
CosmoSIS Webinar 2
Advanced sampling and creating new cosmological

pipelines

Presenting for the CosmoSIS team:
Elise Jennings (Fermilab, KICP)

Joe Zuntz (University of Manchester)
Vinicius Miranda (University of Pennsylvania)

Currently in cosmology we have a few challenges:
● Many, sometimes correlated, observables:

-CMB, lensing, galaxy clustering, supernovae, clusters…..

● Different theoretical models:
-e.g. Supernovae light curve fitters, bias models for galaxy clustering

● Different parameters, systematics in each model:
 -how to sample over each in an MCMC chain?

● Complicated, possibly multimodal, Posterior/ Likelihoods:
-sampling choice may impact results, estimate/model covariances

● Large collaborations (hundreds of people e.g. (DES & Planck)):
-how to track contributions, ensure reproducibility & consistency
-how to use wealth of existing code/data without wasting PhD deciphering it all,
learning new coding language…

CosmoSIS was designed to address each of these issues!

CosmoSIS is a new cosmology parameter estimation
code with a focus on modularity

● Open source code which community actively contributes to
● multi - language modules: Python, C++, C, Fortran
● choice of physics & likelihood modules
● collection of samplers - mostly in python
● nice python plotting functions

Overview

● Advanced samplers - presented by Elise Jennings

● CosmoSIS Overview
● Writing parameter files
● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules
● Modifying Existing Modules
● Sharing, documenting, contributing, and credit

Speeding up time to convergence always a goal of any sampler, esp
important with increasing number of parameters

Sampling beyond Metropolis-Hastings…

• Some issues/stumbling blocks with standard MCMC:
• Initial distribution of points
• choice of proposal distribution
• parallelizing stepping algorithm
• getting Bayesian Evidence

generally
done
according
to priors

Large impact on time to
convergence

• Nested sampling (Skilling 2004) -> MultiNest
http://ccpforge.cse.rl.ac.uk/gf/project/multinest/

• Ensemble sampling -> e.g. in emcee http://dan.iel.fm/emcee/current/

• Clustering algorithms -> Kombine
• Parallel tempering for initial distribution
• Hamiltonian Monte Carlo
• Population Monte Carlo PMC
• Adaptive MCMC -> e.g. in PyMC https://github.com/pymc-devs/pymc
• Fast/Slow sampling -> e.g. in CosmoMC
• Snake, Minuit, Maxlike, grid
• Approximate Bayesian Computation, ABC

In CosmoSIS !

Some interesting features of alternative samplers

http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
http://ccpforge.cse.rl.ac.uk/gf/project/multinest/
http://dan.iel.fm/emcee/current/

• Ensemble sampler, uses “walkers” to probe
parameter space

• See also the Kombine sampler in CosmoSIS

Slide from
Foreman-Mackey’s talk
at Vanderbilt

Foreman-Mackey et al 2014

•Multiple peaks in the posterior
identified and isolated

• iso-likelihood contours
approximated by cov matrix of
active points

Overview

● Advanced samplers
● CosmoSIS Overview - presented by Joe Zuntz

● Writing parameter files
● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules
● Modifying Existing Modules
● Sharing, documenting, contributing, and credit

You run the CosmoSIS command on a parameter file:
 > cosmosis demos/demo1.ini
which describes various aspects of your analysis:

Modules:

● CosmoSIS calculations/likelihoods split into steps called modules.
● Run as a sequence, each taking inputs from previous modules and

providing new outputs for later ones.
● Each module is given its own [section] in the parameter file:

Glossary & Overview

[camb]
file = cosmosis-standard-library/boltzmann/camb/camb.so
mode=all
lmax=2500
feedback=2

[runtime]
sampler=test

[test]
save_dir=demo_output_1
fatal_errors=T

Pipeline: The sequence of modules to be run in
your analysis for each likelihood

Values file: Another file with names and values or
ranges of your parameters.

Sampler: The code that chooses sets of
parameters of which to evaluate the likelihood
choosing them using MCMC or some other
scheme.

Test Sampler: The most trivial “sampler”, just
runs one likelihood of a single set of parameters.

Glossary & Overview
[pipeline]
modules = consistency camb
halofit

values = demos/values1.ini

[cosmological_parameters]
omega_m = 0.3
h0 = 0.6 0.7 0.8

Data Block: CosmoSIS mechanism for passing
data between modules (more later)

Repositories: A way of storing, tracking, and
sharing code. CosmoSIS comes with two “repos”,
one for the main code and one for the modules
(cosmosis-standard-library)

Glossary & Overview

Overview

● Advanced samplers
● CosmoSIS Overview
● Writing parameter files - presented by Elise Jennings

● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules
● Modifying Existing Modules
● Sharing, documenting, contributing, and credit

Running CosmoSIS: Demo 5
Last time we showed this diagram of a
likelihood pipeline for supernova data.

Now we will look at demo 5 which
shows how to run this in CosmoSIS.

