
Title Slide

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Katherine A. Yelick, Amir Kamil
Dan Bonachea, Paul H. Hargrove

https://upcxx.lbl.gov/sc20
pagoda@lbl.gov

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA

https://upcxx.lbl.gov/sc20

2

Acknowledgements
This presentation includes the efforts of the following past and present members of the
Pagoda group and collaborators:

Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, Rob Egan,
Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Erich Strohmaier, Daniel Waters, Katherine Yelick

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

3

Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes
• Sparse matrices
• Hash tables and histograms
• Graph analytics
• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

AMReX

ExaBiome SymPACK
Graph analytics

Seismo,Berkeley

4

Some motivating system trends
The first exascale systems will appear in 2021
• Cores per node is growing

• Cores are getting simpler (including GPU cores)

• Memory per core is dropping

• Latency is not improving

Need to reduce communication costs in software
• Overlap communication to hide latency

• Reduce memory using smaller, more frequent messages

• Minimize software overhead

• Use simple messaging protocols (RDMA)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

5

Reducing communication overhead
Let each process directly access another’s memory via a global pointer
Communication is one-sided

• No need to match sends to receives
• No unexpected messages
• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split between sender and receiver
• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory: shared data structures with asynchronous access

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

6

One-sided vs Two-sided Message Performance

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Uni-directional Flood Bandwidth (many-at-a-time)

U
P

IS
 G

O
O

D

• MPI ISend/IRecv
is 2-sided

• All others are
1-sided

2-sided

2-sided

2-sided

2-sided

7

A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned
• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Private memory

8

The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: UPC, Titanium, Chapel, X10, Co-Array
Fortran (Fortran 2008)
Libraries that provide PGAS: Habanero UPC++, OpenSHMEM, Co-Array
C++, Global Arrays, DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence
Berkeley National Laboratory

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

9

Execution model: SPMD
Like MPI, UPC++ uses a SPMD model of execution, where a fixed number
of processes run the same program
int main() {

upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

10

Global pointers

Global pointers are used to create logically shared but physically
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw)
pointer: e.g. global_ptr<double>

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
p:

x: 5
p:

x: 7
p:

g: g: g:

11

Global vs raw pointers and affinity

The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers can be used on a process to refer to objects in the
global address space that have affinity to that process

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global
address space

Private
memory

x: 1
p:

x: 5
p:

x: 7
p:

l:

g:

l:

g:

l:

g:

12

How does UPC++ deliver the PGAS model?
UPC++ uses a “Compiler-Free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which more UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ as in MPI+X

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

13

RMA performance: GASNet-EX vs MPI-3

Three different MPI
implementations

Two distinct network
hardware types

On these four systems
the performance of
GASNet-EX meets or
exceeds MPI RMA:

• 8-byte Put latency 6% to 55% better
• 8-byte Get latency 5% to 45% better
• Better flood bandwidth efficiency, typically saturating at ½ or ¼ the transfer size

(next slide)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

8-Byte RMA Operation Latency (one-at-a-time)

D
O

W
N

 IS
 G

O
O

D

GASNet-EX results from v2018.9.0 and v2019.6.0. MPI results from Intel MPI Benchmarks v2018.1.
For more details see Languages and Compilers for Parallel Computing (LCPC'18). https://doi.org/10.25344/S4QP4W
More recent results on Summit here replace the paper’s results from the older Summitdev.

14

UPC++ on top of GASNet

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
 Cray XC40 system

Two processor partitions:
 Intel Haswell (2 x 16 cores per node)
 Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

https://doi.org/10.25344/S4V88H

15

What does UPC++ offer?

Asynchronous behavior
• RMA:

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication.

• RPC: Remote Procedure Call:
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

16

Asynchronous communication (RMA)

By default, all communication operations are split-phased
• Initiate operation
• Wait for completion

A future holds a value and a state: ready/not-ready

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1);
// unrelated work...
int t1 = f1.wait();

Wait returns the result when
the rget completes

nic

cpu

nic

cpu

123

123

SH
AR
ED

PR
IV
AT

E

17

Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an
optional result

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

upcxx::rpc(target,
fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2)
on process target

fn

1

future

2

Result available
via a future

3

Process
(initiator)

Process
(target)

18

Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use

Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the appropriate arguments (–I/-L etc).

• We also provide other mechanisms for compiling
• upcxx-meta
• CMake package

Launch wrapper:
$ upcxx-run -np 4 ./hello-world.exe

• Arguments similar to other familiar tools

• Also support launch using platform-specific tools, such as srun, jsrun and aprun.

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

19

Using UPC++ at US DOE Office of Science Centers
ALCF's Theta

$ module use /projects/CSC250STPM17/modulefiles

$ module load upcxx

NERSC's Cori
$ module load upcxx

OLCF's Summit
$ module use $WORLDWORK/csc296/summit/modulefiles

$ module load upcxx

More info and examples for all three centers are available from
https://upcxx.lbl.gov/sc20

Also contains links to source, build instructions, and a docker image
UPC++ works on laptops, workstations and clusters too.

