
Performance Analysis Using PaRSEC 
Profiling Tools: 

Case Study with TLR Cholesky

Yu Pei, Qinglei Cao, Thomas Herault, 
George Bosilca

May 7th, 2020
PaRSEC User Group Meeting



2

Cholesky Factorization

Original slide from Mark Gates Presentation



3

TLR Cholesky Factorization
v Climate and weather can be predicted statistically via 

geospatial Maximum Likelihood Estimates (MLE), as an 
alternative to running large ensembles of forward models:

Soil moisture Wind speed



4

TLR Format
v TLR format with varying ranks v Geospatial statistics, matrix size: 

20000, tile size: 500, accuracy 
threshold: 10−9, 2D problem 



TLR Cholesky Factorization
Differences with dense Cholesky
•Data format: only tiles on-diagonal are dense
•tiles off-diagonal are approximated by using a variant of the 

singular value decomposition (SVD).
•Computational kernels:

•LR_GEMM kernels with arithmetic complexity = 𝑂(𝑛𝑏 ∗
𝑟𝑎𝑛𝑘!) instead of 𝑂(𝑛𝑏")

•We need to have the work on the diagonal (critical path) to 
start as soon as possible, since they enables the next round 
of update, and they are magnitudes more expensive

5



Profiling To Aid Performance Analysis

6

Time between data is ready and TRSM starts.
Left, without lookahead; right, with lookahead of 5
Each point represents one TRSM; matrix has 100 × 100 tiles 

q PaRSEC enables tasks as soon as all their 
dependencies are available, therefore allows maximum 
parallelization without the constraint of sequential 
code visibility, or window size, for task insertion.

q To prioritize tasks on the critical path, a control 
dependency between SYRK and TRSM of the same 
panel factorization is used, delaying the discovery of 
parallelism outside the critical path (corresponding to 
the update operation).



Experiments Settings

1. Enable PaRSEC Tracing and Dot file generation, run TLR 
Cholesky

2. Write Python/R scripts to extract the data and plotting
3. Use Pandas/NetworkX from Python, and ggplot2 etc from R for 

plotting (personal preference, matplotlib will work just as well)

7



Our Example

• We run a test case with 100 by 100 tiles on 9 compute nodes (3 
by 3 compute grid)
• Combine the generated dot files and binary traces into one dot 

file and HDF5 file

8



Our Example
• A helper Python script then reads in the dot file and store the 

task graph into a networkX object
• Now we can read in the information in HDF5 and link them both

9



• Based on the tpid, tid and did to link the DAG with Profile Info, so that we can link 
the network event time with task execution time

10



Our Example
• The combined data looks like the following, due to my personal 

preference, I imported the CSV into R for plotting with ggplot2
• Now it has the node ID of the POTRF, Network Recv and TRSM, 

timestamps as well. As well as the TRSM Index to identify the 
tasks

11



• Finally we can generate the profiling plot we shown before

12 https://colab.research.google.com/drive/1uUlYyV6iBLCtRvMB1Hww_nWrOJMfXszd

https://colab.research.google.com/drive/1uUlYyV6iBLCtRvMB1Hww_nWrOJMfXszd


13

New Lookahead
q PaRSEC enables tasks as soon as all their dependencies are 

available, therefore allows maximum parallelization without 
the constraint of sequential code visibility, or window size, for 
task insertion.

q To prioritize tasks on the critical path, a control dependency 
between SYRK and TRSM of the same panel factorization is 
used, delaying the discovery of parallelism outside the critical 
path (corresponding to the update operation).



Conclusion
• Present a use case for the profiling system of PaRSEC: the 

mechanisms embedded in the runtime system to extract critical 
information and produce a trace of the execution, and the tools 
allowing users to manage this collection of events
• Demonstrate the use of Python/R scripts for performance 

analysis to show optimization of TLR Cholesky

• Take away message: Can easily generate the profiling info from 
the task execution, enable flexible performance analysis

14


