Emory Updates
LifeV Workshop 2013

+
The Emory team

m] supervisor (AV)

m 2 senior developers (TP, LB)

m] junior developer (Huanhuan Yangq)
m 2 trainees (Boyl Yang, Jim Munch)

m Several users (mostly grads/undergrads)

m External collaborators (UV, Adrien Lefieux, Annalisa Quaini...)

+ .
Projects

m CFD for blood flow problems (TP, AV, BY)
m Pre-processing (mesh)
m Post-processing (export, “secondary’” computations)
= Validation
= Software usability, portability...

m Inverse problems / parameter estimation (LB, HY)
m Verification

» Efficiency

+
Objectives (related to LifeV)

m Use LifeV in teaching labs (summer 2013)

m Additional documentation
m Website

m Solved exercises

m Software distribution (2013)
= Through cmcsforge

= Through personal web pages? Github? ...

m Inject LifeV in the Biomed community
= Workshop on software tools for Biomed Engineering

+
How to market LifeV?

m algorithms and data structures for the solution of PDE (with FEM)
» Freely available! (www.lifev.org)

m strongly related to Trilinos (LifeV = “assembly” package for Trilinos-
based FEM solvers)

= “open’” laboratory for new ideas/methods

= HPC technologies

m a community of researchers

= we make available (in principle) the tools we use to write papers

+
What LifeV is not (yet?)

m teaching / educational tool
m Easily solve easy problems

m FEM for dummies
m As we teach it, we code it
m e.g.assembly routines, ...

m seed for new collaborations
= Enlarge the user base

m “software on demand”
m Produce applications based on “LifeV as a library”

m collaborative development on a per-project basis
m Shared code for shared papers

+
Promoting LifeV (I)

m Be competitive

m Verification, validation

m Be better FLUENT

® e.g.Mmass conservation
(avg. mass balance 3e-7
g/s), not achieved to the
same level of accuracy
by the Fluent solver

TAWSS

200 0
0 75

LifeV software

+
Promoting LifeV (II)

m Be flexible

(tested machines, partial list)
® puma: 32 (2xDualCore) nodes, 128 cores, 8GB RAM per node (theoretically 256GB tot)
® crunch: 8xQuadCore, 32 cores, 200GB RAM
= Emory’s HPC facilities

m Ellipse cluster: 256 nodes, 1024 cores
m facilities at Emerson Center: heterogeneous cluster, up to 240 cores

m XSEDE HPC resources

m Trestles @ San Diego Supercomputer Center: 324 compute nodes, 10368 cores
m Lonestar4 @ Texas Advanced Computing Center: 1888 nodes, 22656 cores
m Steele @ Purdue University: 902 nodes, 7216 cores
m Collaboration with Italian HPC center Cilea
m HP cluster Lagrange: 208 nodes, 1664 cores
» Amazon EC2

Promoting LifeV (III)

m A clear and easy design

The basic steps of the simulation:
Mesh generation/reading
Mesh - matrices & vectors

Linear system solve
a. Preconditioner update

b. Solve

Processing & exporting

(i) Preprocessing
Problem definition
Mesh computation
Time independent operations

Time Advancing{

(i) Assembly

(iii) Solution at t*

(i11a) Preconditioner construction
(111b) Iterative solution

} //End Time Advancing

(iv) Postprocessing

Non-primitive variable computation
Visualization

LifeV Application

' [h] NavierStokesApplicat | data |g@ NavierStokesApplicat |@ write_boundary_point | data |@ TimeA

1 #include "TestNavierStokes.hpp"
2 #include <boost/scoped_ptr.hpp>
3

4 using namespace LifeV;

5

6// Do not edit

7int main(int argc, char **argv)
gq

9 using namespace LifeV;
10 #ifdef HAVE_MPI
11 MPI_Init(&argc, &argv);

12 std::cout<< "MPI Initialization\n";

13 #endif

14

15 boost::scoped_ptr<TestNavierStokes> testPtr(new TestNavierStokes(argc, argv));
16 testPtr->run();