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/sc20

20

Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Set up UPC++
runtime

Close down
UPC++ runtime

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

21

Exercise 0: Hello world compile and run
Everything needed for the hands-on activities is at:

https://upcxx.lbl.gov/sc20
Online materials include:

• Module info for NERSC Cori, OLCF Summit and ALCF Theta
• Download links to install UPC++

• natively or w/Docker container on your own system
Once you have set up your environment and copied the tutorial materials:

elvis@cori07:~> cd 2020-11/exercises/
elvis@cori07:~/2020-11/exercises> make run-ex0
[...full path...]/bin/upcxx ex0.cpp -o ex0
[...full path...]/bin/upcxx-run -n 4 ./ex0
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/sc20

22

Exercise 1: Ordered hello world
Modify the program below so that the messages are written to the output
file in order by rank (ex1.cpp)

• Processes should take turns printing to the file, using a loop in which one
process prints per iteration

• Use upcxx::barrier() to perform a barrier, which prevents any
process from continuing until all processes have reached it

int main() {
upcxx::init();
std::ofstream fout("output.txt", std::iosbase::app);
fout << "Hello from process " << upcxx::rank_me()

<< " out of " << upcxx::rank_n() << std::endl;
sync();
upcxx::finalize();

}
Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Commit data to disk
(POSIX systems)

Link to solution

23

Remote Procedure Calls (RPC)
Let’s say that process 0 performs this RPC

int area(int a, int b) { return a * b; }

int rect_area = rpc(p, area, a, b).wait();

The target process p will execute the handler function area() at some later
time determined at the target

The result will be returned to process 0

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process p

upcxx::rpc(p,
area,
a, b)

● ● ●

Execute area(a,b)
on process p

area

1
2

Result returned
to process 0

3

{"area", a, b}

Process 0

rect_area

24

Hello world with RPC (synchronous)
We can rewrite hello world by having each process launch an RPC to
process 0
int main() {

upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

C++ lambda function

Wait for RPC to complete
before continuing

Rank number is the
argument to the lambda

Barrier prevents any process from
proceeding until all have reached it

25

Futures
RPC returns a future object, which represents a computation that may or
may not be complete

Calling wait() on a future causes the current process to wait until the
future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process " << rank << endl;
}, upcxx::rank_me());

fut.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Empty future type that
does not hold a value,

but still tracks readiness

26

What is a future?
A future is a handle to an asynchronous operation, which holds:

• The status/readiness of the operation
• The results (zero or more values) of the completed operation

The future is not the result itself, but a proxy for it

The wait() method blocks until a future is ready and returns the result
upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

future

op

"async_op"

ready true

data 3

27

Overlapping communication
Rather than waiting on each RPC to complete, we can launch every RPC
and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {

upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We'll see better ways to wait on groups of asynchronous operations later

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

28

1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a function of its old value
and those of its immediate neighbors

Out-of-place computation requires two grids

for (long i = 1; i < N - 1; ++i)
new_grid[i] = 0.25 *

(old_grid[i - 1] + 2*old_grid[i] + old_grid[i + 1]);

Sample data distribution of each grid
(12 domain elements, 3 ranks, N=12/3+2=6):

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

Local grid size

29

Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to keep track of the
grids

double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic
boundary

* We will generally elide the upcxx:: qualifier from here on out.

30

Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

5 6 7 84 9
Process 1

31

Race conditions
Since processes are unsynchronized, it is possible that a process can
move on to later iterations while its neighbors are still on previous ones

• One-sided communication decouples data movement from
synchronization for better performance

A straggler in iteration 𝑖𝑖 could obtain data from a neighbor that is computing
iteration 𝑖𝑖 + 2, resulting in incorrect values

This behavior is unpredictable and may not be observed in testing

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Iteration 𝑖𝑖 + 2 Iteration 𝑖𝑖Iteration 𝑖𝑖
k k+1process k-1

32

Naïve solution: barriers
Barriers at the end of each iteration provide sufficient synchronization

future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Barriers around the swap
ensure that incoming RPCs in
both this iteration and the next

one use the correct grids

33

One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most efficient way to move
large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

34

Jacobi with ghost cells
Each process maintains ghost cells for data from neighboring processes

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

get from rightget from left

1 2 3 412 5
Rank 0

5 6 7 84 9
Rank 1

9 10 11 128 1
Rank 2

my_grid right_grid_gptrleft_grid_gptr

35

Storage management
Memory must be allocated in the shared segment in order to be accessible
through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls - each process allocates its own memory, and
there is no synchronization

• Explicit synchronization may be required before retrieving another
process's pointers with an RPC

UPC++ does not maintain a symmetric heap
• The pointers must be communicated to other processes before they

can access the data

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

36

Downcasting global pointers
If a process has direct load/store access to the memory referenced by a global
pointer, it can downcast the global pointer into a raw pointer with local()

global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Later, we will see how downcasting can be used to optimize for co-located
processes that share physical memory

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Can be accessed
by an RPC

37

Jacobi RMA with gets
Each process obtains boundary data from its neighbors with rget()

future<> left_get = rget(left_old_grid + N - 2, old_grid, 1);
future<> right_get = rget(right_old_grid + 1, old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25*(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25*(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Begin asynchronous
RMA gets

Wait for communication,
then consume values

Remote source (global_ptr) Local dest ptr

Overlapped computation
on interior cells

38

Callbacks
The then() method attaches a callback to a future

• The callback will be invoked after the future is ready, with the future’s
values as its arguments

future<> left_update =
rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *

(old_grid[0] + 2*old_grid[1] + old_grid[2]);
});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *

(old_grid[N-3] + 2*old_grid[N-2] + value);
});

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Vector get does not produce a value

Scalar get produces a value

39

Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {

return std::log(value);
});
future<> fut3 =

fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, computes its log, and
then sends it to a different remote location

