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Some motivating applications
Many applications involve asynchronous
updates to irregular data structures
• Adaptive meshes
• Sparse matrices 
• Hash tables and histograms
• Graph analytics
• Dynamic work queues

Irregular and unpredictable data movement:
• Space: Pattern across processors
• Time: When data moves
• Volume: Size of data
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Some motivating system trends
The first exascale systems will appear in 2021
• Cores per node is growing

• Cores are getting simpler (including GPU cores)

• Memory per core is dropping

• Latency is not improving

Need to reduce communication costs in software
• Overlap communication to hide latency

• Reduce memory using smaller, more frequent messages

• Minimize software overhead 

• Use simple messaging protocols (RDMA)
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Reducing communication overhead
Let each process directly access another’s memory via a global pointer
Communication is one-sided

• No need to match sends to receives
• No unexpected messages
• No need to guarantee message ordering

• All metadata provided by the initiator, rather than split between sender and receiver
• Supported in hardware through RDMA (Remote Direct Memory Access)

Looks like shared memory:  shared data structures with asynchronous access
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One-sided vs Two-sided Message Performance
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A Partitioned Global Address Space programming model
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned
• Global pointers to objects in shared memory have an affinity to a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity
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The PGAS model
Partitioned Global Address Space

• Support global memory, leveraging the network’s RDMA capability
• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that provide PGAS: UPC, Titanium, Chapel, X10, Co-Array 
Fortran (Fortran 2008)
Libraries that provide PGAS: Habanero UPC++, OpenSHMEM, Co-Array 
C++, Global Arrays, DASH, MPI-RMA
This presentation is about UPC++, a C++ library developed at Lawrence 
Berkeley National Laboratory
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Execution model: SPMD
Like MPI, UPC++ uses a SPMD model of execution, where a fixed number 
of processes run the same program
int main() {

upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}
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Global pointers

Global pointers are used to create logically shared but physically 
distributed data structures
Parameterized by the type of object it points to, as with a C++ (raw) 
pointer: e.g. global_ptr<double>
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Global vs raw pointers and affinity

The affinity identifies the process that created the object

Global pointer carries both an address and the affinity for the data

Raw C++ pointers can be used on a process to refer to objects in the 
global address space that have affinity to that process

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global 
address space

Private
memory

x: 1
p: 

x: 5
p: 

x: 7
p:

l: 

g: 

l: 

g: 

l: 

g: 



12

How does UPC++ deliver the PGAS model?
UPC++ uses a “Compiler-Free,” library approach
• UPC++ leverages C++ standards,

needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes network hardware, including RDMA
• Provides Active Messages on which more UPC++ RPCs are built
• Enables portability (laptops to supercomputers)

Designed for interoperability
• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ as in MPI+X

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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RMA performance: GASNet-EX vs MPI-3

Three different MPI
implementations

Two distinct network
hardware types

On these four systems
the performance of
GASNet-EX meets or
exceeds MPI RMA:

• 8-byte Put latency 6% to 55% better
• 8-byte Get latency 5% to 45% better
• Better flood bandwidth efficiency, typically saturating at ½ or ¼ the transfer size 

(next slide)
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GASNet-EX results from v2018.9.0 and v2019.6.0.    MPI results from Intel MPI Benchmarks v2018.1.
For more details see Languages and Compilers for Parallel Computing (LCPC'18).  https://doi.org/10.25344/S4QP4W
More recent results on Summit here replace the paper’s results from the older Summitdev. 
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UPC++ on top of GASNet
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Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
 Cray XC40 system

Two processor partitions: 
 Intel Haswell (2 x 16 cores per node)
 Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)
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What does UPC++ offer?

Asynchronous behavior
• RMA: 

• Get/put to a remote location in another address space
• Low overhead, zero-copy, one-sided communication. 