17

18 int result(EXIT_FAILURE);
19 if(testPtr->checkErrors())

20 {

21 result = EXIT_SUCCESS;
22 }

23 testPtr.reset();

24

25 #ifdef HAVE_MPI
26 MPI_Finalize();

27 std: :cout<< "MPI Finalization \n";
28 #endif
29

30 return EXIT_SUCCESS;

31} (C.R. Ethier, D. Steinman, 1994)

LifeV Application

: [E NavierStokesApplicat

[data

45
46
47 void NavierStokesApplicatig
48 {
49 Debug() << "[NavierStoH
50

51 readDataFile();

52

53 buildMesh();

54 buildFESpaces();

55 buildAssembler();

56 buildOperator();

57 this->buildExporter();
58

59 setupBDF();

60

61 this->initialize();

b2

63 this->setBC();

64 this->timelLoop();

65}

bb

67

62 void NavierStokesApplicatig
69 {

70 Debug() << "[NavierStoH

/1

72 [/ mmmm]
73 // Data File

74 [/ mmmmmmmmmm e e]

75 // boost::shared_ptr<Tg
76 M_teuchosListPtr.reset(

29

77 Teuchos: :updateParamets

/8

49= class TestNavierStokes :
50 public NSApplication

51 {
52 public:
53
54 typedef LifeV::RossEthierSteinmanUnsteadyDec problem_type;
55
56
57 /** @name Constructors, destructor
58 */
59 //8{
60
b6l= TestNavierStokes(int argc, char** argv) :
62 NSApplication(argc, argv),
63 M_L2err_velocity(9.),
64 M_L2err_pressure(d.),
65 M_tolerance_velocity(0.),
66 M_tolerance_pressure(9.)
67 {}
68
69 virtual ~TestNavierStokes() {}
70 //@}%
71
72 bool checkErrors();
73
Al virtual void initialize();
a?s virtual void setBC();
76
ai7 virtual void postProcess(const Real& /*t*/);
78
79 protected:
80 virtual void setProblemData();
81
82 void initializeErrorLog();
83 void printErrorLog();
24
85 LifeV::Real M_L2err_velocity, M_L2err_pressure;
86 LifeV::Real M_tolerance_velocity, M_tolerance_pressure;
87 1

R

Promoting LifeV (IV)

m Let the software circulate!
» Lifev.org web portal
» Personal/private pages

» Public portals (github)

==
Example: lifev.org

) Turek Cylinder Benchmark - x

=)

“— C' | [cmcsforge.epfl.ch/lifev/dev/workgroups/ns/cylinder/?searchterm=turek * =

Accessibility Contact

| [& search|

(C) only in current section

Search Site

LifeV ..

Documentation l [

J About LifeV l] Development \l Gallery l[Downloads l[Members]l Groups l} Events l[News l

Log in Register

You are here: Home — Development — Workgroups — Navier-Stokes — Turek Cylinder Benchmark

« January 2013 »
Mo Tu We Th Fr Sa Su

Search

Turek Cylinder Benchmark

Results of the Turek cylinder benchmark computations of LifeV Navier-Stokes solvers
updated 17 November 2006 (old version here) 1 2 3 4 s

7 8 9 10 11 12 13
14 15 16 17 18 19 20

‘A Search

Search Site

Advanced Search...

Testcase 3D-Z1 from Schaefer, Turek. See there for details about geometry etc.

Navigation The solution is steady, and it is found by running the time dependent solvers with 1st order 21 22 23 24 25 26 27
~QH BDF (=backward Euler) until t=10, about where a stationary state is reached. The timestep is
ome chosen as equal to the largest mesh width, which is 12.5 times the smallest mesh width. With 28 29 30 31

a maximal inflow velocity of 0.45, this would give a maximal CFL of 5.625. Note that the
velocity is low where the mesh is fine (i. e. near the cylinder).