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

rget

then({log(value)})

then({rput(value,target)})

40

Conjoining futures
Multiple futures can be conjoined with when_all() into a single future that
encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int> source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

rget

then({rput(a*b,target)})

rget

when_all

41

Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with rput(), and the
resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 * (old_grid[0] + 2*old_grid[1] + old_grid[2]);
new_grid[N-2] = 0.25 * (old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed

42

Distributed objects
A distributed object is an object that is partitioned over a set of processes

dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but each has its own
local value

Similar in concept to a co-array, but with advantages
• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down
• Can be constructed over teams

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process p

● ● ●

Process 1

dist_object<int>
all_nums(rand());

42
all_nums

3
all_nums

8
all_nums

43

Example: Monte Carlo computation of pi
Estimate pi by throwing darts at a unit square

Calculate percentage that fall in the unit circle
• Area of square = r2 = 1
• Area of circle quadrant = ¼ * π r2 = π/4

Randomly throw darts at x,y positions

If x2 + y2 < 1, then point is inside circle

Compute ratio:
• # points inside / # points total
• π = 4*ratio

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

r =1

44

Pi with a distributed object
A distributed object can be used to store the results from each process
// Throws a random dart and returns 1 if it is
// in the unit circle, 0 otherwise.
int hit();

...

dist_object<int> all_hits(0);
for (int i = 0; i < my_trials; ++i)

*all_hits += hit();
barrier();
if (rank_me() == 0) {

for (int i = 0; i < rank_n(); ++i)
total += all_hits.fetch(i).wait();

cout << "PI estimated to " << 4.0*total/trials;
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Results for each process

Dereference to obtain this process's value

Obtain another process's value

45

Implicit synchronization
The future returned by fetch() is not readied until the distributed object
has been constructed on the target, allowing its value to be read

• This allows us to avoid explicit synchronization between the initiator and
the target

int my_hits = 0;
for (int i = 0; i < my_trials; ++i)

my_hits += hit();
dist_object<int> all_hits(my_hits);
if (rank_me() == 0) {

for (int i = 0; i < rank_n(); ++i)
total += all_hits.fetch(i).wait();

cout << "PI estimated to " << 4.0*total/trials;
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

The result of fetch()
is obtained after the

dist_object is
constructed on the

target

48

Exercise 2: Distributed object in Jacobi
Modify the Jacobi code to perform bootstrapping using UPC++ distributed
objects (ex2.cpp)
global_ptr<double> old_grid_gptr, new_grid_gptr;
global_ptr<double> right_old_grid, right_new_grid;
int right; // rank of my right neighbor

// Obtains grid pointers from the right neighbor and
// sets right_old_grid and right_new_grid accordingly.
void bootstrap_right() {

/* your code here */

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to solution

51

Distributed hash table (DHT)
Distributed analog of std::unordered_map
• Supports insertion and lookup

• We will assume the key and value types are std::string

• Represented as a collection of individual unordered maps across processes

• We use RPC to move hash-table operations to the owner

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per rank

● ● ●

key val

52

DHT data representation
A distributed object represents the directory of unordered maps
class DistrMap {

using dobj_map_t =
dist_object<std::unordered_map<std::string, std::string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank_n();

}
};

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Computes owner for the given key

Define an abbreviation for a helper type

53

DHT insertion
Insertion initiates an RPC to the owner and returns a future that represents
completion of the insert
future<> insert(const string &key,

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key, const string &val) {
(*lmap)[key] = val;

}, local_map, key, val);
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Key and value passed
as arguments to the

remote function

UPC++ uses the
distributed object's
universal name to
look it up on the
remote process

Process 0 Process p

● ● ●

key val

Send RPC to the rank
determined by key hash

54

DHT find
Find also uses RPC and returns a future

future<string> find(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
if (lmap->count(key) == 0)

return string("NOT FOUND");
else

return (*lmap)[key];
}, local_map, key);

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Key passed as
argument to the
remote function

UPC++ uses the
distributed object's
universal name to
look it up on the
remote process

Send RPC to the rank
determined by key hash

Check whether key
exists in local map

Retrieve corresponding
value from the local

map and return it

Process 0 Process p

● ● ●

key val

55

Exercise 3: Distributed hash table
Implement the erase and update methods (ex3.hpp)
// Erases the given key from the DHT.
future<> erase(const string &key);

// Replaces the value associated with the
// given key and returns the old value with
// which it was previously associated.
future<string> update(const string &key, const string &value);

// Use this function to perform an update on an
// unordered_map that resides on the local process.
// Assume it is already written for you.
static string local_update(unordered_map<string, string> &lmap,

const string &key, const string &value);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to solution

56

Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
• Key insertion and storage allocation handled at target

• Without RPC, complex updates would require explicit synchronization and two-
sided coordination

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL)

Cray XC40

57

RPC and progress
Review: high-level overview of an RPC's execution

1.Initiator injects the RPC to the target process
2.Target process executes fn(arg1, arg2) at some later time determined at target

3.Result becomes available to the initiator via the future

Progress is what ensures that the RPC is eventually executed at the target

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

upcxx::rpc(target, fn, arg1, arg2)

● ● ●

Execute fn(arg1, arg2) on process target

fn

1

future

2

Result available via a future3

Process
(initiator)

Process
(target)

58

Progress
UPC++ does not spawn hidden threads to advance its internal state or
track asynchronous communication

