


Finally, the evaluation shows that symbolic exploration
can already be used in Psyco for checking reachability of
errors in components without generating interfaces.

5. CONCLUSION AND FUTURE WORK
In this paper, we have reported on ongoing work that is

performed during the 2016 Google Summer of Code. The
aim of this work is to extend Psyco with symbolic search.
During symbolic search, Psyco explores the state space of
a component symbolically. We have implemented symbolic
search and have evaluated its efficiency in a small series of
experiments. In a next step we will use symbolic search as
a basis for checking the correctness of interfaces generated
with Psyco.
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