SBND

 Feldman-Cousins algorithm rewritten with vectorization & MPI, Increasing performance more than 300x.

NOvA

- Extensive work on the Feldman-Cousins analysis on HPC architectures. Adopted as primary technique for oscillation results.
- Tools for producing HDF5 analysis formats for physics applications as alternative data format for use in HPC facilities and ML tools.
- Developed Pandana framework for highly scalable event filtering

ICARUS

 Parallel production workflow defined for event processing using art & LArSoft frameworks coupled to HEPnOS and DIY usable designed for HPC systems

ATLAS analysis

 Enabled H->μμ analysis using HPC systems and our scalable software technology to generate billions of background events

CMS & ATLAS

Working to integrate Pythia HDF5 tools into CMS infrastructure

DUNE

- Adopted Feldman-Cousins software based on NOvA work

SciDAC: HPC Framework for Event Generation at Colliders

- Developed new event generator framework for unprecedented accuracy, tying Sherpa and Pythia8 together by means of HDF5 and DIY
- Explored application of Machine Learning for Monte-Carlo simulations with Sherpa.

HEP Event Reconstruction with Cutting Edge Computing Architectures

- Partner project in the design and use of the ICARUS workflow.

Theory and Phenomenology

- Leverage closed form solutions to neutrino oscillation problem from FNAL and BNL theory to accelerate computation
- Assisted with Dark Matter Direct detection phenomenology studies
- Helped conduct reinterpretation of ATLAS data to constrain new physics models
- Enabled early-universe research through technical assistance with complex differential equation solving

FASERnu

 Our expertise in generator tuning helped in the successful proposal of the "Fasernu" experiment to be built at CERN shortly

Fermilab Argonne