This design decision keeps the runtime lightweight and simplifies
synchronization
• RPCs are run in series on the main thread at the target process, avoiding the

need for explicit synchronization

The runtime relies on the application to invoke a progress function to
process incoming RPCs and invoke callbacks

Two levels of progress
• Internal: advances UPC++ internal state but no notification

• User: also notifies the application
• Readying futures, running callbacks, invoking inbound RPCs

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

59

Invoking user-level progress
The progress() function invokes user-level progress

• So do blocking calls such as wait() and barrier()

A program invokes user-level progress when it expects local callbacks and
remotely invoked RPCs to execute

• Enables the user to decide how much time to devote to progress, and how
much to devote to computation

User-level progress executes some number of outstanding received RPC
functions

• “Some number” could be zero, so may need to periodically invoke when
expecting callbacks

• Callbacks may not wait on communication, but may chain new callbacks on
completion of communication

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

60

Remote atomics
Remote atomic operations are supported with an atomic domain

Atomic domains enhance performance by utilizing hardware offload
capabilities of modern networks

The domain dictates the data type and operation set
atomic_domain<int64_t> dom({atomic_op::load, atomic_op::min,

atomic_op::fetch_add});

• Supports all {32,64}-bit signed/unsigned integers, float, double

Operations are performed on global pointers and are asynchronous
global_ptr <int64_t> ptr = new_<int64_t>(0);
future<int64_t> f = dom.fetch_add(ptr,2,memory_order_relaxed);
int64_t res = f.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

61

sender target

Serialization
RPC’s transparently serialize shipped data

• Conversion between in-memory and byte-stream representations
• serialize  transfer  deserialize  invoke

Conversion makes byte copies for C-compatible types
• char, int, double, struct{double;double;}, ...

Serialization works with most STL container types
• vector<int>, string, vector<list<pair<int,float>>>, ...

• Hidden cost: containers deserialized at target (copied) before being
passed to RPC function

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

62

Views
UPC++ views permit optimized handling of collections in RPCs, without
making unnecessary copies

• view<T>: non-owning sequence of elements

When deserialized by an RPC, the view elements can be accessed directly
from the internal network buffer, rather than constructing a container at the
target
vector<float> mine = /* ... */;
rpc_ff(dest_rank, [](view<float> theirs) {

for (float scalar : theirs)
/* consume each */

},
make_view(mine)

);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process elements directly
from the network buffer

Cheap view construction

63

Shared memory hierarchy and local_team
Memory systems on supercomputers are hierarchical

• Some process pairs are “closer” than others
• Ex: cabinet > switch > node > NUMA domain > socket > core

Traditional PGAS model is a “flat” two-level hierarchy
• “same process” vs “everything else”

UPC++ adds an intermediate hierarchy level
• local_team() – a team corresponding to a physical node

• These processes share a physical memory domain
• Shared segments are CPU load/store accessible across the same local_team

Process 0 Process 1 Process 2 Process 3

Node 0
local_team

Node 1
local_team

64

Downcasting and shared-memory bypass
Earlier we covered downcasting global pointers
• Converting global_ptr<T> from this process to raw C++ T*
• Also works for global_ptr<T> from any process in local_team()
int l_id = local_team().rank_me();

int l_cnt = local_team().rank_n();

global_ptr<int> gp_data;

if (l_id == 0) gp_data = new_array<int>(l_cnt);

gp_data = broadcast(gp_data, 0, local_team()).wait();

int *lp_data = gp_data.local();

lp_data[l_id] = l_id;

Rank and count in my local node

Allocate and share
one array per node

Downcast to get raw C++ ptr to shared array

Direct store to shared array created by node leader

Node 0
local_team

Node 1
local_team

Global
address
space

Process 0 Process 1

lp_data lp_data
0 l_id 1 l_id

Process 2 Process 3

lp_data lp_data
0 l_id 1 l_id

65

Optimizing for shared memory in many-core
local_team() allows optimizing co-located processes for physically
shared memory in two major ways:

• Memory scalability
• Need only one copy per node for replicated data
• E.g. Cori KNL has 272 hardware threads/node

• Load/store bypass – avoid explicit communication overhead for RMA on
local shared memory
• Downcast global_ptr to raw C++ pointer
• Avoid extra data copies and communication overheads

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

68

Completion: synchronizing communication
Earlier we synchronized communication using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicit: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise, inject an RPC, etc.
• Can even combine several completions for the same operation

Can also detect other “intermediate” completion steps
• For example, source completion of an RMA put or RPC

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

69

Completion: promises
A promise represents the producer side of an asynchronous operation

• A future is the consumer side of the operation

By default, communication operations create an implicit promise and return an
associated future

Instead, we can create our own promise and register it with multiple
communication operations
void do_gets(global_ptr<int> *gps, int *dst, int cnt) {

promise<> p;
for (int i = 0; i < cnt; ++i)
rget(gps[i], dst+i, 1, operation_cx::as_promise(p));

future<> fut = p.finalize();
fut.wait();

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Register an operation
on a promiseClose registration

and obtain an
associated future

70

Completion: "signaling put"
One particularly interesting case of completion:
rput(src_lptr, dest_gptr, count,

remote_cx::as_rpc([=]() {
// callback runs at target rank after put data arrives
compute(dest_gptr, count);

});