The file demos/demo5.ini is the
parameter file

Choosing a
sampler

Setting
parameters for
this sampler

Choosing the
output file

The module list
The values file

Expected
likelihoods

Modules
we asked
for in the
list above

Files containing
the module code

Other module
parameters

Values File

Section (category)
of parameters

Fixed parameter
(single value only)

Varied parameter
(min, start, max)

Overview

● Advanced samplers
● CosmoSIS Overview
● Writing parameter files
● Storing data in CosmoSIS DataBlocks - presented by Vinicius Miranda

● CosmoSIS Modules
● Modifying Existing Modules
● Sharing, documenting, contributing, and credit

DataBlocks: A cross-language key-value store

Problem posed: how can different packages, written in a
variety of languages, communicate with each other?

● Dark days before CosmoSiS: brute force approach was to use files
and bash scripts to manage input/output. This is very prone to
error/bugs.

● CosmoSIS has interface that accepts booleans, integers, doubles,
strings, 1D arrays and 2D arrays. Implemented interface in C, C++,
Python, Fortran.

● Section names avoid the problem of name clashing

DataBlocks: A cross-language key-value store
Get, Put and Replace data are the most common operations

Additional useful functions

Check the wiki for instructions in all languages!
https://bitbucket.org/joezuntz/cosmosis/wiki/creating_modules

DataBlocks: Predefined sections
Go to the Wiki to check the names of predefined sections

Demo 5 should now be complete
Let’s look at the output...

Overview

● Advanced samplers
● CosmoSIS Overview
● Writing parameter files
● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules - presented by Joe Zuntz

● Modifying Existing Modules
● Sharing, documenting, contributing, and credit

● Adding new physics or likelihoods to CosmoSIS = modifying or creating
modules

● Modules: python files or C/C++/Fortran code compiled into a shared library
○ Using the -shared compiler flag

● Have three special functions (incl. one optional):
○ setup - called once at the start; reads parameters from input param file
○ execute - called for each sample; reads inputs from data block
○ cleanup - called once at the end; frees memory/resources (optional)

CosmoSIS Modules

Setup Functions
Input: “options”: DataBlock read from the input parameter file
Output: One value. Any python object, or in C/C++/Fortran a pointer to any object

Read any inputs you need from the parameter file, load any data files you need,
etc.

Execute Functions
Inputs: block: a DataBlock with input params and outputs of previous module.
 config: whatever was returned by the setup function.
Output: status: integer, 0 if all went well

Read any inputs you need from the parameter file, load any data files you need,
etc.

● Usually one of the last modules in a pipeline
● Same structure as any other module
● Add name to parameter file option likelihoods = … in param file
● Section likelihoods is search for name_like by the sampler
● e.g.

○ block[“likelihoods”, “my_sn_like”] = -chi2/2.0 #python
○ c_datablock_put_double(block, “likelihoods”, “my_sn_like”, -chi2/2.0) //C

Likelihood Modules

Calculate Likelihood of
observed supernova mu, z

values given SN data

Output Likelihood

Evaluated
Likelihood5

6

Likelihood Module Example
Example: WiggleZ BAO module

CosmoSIS Interface:

setup, execute, cleanup

DataBlock interface has two arguments

(1) Section Name
(2) Parameter Name

Using predefined names.likelihoods
here

Setup & Execute Functions

Full details by language:
https://bitbucket.org/joezuntz/cosmosis/wiki/creating_modules

https://bitbucket.org/joezuntz/cosmosis/wiki/creating_modules
https://bitbucket.org/joezuntz/cosmosis/wiki/creating_modules

Overview

● Advanced samplers
● CosmoSIS Overview
● Writing parameter files
● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules
● Modifying Existing Modules - presented by Vinicius Miranda

● Sharing, documenting, contributing, and credit

Colossus

CosmoCalc

AstroPy

CosmoMC

Cosmolopy

Standard Library Modules
CAMB

CLASS

CosmoLike

SNANA

MGCAMB

MGCLASS

IsItGR

EFTCamb

Documentation of standard library:
https://bitbucket.org/joezuntz/cosmosis/wiki/default_modules

Modifying existing modules
Two parts:

● Modify physics/calculation itself
● Modify interface with CosmoSIS

Advanced example: modifying CAMB

● First we need to change CAMB (file: equations.f90)

● Then we need to change the interface between CAMB and the datablock (file:
camb_interface.F90)

● Update the ini file (see values1.ini associated with demo 1)

Overview

● Advanced samplers
● CosmoSIS Overview
● Writing parameter files
● Storing data in CosmoSIS DataBlocks
● CosmoSIS Modules
● Modifying Existing Modules
● Sharing, documenting, contributing, and credit - presented by Elise Jennings

How to get credit?
How to Avoid the Package too big for individual recognition problem?

Example: The Astropy Problem - arXiv:1610.03159

● In the CosmoSIS module - add suggested citation in the yaml file.

● One possible solution: write code that performs very well (better than any other
software in the market) so whenever people need the functionality your code
provides, they will visit your github/website and credit your paper!

● Write code that people can incorporate in their pipeline easily with flexible options.

CosmoSiS is not a monolithic code - you can create a separate module that
people can download from your github and incorporate in their pipeline!

Wiki

- Modules reference
- General reference

Issues page

- Existing issues
- Creating new issues

Any questions?

Getting more information