() About LifeV
(D About Life oo

(D Development
Gallery updated

The drag and the lift have been evaluated by numerical integration of the stress on the
Sep 16, 2010

cylinder. The pressure difference was calculated using a L2 scalar product with two
regularized delta functions located at the points of interest. The mass error is the integral

(D Roadmap

(D Workgroups

over time of |inflow-outflow|. Implementation details can be found in life-

Lifev-Serial 1.0

(3 Core playground/benchmark/cylinder/turek. | didn't want to put the finest mesh into cvs, you can released
(o Parallel find it here. Apr 27, 2010
(o Serial See the current results here, with the bounds indicated by Schaefer and Turek:

LiveV workshop

("D Mass Transport cpu sec talks online
(3 Navier-Stokes Solver Ngof | h=At | drag lift| ap | Mass >per Memory Apr 22, 2010
error timestep<th> / MB
[Meeting April 2006 More news...
[&) NSPC and NsIP: prower 6.05| 0.0080 | 0.165
preliminary analysis
@ Turek Cylinder bgzzg’ 6.25| 0.0100|0.175
Benchmark
i PC _
Ee:r:faxjn:i::is Plbubble- 36540 (0.2 | 6.19 | -0.0043 | 0.189 é'oe 42.9 46
, P1
continued
@ Turek Cylinder 165236 (0.1 | 6.10 | -0.0094 | 0.172 | 2-3¢~ 432.0 174

xample: “private” web portals

ETutorials - ECM2 group X
€« C' (G https://sites.google.com/site/ecm2group/lifev/tutorials 3’3 =
Tiziano Passerini v
Tutorials updated sep 24, 2012 8:28 AM P I

ECM2 group Search thia site

Home
Home Lifev >
- Lifev Tutorials
» Examples
Tutorials
Sitemap LifeV in the Computer Lab

Setting up the environment

Notation
e Commands to be typed in the terminal will be preceded by a “greater than" symbol (>)
and will be written in bold and fixed width font.

e Names of files and folders will be written in £ixed width font.

Tips
o toedit atext file named “filename”
> gedit filename
(if the file is not existing, it will be created when you save it}

e toinspect the content of the text file “£ i Lename" without opening the text editor “gedit”
> cat filename
(the content will be printed on screen)

e while tvping in the terminal. press TAB once to activate the automatic completion of the

+
Example: github

@ tpass x i
« -
] @tpasslmeshUtilities-GitHub X =
@lerc ~ . -
————— @meshUtilities/MakeﬁIe.SAM X -
@ & C' | @ GitHub, Inc. [US]| https://github.com/tpass/meshUstilities/blob/master/Makefile.SAMPLE.in * =
f @ - Searchortypeacommand @ () Explore Gist Blog Help tpass B ¥ P
tpass/ meshUtilities i1 Pull Request G’ Unwatch ~ % Star 0o [Fork o
Print t Code Network Pull Requests 0 Issues 0 Wiki Graphs Settings
[.
P branch: master ~ Files = Commits Branches 1 Tags
tp; P Y meshUtilities / Makefile.SAMPLE.in £
mesh tpass 5 months ago initial commit for application Meshinfo
J
addiny 1 contributor
0 @
follow: B « E file | 92lines (83 sloc) | 2.123 kb Edit Raw Blame History
@ N 108
2 # The paths to LifeV
3 #
@ . 4 LIFEPATH =
@ | 5 LIFELIBPATH = $(LIFEPATH)/1lib
c! 6 LIFELIBS = -1llifefunctions -llifefilters -llifeoperators -llifesolver \
7 -llifefem -1llifealg -llifearray -llifecore -llifemesh
Bd 8 LIFEINCLUDEPATH = $(LIFEPATH)/include
9 LIFELDFLAGS = -L$(LIFELIBPATH)
GitHu Bnr 10
Abou 1 #
Rlan 17 # The paths to BLAS/LaPACK

+
The ECM2 module

m A collection of code experiments
m A code forge (preliminary stage for the library)
m Playground / applications

m Content
m A NS solver, various preconditioners (block operators)
A solver for linear elasticity (time advance)
A monolithic FSI solver (block operators)
Classes to simplify the implementation of “applications”

Classes/routines for manifold handling (boundary mesh extractor,
assembler, FESpace,...)

Classes for BC / problem set up