• Performs an RMA put, informs the target upon arrival
• RPC callback to inform the target and/or process the data
• Implementation can transfer both the RMA and RPC with a single network-

level operation in many cases
• Couples data transfer w/sync like message-passing
• BUT can deliver payload using RDMA without rendezvous (because initiator

specified destination address)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

71

Memory Kinds
Supercomputers are becoming increasingly heterogeneous in compute,
memory, storage

UPC++ memory kinds enable sending data between different kinds of
memory/storage media

API is meant to be flexible, but initially supports memory copies between
remote or local CUDA GPU devices and remote or local host memory
global_ptr<int, memory_kind::cuda_device> src = ...;
global_ptr<int, memory_kind::cuda_device> dst = ...;

copy(src, dst, N).wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Can point to memory on
a local or remote GPU

72

Non-contiguous RMA
We’ve seen contiguous RMA

• Single-element
• Dense 1-d array

Some apps need sparse RMA access

• Could do this with loops and
fine-grained access

• More efficient to pack data and
aggregate communication

• We can automate and streamline the pack/unpack

Three different APIs to balance metadata size vs. generality
• Irregular: iovec-style iterators over pointer+length

• Regular: iterators over pointers with a fixed length

• Strided: N-d dense array copies + transposes

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

73

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information and support forum

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

“UPC++ has an excellent blend of ease-
of-use combined with high performance.
Features such as RPCs make it really
easy to rapidly prototype applications,

and still have decent performance.
Other features (such as one-sided

RMAs and asynchrony) enable fine-
tuning to get really great performance.”

-- Steven Hofmeyr, LBNL

“If your code is already written in a one-
sided fashion, moving from MPI RMA or

SHMEM to UPC++ RMA is quite
straightforward and intuitive; it took me
about 30 minutes to convert MPI RMA
functions in my application to UPC++

RMA, and I am getting similar
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

74

Application Case Studies

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

75

Application case studies
UPC++ has been used successfully in several applications to improve
programmer productivity and runtime performance

We discuss two specific applications:

• symPack, a sparse symmetric matrix solver

• Sim-COV, agent-base simulation of lungs with COVID

• MetaHipMer, a genome assembler

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

76

Sparse multifrontal direct linear solver
Sparse matrix factorizations have low computational intensity and irregular
communication patterns

Extend-add operation is an important building block for
multifrontal sparse solvers

Sparse factors are organized as a hierarchy of condensed
matrices called frontal matrices

Four sub-matrices: factors + contribution block

Code available as part of upcxx-extras BitBucket repo

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 paper:
Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed.
"UPC++: A High-Performance Communication Framework for Asynchronous Computation",
https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H

77

Implementation of the extend-add operation
Data is binned into per-destination contiguous buffers

Traditional MPI implementation uses MPI_Alltoallv

• Variants: MPI_Isend/MPI_Irecv +
MPI_Waitall/MPI_Waitany

UPC++ Implementation:

• RPC sends child contributions to the
parent using a UPC++ view

• RPC callback compares indices and
accumulates contributions on the
target

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H

78

UPC++ improves sparse solver performance (extend-add)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
Assembly trees / frontal matrices

extracted from STRUMPACK

D
ow

n
is

 g
oo

d Max speedup over
mpi_alltoallv: 1.79x

Experiment done on
NERSC Cori Haswell
Cray XC Aries

https://doi.org/10.25344/S4V88H

79

UPC++ improves sparse solver performance (extend-add)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

D
ow

n
is

 g
oo

d

Assembly trees / frontal matrices
extracted from STRUMPACK

Max speedup over
mpi_alltoallv: 1.63x

Experiment done on
NERSC Cori KNL
Cray XC Aries

https://doi.org/10.25344/S4V88H

80

symPACK: a solver for sparse symmetric matrices

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

1) Data is produced
2) Notifications using upcxx::rpc_ff

● Enqueues a upcxx::global_ptr to the data
● Manages dependency count

3) When all data is available, task is moved in the data
available task list

4) Data is moved using upcxx::rget
● Once transfer is complete, update dependency

count
5) When everything has been transferred, task is moved

to the ready tasks list

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

https://upcxx.lbl.gov/sympack

https://upcxx.lbl.gov/sympack

81

N=512,000 nnz(L)=1,697,433,600

N=1,391,349 nnz(L)=2,818,053,492

D
ow

n
is

 g
oo

d
D

ow
n

is
 g

oo
d

3x speedup

2.5x speedup

symPACK a solver for sparse symmetric matrices
Matrix is distributed by supernodes
• 1D distribution

• Balances flops, memory
• Lacks strong scalability

• New 2D distribution (to appear)
• Explicit load balancing, not regular block cyclic mapping
• Balances flops, memory
• Finer granularity task graph

Strong scalability on Cori Haswell:
• Up to 3x speedup for Serena
• Up to 2.5x speedup for DG_Phosphorene_14000
UPC++ enables the finer granularity task graph to be
fully exploited
• Better strong scalability

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

82

symPACK strong scaling experiment

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Processes
N=1,564,794 nnz(L)=1,574,541,576

2

4

6

8

10

Ti
m

e
(s

)

Run times for Flan_1565
pastix_5_2_3
symPACK_1D
symPACK_2D

Max speedup: 1.85x

D
ow

n
is

 g
oo

d

Experiment done on
NERSC Cori KNL
Cray XC Aries

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

83

symPACK strong scaling experiment

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Processes
N=943,695 nnz(L)=1,261,342,196