• RPC: Remote Procedure Call: 
• Moves computation to the data

Design principles for performance
• All communication is syntactically explicit
• All communication is asynchronous: futures and promises
• Scalable data structures that avoid unnecessary replication

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Asynchronous communication (RMA)

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready
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Remote procedure call (RPC)
Execute a function on another process, sending arguments and returning an 
optional result 

1.Initiator injects the RPC to the target process 
2.Target process executes fn(arg1, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency
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Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use

Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the appropriate arguments (–I/-L etc).

• We also provide other mechanisms for compiling 
• upcxx-meta
• CMake package

Launch wrapper:
$ upcxx-run -np 4 ./hello-world.exe

• Arguments similar to other familiar tools

• Also support launch using platform-specific tools, such as srun, jsrun and aprun.

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Using UPC++ at US DOE Office of Science Centers
ALCF's Theta

$ module use /projects/CSC250STPM17/modulefiles

$ module load upcxx

NERSC's Cori
$ module load upcxx

OLCF's Summit
$ module use $WORLDWORK/csc296/summit/modulefiles

$ module load upcxx

More info and examples for all three centers are available from 
https://upcxx.lbl.gov/sc20

Also contains links to source, build instructions, and a docker image
UPC++ works on laptops, workstations and clusters too.  

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
} 
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Exercise 0: Hello world compile and run
Everything needed for the hands-on activities is at:

https://upcxx.lbl.gov/sc20
Online materials include:

• Module info for NERSC Cori, OLCF Summit and ALCF Theta
• Download links to install UPC++ 

• natively or w/Docker container on your own system
Once you have set up your environment and copied the tutorial materials:

elvis@cori07:~> cd 2020-11/exercises/
elvis@cori07:~/2020-11/exercises> make run-ex0
[...full path...]/bin/upcxx ex0.cpp  -o ex0
[...full path...]/bin/upcxx-run -n 4 ./ex0
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Exercise 1: Ordered hello world
Modify the program below so that the messages are written to the output 
file in order by rank (ex1.cpp)

• Processes should take turns printing to the file, using a loop in which one 
process prints per iteration

• Use upcxx::barrier() to perform a barrier, which prevents any 
process from continuing until all processes have reached it

int main() {
upcxx::init();
std::ofstream fout("output.txt", std::iosbase::app);
fout << "Hello from process " << upcxx::rank_me()

<< " out of " << upcxx::rank_n() << std::endl;
sync();
upcxx::finalize();

} 
Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Remote Procedure Calls (RPC)
Let’s say that process 0 performs this RPC

int area(int a, int b) { return a * b; }

int rect_area = rpc(p, area, a, b).wait();

The target process p will execute the handler function area() at some later 
time determined at the target

The result will be returned to process 0
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Hello world with RPC (synchronous)
We can rewrite hello world by having each process launch an RPC to 
process 0
int main() {

upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

} 
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Futures
RPC returns a future object, which represents a computation that may or 
may not be complete

Calling wait() on a future causes the current process to wait until the 
future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process " << rank << endl;
}, upcxx::rank_me());

fut.wait();
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What is a future?
A future is a handle to an asynchronous operation, which holds:

• The status/readiness of the operation
• The results (zero or more values) of the completed operation

The future is not the result itself, but a proxy for it

The wait() method blocks until a future is ready and returns the result
upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Overlapping communication
Rather than waiting on each RPC to complete, we can launch every RPC 
and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {

upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We'll see better ways to wait on groups of asynchronous operations later
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1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a function of its old value 
and those of its immediate neighbors

Out-of-place computation requires two grids

for (long i = 1; i < N - 1; ++i)
new_grid[i] = 0.25 * 

(old_grid[i - 1] + 2*old_grid[i] + old_grid[i + 1]);

Sample data distribution of each grid 
(12 domain elements, 3 ranks, N=12/3+2=6):
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Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to keep track of the 
grids

double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();
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* We will generally elide the upcxx:: qualifier from here on out.
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Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);
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Race conditions
Since processes are unsynchronized, it is possible that a process can 
move on to later iterations while its neighbors are still on previous ones

• One-sided communication decouples data movement from 
synchronization for better performance

A straggler in iteration 𝑖𝑖 could obtain data from a neighbor that is computing 
iteration 𝑖𝑖 + 2, resulting in incorrect values

