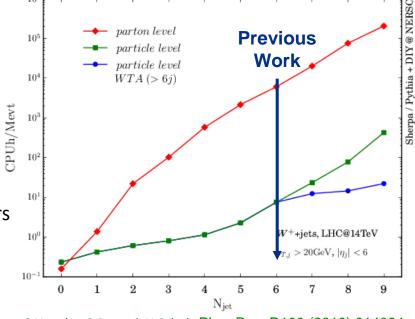
Numerical Simulations for Collider Physics

Scientific Achievement

Development of a scalable framework for simulation of particle collisions at highest energy, and support of the experimental user community

Significance and Impact

New opportunities for experiments to probe high-multiplicity final states at the Large Hadron Collider and to test the validity of the Standard Model


Research Details

- Event generation will consume significant fraction of computing resources at Large Hadron Collider soon
- Among components of the simulation, computation of hard cross sections is most demanding and scales roughly exponential with final-state multiplicity
- Using MPI parallelization and optimized I/O, events can now be generated on high performance computers

Office of

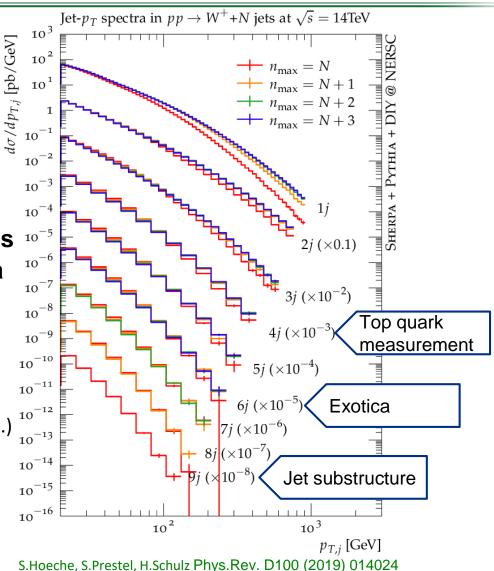
Science

- Scaling was demonstrated up to 2048 cores

S.Hoeche, S.Prestel, H.Schulz Phys.Rev. D100 (2019) 014024

First predictions for W/Z+9 jet production

Scientific Achievement


Enabled by scalable framework for event simulation, predictions for W/Z+9 jet production were computed using leading-order perturbative QCD^p

Significance and Impact

Opens possibility for LHC experiments to probe high multiplicity domain as a precision test of the Standard Model

Research Details

- W/Z+jets production is irreducible background to many other Standard Model measurements and new physics searches (top quark, exotica, ...)
- Simulation has so far been possible only in the crude parton-shower approximation
- Using NERSC resources, leading-order perturbative QCD predictions were computed
- Results and code were made publicly available

Fermilab SLA

Event Generation with Normalizing Flows

Scientific Achievement

Development of a novel framework for collider event simulation based on Neural Networks and Normalizing Flow algorithms

Significance and Impact

Allows to exploit developments in Machine Learning for accelerated numerical simulations at the Large Hadron Collider and future facilities

Research Details

- Created new open-source toolkit based on Tensorflow that can be used to perform adaptive Monte-Carlo integration in connection with any parton-level event generator
- Exemplified performance in connection with Sherpa framework for the most costly simulations at the LHC \rightarrow W/Z + jets production at leading and next-to-leading order in QCD perturbation theory

unweighting efficiency		LO QCD					NLO QCD (RS)	
$\langle w \rangle / w_{\rm max}$		n = 0	n = 1	n=2	n=3	n=4	n = 0	n = 1
$W^+ + n$ jets								
	NN+NF	$6.1\cdot10^{-1}$	$1.2\cdot 10^{-1}$	$1.0\cdot 10^{-3}$	$1.8\cdot 10^{-3}$	$8.9\cdot 10^{-4}$	$1.6 \cdot 10^{-1}$	$4.1\cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91

C.Gao, S.Hoeche, J.Isaacson, C.Krausel, H.Schulz arXiv:2001.10028

Fermilab SL