4

6

8

10

12

14

16

18

Ti
m

e
(s

)

Run times for audikw_1
pastix_5_2_3
symPACK_1D
symPACK_2D

D
ow

n
is

 g
oo

d Max speedup: 2.13x

Experiment done on
NERSC Cori Haswell
Cray XC Aries

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

84

UPC++ provides productivity + performance for sparse solvers
Productivity
• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API

Reduced communication costs
• Low overhead reduces the cost of fine-grained communication

• Overlap communication via asynchrony and futures

• Increased efficiency in the extend-add operation

• Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/sympack

85

SIM-Cov: Spatial Model of Immune Response to Viral Lung Infection

● The immune response to SARS-Cov-2 plays a critical role in determining the
outcome of Covid-19 in an individual

● Most of what you hear about the immune response is focused on antibodies
● However, antibodies can only stop a virus that is outside a host cell
● Once it has invaded a cell, it is the "job" of the T cells to attack the virus
● Understanding how T cells detect and clear the virus is fundamental to

understanding disease progression and resolution

To investigate this, we are building a 3D agent-based model of the lungs, called
SIM-Cov

M. Moses, J. Cannon (UNM), S. Forrest (ASU) and S. Hofmeyr (LBNL)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

86

SIM-Cov Implementation

● Goal is to model the entire lung at the cellular level:
○ 100 billion epithelial cells
○ 100s of millions of T cells
○ Complex branching fractal structure
○ Time resolution in seconds for 20 to 30 days

● SIM-Cov in UPC++
○ Distributed 3D spatial grid
○ Particles move over time, but computation is localized
○ Load balancing is tricky: active near infections

● UPC++ benefits:
○ Heavily uses RPCs
○ Easy to develop first prototype
○ Good distributed performance and avoids explicit locking
○ Extensive support for asynchrony improves

computation/communication overlap

Imaging of T cell movement in lung tissue

Fractal model of airways in lung

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

87

SIM-Cov Components

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

88

Speculative Simulations to Explore Role of T cells in disease severity

Mild infection:
○ high T cell response
○ controls viral infection
○ recovery by day 10 (viral drops near zero)

Severe infection:
○ low T cell response
○ fails to control infection
○ initial drop in viral load but surge later on
○ corresponds to a common progression

actually seen in severe disease (people
feel better then get a lot worse)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

89

Use of Observational Data
We will use observational data in three ways:

● To obtain parameters for the model
○ e.g. rate of viral production by infected cells,

T cell generation rate, rate of T cell
movement, etc.

● To validate the model
○ does the output "look" like a typical Covid-19

infection? e.g. distribution of plaques
○ are the measured quantities similar with

similar time courses? e.g. viral load
● To seed the model

○ Given an initial distribution of the virus:
■ what is the most likely outcome?
■ what is the best intervention strategy?

Lung CT showing sites of
infection

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

90

Visualization of Prototype Simulation
Run headless and visualize
afterwards using Paraview

Spread of infection from
single focal point

Very small 2D area without
branching structures

91

ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a
wildfire? (1.5TB)

What at the seasonal fluctuations
in a wetland mangrove? (1.6 TB)

How do microbes affect disease and
growth of switchgrass for biofuels (4TB)

What are the microbial dynamics
of soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved
functional understanding (8TB)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

92

De Novo genome assembly problem

GCTACGGAATAAAACCAGGAACAACAGAGCC_AGCAC
reads

(input, typically
100-250 chars)

Input

Output
Assembled genome (or 10s of Ks of bp fragments so we can find genes, etc.)

ATAAAACCAGGTACAACAGACCCAGCACGGATCCA
GC ACGGAATACAACCAGGAACAACAGACCCAGCAC

GAACAACAGACCCAGCATGGATCCA
Multiple
copies

(20x typical)

GCTACGGAATAAAACCAGGAACAACAGACCCAGCACGGATCCA

errors

GG

A

AT

GGA AT

TGG

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

93

Genome Assembly

- 93 -Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

94

Understanding an environmental microbiome

- 94 -

Best paper finalist at Supercomputing 18

95

Co-Assembly Improves Quality and is an HPC Problem

Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt,
Andrew Tritt, Aydın Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
• Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta
• Previously assembled 1 lane at a time (multiassembly)
• MetaHipMer coassembled together – higher quality assembly, in 3.5 hours

Multiassembly
1 lane at a time

Coassembly all
assembled together

This was largest, high-quality de novo metagenome assembly completed to date

MetaHipMer coassembly: more new
genomes at higher completeness

96

(Meta)HipMer (Meta)Genome Assembly

1) K-mer Analysis
Histogram

3) Alignment
Read/contig alignment
Smith Waterman

4) Scaffolding
Graph walk

2) Contig Generation
Connected components
Distributed Hash Table

xxx xx xxxx

reads

k-mers

read-contig
alignments

contig-contig
scaffolds

contigs

1

2

3

4

Iterate for k+s

Extract k+s-mers

Originally written in MPI & UPC, now in UPC++

MPI

UPC

UPC

UPC

UPC++

UPC++

UPC++

UPC++

Steve Hofmeyr, Rob Egan, Evangelos Georganas, leads on MetaHipMer software
Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

97

GCTA C GGAATAAAACCAGGAACAACAGACCCAGCAC
ATTAACAACAAAGGGTAAAAGGCATCATGGCTTCAG

GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
TGATGCGACGACGCACCTCGTTGTTACGCACTTCAG

} reads

GCTA

...
CTAC

TACG

ACGG

CGGA

GGAA

GAAT

AATA

ATAA

TAAA

AAAA
AAAC

AACC
ACCA

CCAG } k-
mers
(e.g. k=4)...