This behavior is unpredictable and may not be observed in testing
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Naïve solution: barriers
Barriers at the end of each iteration provide sufficient synchronization

future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();
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One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most efficient way to move 
large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Jacobi with ghost cells
Each process maintains ghost cells for data from neighboring processes

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();
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Storage management
Memory must be allocated in the shared segment in order to be accessible 
through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls - each process allocates its own memory, and 
there is no synchronization

• Explicit synchronization may be required before retrieving another 
process's pointers with an RPC

UPC++ does not maintain a symmetric heap
• The pointers must be communicated to other processes before they 

can access the data
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Downcasting global pointers
If a process has direct load/store access to the memory referenced by a global 
pointer, it can downcast the global pointer into a raw pointer with local()

global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Later, we will see how downcasting can be used to optimize for co-located 
processes that share physical memory

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Jacobi RMA with gets
Each process obtains boundary data from its neighbors with rget()

future<> left_get = rget(left_old_grid + N - 2, old_grid, 1);
future<> right_get = rget(right_old_grid + 1, old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25*(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25*(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);
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Callbacks
The then() method attaches a callback to a future

• The callback will be invoked after the future is ready, with the future’s 
values as its arguments

future<> left_update =
rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *

(old_grid[0] + 2*old_grid[1] + old_grid[2]);
});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *

(old_grid[N-3] + 2*old_grid[N-2] + value);
});
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Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {

return std::log(value);
});
future<> fut3 =

fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, computes its log, and 
then sends it to a different remote location

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Conjoining futures
Multiple futures can be conjoined with when_all() into a single future that 
encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int>    source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int>    fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();
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Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with rput(), and the 
resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 * (old_grid[0] + 2*old_grid[1] + old_grid[2]);
new_grid[N-2] = 0.25 * (old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed
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Distributed objects
A distributed object is an object that is partitioned over a set of processes

dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but each has its own 
local value

Similar in concept to a co-array, but with advantages
• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down
• Can be constructed over teams

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process p

● ● ●

Process 1

dist_object<int>
all_nums(rand());

42
all_nums

3
all_nums

8
all_nums
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Example: Monte Carlo computation of pi
Estimate pi by throwing darts at a unit square

Calculate percentage that fall in the unit circle
• Area of square = r2 = 1
• Area of circle quadrant = ¼ * π r2 = π/4

Randomly throw darts at x,y positions

If x2 + y2 < 1, then point is inside circle

Compute ratio:
• # points inside / # points total
• π = 4*ratio 

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

r =1
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Pi with a distributed object
A distributed object can be used to store the results from each process
// Throws a random dart and returns 1 if it is
// in the unit circle, 0 otherwise.
int hit();

...

dist_object<int> all_hits(0);
for (int i = 0; i < my_trials; ++i) 

*all_hits += hit();
barrier();
if (rank_me() == 0) {

for (int i = 0; i < rank_n(); ++i)
total += all_hits.fetch(i).wait();

cout << "PI estimated to " << 4.0*total/trials;
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Results for each process

Dereference to obtain this process's value

Obtain another process's value 
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Implicit synchronization
The future returned by fetch() is not readied until the distributed object 
has been constructed on the target, allowing its value to be read

• This allows us to avoid explicit synchronization between the initiator and 
the target

int my_hits = 0;
for (int i = 0; i < my_trials; ++i) 

my_hits += hit();
dist_object<int> all_hits(my_hits);
if (rank_me() == 0) {

for (int i = 0; i < rank_n(); ++i)
total += all_hits.fetch(i).wait();

cout << "PI estimated to " << 4.0*total/trials;
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

The result of fetch()
is obtained after the 

dist_object is 
constructed on the 

target
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Exercise 2: Distributed object in Jacobi
Modify the Jacobi code to perform bootstrapping using UPC++ distributed 
objects (ex2.cpp)
global_ptr<double> old_grid_gptr, new_grid_gptr;
global_ptr<double> right_old_grid, right_new_grid;
int right; // rank of my right neighbor