K-Mer Analysis Uses a Distributed Hash Table and Bloom Filter

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

98

K-mer counting now in UPC++

• Used to be MPI; it was bulk-synchronous in iterations
• New version in UPC++ avoids barriers, saves memory (no MPI runtime)
• It’s faster
• And simpler!

MPI with bloom filter
UPC++ with bloom
filter
UPC++ without

Steve Hofmeyr, Rob Egan, Evangelos Georganas, leads on MetaHipMer software

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

99

Distributed De Bruijn Graph

The de Bruijn graph of k-mers is represented as a hash table

• A k-mer is a node in a graph  a k-mer is an entry (key) in the hash table

• It stores the left and right “extension” (ACTG) as the value in the table

The connected components represent contigs.

GAT ATC TCT CTG TGA
AAC

ACC
CCG

AAT
ATG

TGC

Contig 1: GATCTGA

Contig 2: AACCG

Contig 3: AATGC

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

100

AAC CF
ATC TG
ACC GA

TGA FC
GAT CF
AAT GF

ATG CA
TCT GA

CCG FA
CTG AT
TGC FA

P0

P1

Pn

Input: k-mers and
their high quality

extensions

Read k-mers
& extensions

Distributed
Hash table

Store k-mers
& extensions

…

Parallel De Bruijn Graph Construction

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

101

ExaBiome / MetaHipMer distributed hashmap

Memory-limited graph stages
• k-mers, contig, scaffolding

Optimized graph construction
• Larger messages for better

network bandwidth

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group

102

ExaBiome / MetaHipMer distributed hashmap

Memory-limited graph stages
• k-mers, contig, scaffolding

Optimized graph construction
• Larger messages for better

network bandwidth

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Large message,
high bandwidth

Small message,
low bandwidth

Work and results by Rob Egan,
funded by ECP ExaBiome Group

103

ExaBiome / MetaHipMer distributed hashmap
Aggregated store

• Buffer calls to dist_hash::update(key,value)

• Send fewer but larger messages to target rank

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

104

Distributed Alignment: Hash Tables and Alignment

A B C A B B A

C

B

A

B

A

C

R
ef

er
en

ce

Query

Given strings s and t, align to find
minimum # of edits

Dynamic programming on short strings with
early stopping for bad alignments

AAC TGA CCG
ACC GAT CGT
CCT ATT GTC

Given sets of strings S and T, find
good alignments
Make hash table of k-mers in S, only align to
things in T with at least 1 identical k-mer

1-sided comm or irregular all-to-all + memory

Many variations
of both!

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

105

API - AggrStore<FuncDistObject, T>
struct FunctionObject {
void operator()(T &elem) { /* do something */ }

};
using FuncDistObject = upcxx::dist_object<FunctionObject>;

// AggrStore holds a reference to func
AggrStore(FuncDistObj &func);
~AggrStore() { clear(); }

// clear all internal memory
void clear();

// allocate all internal memory for buffering
void set_size(size_t max_bytes);

// add one element to the AggrStore
void update(intrank_t target_rank, T &elem);

// flush and quiesse
void flush_updates();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group

106

100

1000

10000

64 128 256 512 1024 1536 2048

Ti
m

e
(s

)

Nodes

Scaling of Wetlands (one lane) on Edison

Overall

without oNo

linear

MetaHipMer Scaling

First release of metagenome HipMer (MetaHipMer) 12/2017

Open source: https://sites.google.com/lbl.gov/exabiome/downloads

Runs without errors on several datasets and on multiple HPC systems.

The quality is comparable to other metagenome assemblers

x24 cores per node

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://sites.google.com/lbl.gov/exabiome/downloads

107

MetaHipMer utilized UPC++ features
C++ templates - efficient code reuse

dist_object - as a templated functor & data store

Asynchronous all-to-all exchange - not batch synchronous

• 5x improvement at scale relative to previous MPI implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill - for a fixed-size memory footprint

• Issue promise when full, fulfill when available

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group

108

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information and support forum

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

“UPC++ has an excellent blend of ease-
of-use combined with high performance.
Features such as RPCs make it really
easy to rapidly prototype applications,

and still have decent performance.
Other features (such as one-sided

RMAs and asynchrony) enable fine-
tuning to get really great performance.”

-- Steven Hofmeyr, LBNL

“If your code is already written in a one-
sided fashion, moving from MPI RMA or

SHMEM to UPC++ RMA is quite
straightforward and intuitive; it took me
about 30 minutes to convert MPI RMA
functions in my application to UPC++

RMA, and I am getting similar
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

109

Exercise Solutions

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

110

Solution 1: Ordered hello world
int main() {

upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::barrier();
if (upcxx::rank_me() == i) {

std::ofstream fout("output.txt", std::iosbase::app);
fout << "Hello from process " << upcxx::rank_me()

<< " out of " << upcxx::rank_n() << std::endl;
sync();

}
}
upcxx::finalize();

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to exercise

111

Solution 2: Distributed object in Jacobi
Modify the Jacobi code to perform bootstrapping using UPC++ distributed
objects (ex2.cpp)
global_ptr<double> old_grid_gptr, new_grid_gptr;
global_ptr<double> right_old_grid, right_new_grid;
int right; // rank of my right neighbor

// Obtains grid pointers from the right neighbor and
// sets right_old_grid and right_new_grid accordingly.
void bootstrap_right() {

dist_object<global_ptr<double>>
dobj_old(old_grid_gptr), dobj_new(new_grid_gptr);

right_old_grid = dobj_old.fetch(right).wait();
right_new_grid = dobj_new.fetch(right).wait();

barrier();
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Ensures distributed objects are
not destructed until all ranks
have completed their fetches

Link to exercise

112

Better solution 2: Distributed object in Jacobi

Modify the Jacobi code to perform bootstrapping using UPC++ distributed
objects (ex2.cpp)
void bootstrap_right() {

using ptr_pair = std::pair<global_ptr<double>,
global_ptr<double>>;

dist_object<ptr_pair> dobj({old_grid_gptr, new_grid_gptr});

std::tie(right_old_grid, right_new_grid) = dobj.fetch(right).wait();
// equivalent to the statement above:
// ptr_pair result = dobj.fetch(right).wait();
// right_old_grid = result.first;
// right_new_grid = result.second;

barrier();
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to exercise

113

Solution 3: Distributed hash table
Implement the erase and update methods (ex3.hpp)
future<> erase(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

lmap->erase(key);
}, local_map, key);

}

future<string> update(const string &key,
const string &value) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key,

const string &value) {
return local_update(*lmap, key, value);

}, local_map, key, value);
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Lambda to remove
the key from the local

map at the target

Lambda to
update the key

in the local map
at the target

Link to exercise

	Title Slide
	Acknowledgements
	Some motivating applications
	Some motivating system trends
	Reducing communication overhead
	One-sided vs Two-sided Message Performance
	A Partitioned Global Address Space programming model
	The PGAS model
	Execution model: SPMD
	Global pointers
	Global vs raw pointers and affinity
	How does UPC++ deliver the PGAS model?
	RMA performance: GASNet-EX vs MPI-3
	UPC++ on top of GASNet
	What does UPC++ offer?
	Asynchronous communication (RMA)
	Remote procedure call (RPC)
	Compiling and running a UPC++ program
	Using UPC++ at US DOE Office of Science Centers
	Example: Hello world
	Exercise 0: Hello world compile and run
	Exercise 1: Ordered hello world
	Remote Procedure Calls (RPC)
	Hello world with RPC (synchronous)
	Futures
	What is a future?
	Overlapping communication
	1D 3-point Jacobi in UPC++
	Jacobi boundary exchange (version 1)
	Jacobi computation (version 1)
	Race conditions
	Naïve solution: barriers
	One-sided put and get (RMA)
	Jacobi with ghost cells
	Storage management
	Downcasting global pointers
	Jacobi RMA with gets
	Callbacks
	Chaining callbacks
	Conjoining futures
	Jacobi RMA with puts and conjoining
	Distributed objects
	Example: Monte Carlo computation of pi
	Pi with a distributed object
	Implicit synchronization
	Exercise 2: Distributed object in Jacobi
	Distributed hash table (DHT)
	DHT data representation
	DHT insertion
	DHT find
	Exercise 3: Distributed hash table
	Optimized DHT scales well
	RPC and progress
	Progress
	Invoking user-level progress
	Remote atomics
	Serialization
	Views
	Shared memory hierarchy and local_team
	Downcasting and shared-memory bypass
	Optimizing for shared memory in many-core
	Completion: synchronizing communication
	Completion: promises
	Completion: "signaling put"
	Memory Kinds
	Non-contiguous RMA
	UPC++ additional resources
	Application Case Studies
	Application case studies
	Sparse multifrontal direct linear solver
	Implementation of the extend-add operation
	UPC++ improves sparse solver performance (extend-add)
	UPC++ improves sparse solver performance (extend-add)
	symPACK: a solver for sparse symmetric matrices
	symPACK a solver for sparse symmetric matrices
	symPACK strong scaling experiment
	symPACK strong scaling experiment
	UPC++ provides productivity + performance for sparse solvers
	SIM-Cov: Spatial Model of Immune Response to Viral Lung Infection
	SIM-Cov Implementation
	SIM-Cov Components
	Speculative Simulations to Explore Role of T cells in disease severity
	Use of Observational Data
	Visualization of Prototype Simulation
	ExaBiome: Exascale Solutions for Microbiome Analysis
	De Novo genome assembly problem
	Genome Assembly
	Understanding an environmental microbiome
	Co-Assembly Improves Quality and is an HPC Problem
	(Meta)HipMer (Meta)Genome Assembly
	K-Mer Analysis Uses a Distributed Hash Table and Bloom Filter
	K-mer counting now in UPC++
	Distributed De Bruijn Graph
	Parallel De Bruijn Graph Construction
	ExaBiome / MetaHipMer distributed hashmap
	ExaBiome / MetaHipMer distributed hashmap
	ExaBiome / MetaHipMer distributed hashmap
	Distributed Alignment: Hash Tables and Alignment
	API - AggrStore<FuncDistObject, T>
	MetaHipMer Scaling
	MetaHipMer utilized UPC++ features
	UPC++ additional resources
	Exercise Solutions
	Solution 1: Ordered hello world
	Solution 2: Distributed object in Jacobi
	Better solution 2: Distributed object in Jacobi
	Solution 3: Distributed hash table