// Obtains grid pointers from the right neighbor and
// sets right_old_grid and right_new_grid accordingly.
void bootstrap_right() {

/* your code here */

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to solution
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Distributed hash table (DHT)
Distributed analog of std::unordered_map
• Supports insertion and lookup

• We will assume the key and value types are std::string

• Represented as a collection of individual unordered maps across processes

• We use RPC to move hash-table operations to the owner

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per rank

● ● ●

key val
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DHT data representation
A distributed object represents the directory of unordered maps
class DistrMap {

using dobj_map_t =
dist_object<std::unordered_map<std::string, std::string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank_n();

} 
};

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Computes owner for the given key

Define an abbreviation for a helper type
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DHT insertion
Insertion initiates an RPC to the owner and returns a future that represents 
completion of the insert
future<> insert(const string &key, 

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key, const string &val) {
(*lmap)[key] = val;

}, local_map, key, val);
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Key and value passed 
as arguments to the 

remote function

UPC++ uses the 
distributed object's 
universal name to 
look it up on the 
remote process

Process 0 Process p

● ● ●

key val

Send RPC to the rank 
determined by key hash
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DHT find
Find also uses RPC and returns a future

future<string> find(const string &key) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key) {
if (lmap->count(key) == 0)

return string("NOT FOUND");
else

return (*lmap)[key];
}, local_map, key);

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Key passed as 
argument to the 
remote function

UPC++ uses the 
distributed object's 
universal name to 
look it up on the 
remote process

Send RPC to the rank 
determined by key hash

Check whether key 
exists in local map

Retrieve corresponding 
value from the local 

map and return it

Process 0 Process p

● ● ●

key val
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Exercise 3: Distributed hash table
Implement the erase and update methods (ex3.hpp)
// Erases the given key from the DHT.
future<> erase(const string &key);

// Replaces the value associated with the
// given key and returns the old value with
// which it was previously associated.
future<string> update(const string &key, const string &value);

// Use this function to perform an update on an
// unordered_map that resides on the local process.
// Assume it is already written for you.
static string local_update(unordered_map<string, string> &lmap,

const string &key, const string &value);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to solution
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Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
• Key insertion and storage allocation handled at target

• Without RPC, complex updates would require explicit synchronization and two-
sided coordination

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL) 

Cray XC40
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RPC and progress
Review: high-level overview of an RPC's execution

1.Initiator injects the RPC to the target process 
2.Target process executes fn(arg1, arg2) at some later time determined at target

3.Result becomes available to the initiator via the future

Progress is what ensures that the RPC is eventually executed at the target

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

upcxx::rpc(target, fn, arg1, arg2) 

● ● ●

Execute fn(arg1, arg2) on process target

fn

1

future

2

Result available via a future3

Process 
(initiator)

Process 
(target)
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Progress
UPC++ does not spawn hidden threads to advance its internal state or 
track asynchronous communication

This design decision keeps the runtime lightweight and simplifies 
synchronization
• RPCs are run in series on the main thread at the target process, avoiding the 

need for explicit synchronization

The runtime relies on the application to invoke a progress function to 
process incoming RPCs and invoke callbacks

Two levels of progress
• Internal: advances UPC++ internal state but no notification

• User: also notifies the application
• Readying futures, running callbacks, invoking inbound RPCs

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov



59

Invoking user-level progress
The progress() function invokes user-level progress

• So do blocking calls such as wait() and barrier()

A program invokes user-level progress when it expects local callbacks and 
remotely invoked RPCs to execute

• Enables the user to decide how much time to devote to progress, and how 
much to devote to computation

User-level progress executes some number of outstanding received RPC 
functions

• “Some number” could be zero, so may need to periodically invoke when 
expecting callbacks

• Callbacks may not wait on communication, but may chain new callbacks on 
completion of communication

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Remote atomics
Remote atomic operations are supported with an atomic domain

Atomic domains enhance performance by utilizing hardware offload 
capabilities of modern networks

The domain dictates the data type and operation set
atomic_domain<int64_t> dom({atomic_op::load, atomic_op::min,

atomic_op::fetch_add});

• Supports all {32,64}-bit signed/unsigned integers, float, double

Operations are performed on global pointers and are asynchronous
global_ptr <int64_t> ptr = new_<int64_t>(0); 
future<int64_t> f = dom.fetch_add(ptr,2,memory_order_relaxed);
int64_t res = f.wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov



61

sender target

Serialization
RPC’s transparently serialize shipped data

• Conversion between in-memory and byte-stream representations
• serialize  transfer  deserialize  invoke

Conversion makes byte copies for C-compatible types
• char, int, double, struct{double;double;}, ...

Serialization works with most STL container types
• vector<int>, string, vector<list<pair<int,float>>>, ...

• Hidden cost: containers deserialized at target (copied) before being 
passed to RPC function

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Views
UPC++ views permit optimized handling of collections in RPCs, without 
making unnecessary copies

• view<T>: non-owning sequence of elements

When deserialized by an RPC, the view elements can be accessed directly 
from the internal network buffer, rather than constructing a container at the 
target
vector<float> mine = /* ... */;
rpc_ff(dest_rank, [](view<float> theirs) {

for (float scalar : theirs)
/* consume each */

},
make_view(mine)

);

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Process elements directly 
from the network buffer

Cheap view construction
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Shared memory hierarchy and local_team
Memory systems on supercomputers are hierarchical

• Some process pairs are “closer” than others
• Ex: cabinet > switch > node > NUMA domain > socket > core

Traditional PGAS model is a “flat” two-level hierarchy
• “same process” vs “everything else”

UPC++ adds an intermediate hierarchy level
• local_team() – a team corresponding to a physical node

• These processes share a physical memory domain
• Shared segments are CPU load/store accessible across the same local_team

Process 0 Process 1 Process 2 Process 3

Node 0 
local_team

Node 1 
local_team
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Downcasting and shared-memory bypass
Earlier we covered downcasting global pointers
• Converting global_ptr<T> from this process to raw C++ T*
• Also works for global_ptr<T> from any process in local_team()
int l_id = local_team().rank_me();

int l_cnt = local_team().rank_n();

global_ptr<int> gp_data;

if (l_id == 0) gp_data = new_array<int>(l_cnt); 

gp_data = broadcast(gp_data, 0, local_team()).wait();

int *lp_data = gp_data.local();

lp_data[l_id] = l_id;

Rank and count in my local node

Allocate and share 
one array per node

Downcast to get raw C++ ptr to shared array

Direct store to shared array created by node leader

Node 0 
local_team

Node 1 
local_team

Global 
address 
space

Process 0 Process 1

lp_data lp_data
0  l_id 1  l_id

Process 2 Process 3

lp_data lp_data
0  l_id 1  l_id
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Optimizing for shared memory in many-core
local_team() allows optimizing co-located processes for physically 
shared memory in two major ways:

• Memory scalability
• Need only one copy per node for replicated data
• E.g. Cori KNL has 272 hardware threads/node

• Load/store bypass – avoid explicit communication overhead for RMA on 
local shared memory
• Downcast global_ptr to raw C++ pointer
• Avoid extra data copies and communication overheads

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Completion: synchronizing communication
Earlier we synchronized communication using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicit: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise, inject an RPC, etc.
• Can even combine several completions for the same operation

Can also detect other “intermediate” completion steps
• For example, source completion of an RMA put or RPC

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Completion: promises
A promise represents the producer side of an asynchronous operation

• A future is the consumer side of the operation

By default, communication operations create an implicit promise and return an 
associated future

Instead, we can create our own promise and register it with multiple 
communication operations
void do_gets(global_ptr<int> *gps, int *dst, int cnt) {

promise<> p;
for (int i = 0; i < cnt; ++i)
rget(gps[i], dst+i, 1, operation_cx::as_promise(p));

future<> fut = p.finalize();
fut.wait();

}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Register an operation 
on a promiseClose registration 

and obtain an 
associated future
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Completion: "signaling put"
One particularly interesting case of completion:
rput(src_lptr, dest_gptr, count, 

remote_cx::as_rpc([=]() {
// callback runs at target rank after put data arrives
compute(dest_gptr, count); 

});

• Performs an RMA put, informs the target upon arrival
• RPC callback to inform the target and/or process the data
• Implementation can transfer both the RMA and RPC with a single network-

level operation in many cases
• Couples data transfer w/sync like message-passing 
• BUT can deliver payload using RDMA without rendezvous (because initiator 

specified destination address)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Memory Kinds
Supercomputers are becoming increasingly heterogeneous in compute, 
memory, storage

UPC++ memory kinds enable sending data between different kinds of 
memory/storage media

API is meant to be flexible, but initially supports memory copies between 
remote or local CUDA GPU devices and remote or local host memory
global_ptr<int, memory_kind::cuda_device> src = ...;
global_ptr<int, memory_kind::cuda_device> dst = ...;

copy(src, dst, N).wait();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Can point to memory on 
a local or remote GPU
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Non-contiguous RMA
We’ve seen contiguous RMA

• Single-element
• Dense 1-d array

Some apps need sparse RMA access

• Could do this with loops and 
fine-grained access

• More efficient to pack data and 
aggregate communication

• We can automate and streamline the pack/unpack

Three different APIs to balance metadata size vs. generality
• Irregular: iovec-style iterators over pointer+length

• Regular: iterators over pointers with a fixed length

• Strided: N-d dense array copies + transposes

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information and support forum

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

“UPC++ has an excellent blend of ease-
of-use combined with high performance. 
Features such as RPCs make it really 
easy to rapidly prototype applications, 

and still have decent performance. 
Other features (such as one-sided 

RMAs and asynchrony) enable fine-
tuning to get really great performance.”

-- Steven Hofmeyr, LBNL

“If your code is already written in a one-
sided fashion, moving from MPI RMA or 

SHMEM to UPC++ RMA is quite 
straightforward and intuitive; it took me 
about 30 minutes to convert MPI RMA 
functions in my application to UPC++ 

RMA, and I am getting similar 
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training
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Application Case Studies

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Application case studies
UPC++ has been used successfully in several applications to improve 
programmer productivity and runtime performance

We discuss two specific applications:

• symPack, a sparse symmetric matrix solver

• Sim-COV, agent-base simulation of lungs with COVID

• MetaHipMer, a genome assembler

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Sparse multifrontal direct linear solver
Sparse matrix factorizations have low computational intensity and irregular 
communication patterns

Extend-add operation is an important building block for 
multifrontal sparse solvers

Sparse factors are organized as a hierarchy of condensed 
matrices called frontal matrices

Four sub-matrices:  factors + contribution block

Code available as part of upcxx-extras BitBucket repo

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 paper:
Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed.
"UPC++: A High-Performance Communication Framework for Asynchronous Computation",
https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H
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Implementation of the extend-add operation
Data is binned into per-destination contiguous buffers

Traditional MPI implementation uses MPI_Alltoallv

• Variants: MPI_Isend/MPI_Irecv +
MPI_Waitall/MPI_Waitany

UPC++ Implementation:

• RPC sends child contributions to the
parent using a UPC++ view

• RPC callback compares indices and
accumulates contributions on the
target

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H
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UPC++ improves sparse solver performance (extend-add)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
Assembly trees / frontal matrices 

extracted from STRUMPACK
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d Max speedup over 
mpi_alltoallv: 1.79x

Experiment done on 
NERSC Cori Haswell
Cray XC Aries

https://doi.org/10.25344/S4V88H
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UPC++ improves sparse solver performance (extend-add)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
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Assembly trees / frontal matrices 
extracted from STRUMPACK

Max speedup over 
mpi_alltoallv: 1.63x

Experiment done on 
NERSC Cori KNL
Cray XC Aries

https://doi.org/10.25344/S4V88H
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symPACK: a solver for sparse symmetric matrices

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

1) Data is produced
2) Notifications using upcxx::rpc_ff

● Enqueues a upcxx::global_ptr to the data
● Manages dependency count

3) When all data is available, task is moved in the data 
available task list

4) Data is moved using upcxx::rget
● Once transfer is complete, update dependency 

count
5) When everything has been transferred, task is moved 

to the ready tasks list

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

https://upcxx.lbl.gov/sympack

https://upcxx.lbl.gov/sympack
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N=512,000   nnz(L)=1,697,433,600

N=1,391,349   nnz(L)=2,818,053,492
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3x speedup

2.5x speedup

symPACK a solver for sparse symmetric matrices
Matrix is distributed by supernodes
• 1D distribution

• Balances flops, memory
• Lacks strong scalability

• New 2D distribution (to appear)
• Explicit load balancing, not regular block cyclic mapping
• Balances flops, memory
• Finer granularity task graph

Strong scalability on Cori Haswell:
• Up to 3x speedup for Serena 
• Up to 2.5x speedup for DG_Phosphorene_14000
UPC++ enables the finer granularity task graph to be 
fully exploited
• Better strong scalability

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath
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symPACK strong scaling experiment

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Processes
N=1,564,794    nnz(L)=1,574,541,576
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Experiment done on 
NERSC Cori KNL
Cray XC Aries

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath
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symPACK strong scaling experiment

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Experiment done on 
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Cray XC Aries

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath
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UPC++ provides productivity + performance for sparse solvers
Productivity
• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API

Reduced communication costs
• Low overhead reduces the cost of fine-grained communication

• Overlap communication via asynchrony and futures

• Increased efficiency in the extend-add operation

• Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/sympack
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SIM-Cov: Spatial Model of Immune Response to Viral Lung Infection

● The immune response to SARS-Cov-2 plays a critical role in determining the 
outcome of Covid-19 in an individual

● Most of what you hear about the immune response is focused on antibodies
● However, antibodies can only stop a virus that is outside a host cell
● Once it has invaded a cell, it is the "job" of the T cells to attack the virus
● Understanding how T cells detect and clear the virus is fundamental to 

understanding disease progression and resolution

To investigate this, we are building a 3D agent-based model of the lungs, called 
SIM-Cov

M. Moses, J. Cannon (UNM), S. Forrest (ASU) and S. Hofmeyr (LBNL)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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SIM-Cov Implementation

● Goal is to model the entire lung at the cellular level:
○ 100 billion epithelial cells
○ 100s of millions of T cells
○ Complex branching fractal structure
○ Time resolution in seconds for 20 to 30 days

● SIM-Cov in UPC++
○ Distributed 3D spatial grid
○ Particles move over time, but computation is localized 
○ Load balancing is tricky: active near infections

● UPC++ benefits:
○ Heavily uses RPCs
○ Easy to develop first prototype
○ Good distributed performance and avoids explicit locking
○ Extensive support for asynchrony improves 

computation/communication overlap

Imaging of T cell movement in lung tissue

Fractal model of airways in lung

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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SIM-Cov Components

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Speculative Simulations to Explore Role of T cells in disease severity

Mild infection:
○ high T cell response
○ controls viral infection
○ recovery by day 10 (viral drops near zero)

Severe infection:
○ low T cell response
○ fails to control infection
○ initial drop in viral load but surge later on
○ corresponds to a common progression 

actually seen in severe disease (people 
feel better then get a lot worse)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Use of Observational Data
We will use observational data in three ways:

● To obtain parameters for the model 
○ e.g. rate of viral production by infected cells, 

T cell generation rate, rate of T cell 
movement, etc.

● To validate the model
○ does the output "look" like a typical Covid-19 

infection? e.g. distribution of plaques
○ are the measured quantities similar with 

similar time courses? e.g. viral load
● To seed the model

○ Given an initial distribution of the virus:
■ what is the most likely outcome?
■ what is the best intervention strategy?

Lung CT showing sites of 
infection

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Visualization of Prototype Simulation
Run headless and visualize 
afterwards using Paraview

Spread of infection from 
single focal point

Very small 2D area without 
branching structures
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ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a 
wildfire? (1.5TB)

What at the seasonal fluctuations 
in a wetland mangrove? (1.6 TB)

How do microbes affect disease and 
growth of switchgrass for biofuels (4TB)

What are the microbial dynamics 
of soil carbon cycling? (3.3 TB)

Combine genomics with isotope tracing methods for improved 
functional understanding (8TB)

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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De Novo genome assembly problem

GCTACGGAATAAAACCAGGAACAACAGAGCC_AGCAC
reads

(input, typically 
100-250 chars)

Input

Output
Assembled genome (or 10s of Ks of bp fragments so we can find genes, etc.)

ATAAAACCAGGTACAACAGACCCAGCACGGATCCA
GC ACGGAATACAACCAGGAACAACAGACCCAGCAC

GAACAACAGACCCAGCATGGATCCA
Multiple 
copies 

(20x typical)

GCTACGGAATAAAACCAGGAACAACAGACCCAGCACGGATCCA

errors

GG

A

AT

GGA AT

TGG

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Genome Assembly

- 93 -Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Understanding an environmental microbiome

- 94 -

Best paper finalist at Supercomputing 18
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Co-Assembly Improves Quality and is an HPC Problem

Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, 
Andrew Tritt, Aydın Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
• Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta
• Previously assembled 1 lane at a time (multiassembly)
• MetaHipMer coassembled together – higher quality assembly, in 3.5 hours

Multiassembly
1 lane at a time

Coassembly all   
assembled together

This was largest, high-quality de novo metagenome assembly completed to date

MetaHipMer coassembly: more new 
genomes at higher completeness
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(Meta)HipMer (Meta)Genome Assembly

1) K-mer Analysis
Histogram

3) Alignment
Read/contig alignment
Smith Waterman

4) Scaffolding
Graph walk

2) Contig Generation
Connected components
Distributed Hash Table

xxx xx xxxx

reads

k-mers

read-contig
alignments

contig-contig 
scaffolds

contigs

1

2

3

4

Iterate for k+s

Extract k+s-mers

Originally written in MPI & UPC, now in UPC++

MPI

UPC

UPC

UPC

UPC++

UPC++

UPC++

UPC++

Steve Hofmeyr, Rob Egan, Evangelos Georganas, leads on MetaHipMer software
Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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GCTA C GGAATAAAACCAGGAACAACAGACCCAGCAC
ATTAACAACAAAGGGTAAAAGGCATCATGGCTTCAG

GCAGAAAATGGGAGTGAAAATCTCCGATGAGCAGCT
TGATGCGACGACGCACCTCGTTGTTACGCACTTCAG

} reads

GCTA

...
CTAC

TACG

ACGG

CGGA

GGAA

GAAT

AATA

ATAA

TAAA

AAAA
AAAC

AACC
ACCA

CCAG } k-
mers
(e.g. k=4)...

K-Mer Analysis Uses a Distributed Hash Table and Bloom Filter

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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K-mer counting now in UPC++

• Used to be MPI; it was bulk-synchronous in iterations
• New version in UPC++ avoids barriers, saves memory (no MPI runtime)
• It’s faster
• And simpler!

MPI with bloom filter 
UPC++ with bloom 
filter
UPC++ without

Steve Hofmeyr, Rob Egan, Evangelos Georganas, leads on MetaHipMer software

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Distributed De Bruijn Graph

The de Bruijn graph of k-mers is represented as a hash table

• A k-mer is a node in a graph  a k-mer is an entry (key) in the hash table 

• It stores the left and right “extension” (ACTG) as the value in the table

The connected components represent contigs.

GAT ATC TCT CTG TGA
AAC

ACC
CCG

AAT
ATG

TGC

Contig 1: GATCTGA

Contig 2: AACCG

Contig 3: AATGC

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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AAC CF
ATC TG
ACC GA

TGA FC
GAT CF
AAT GF

ATG CA
TCT GA

CCG FA
CTG AT
TGC FA

P0

P1

Pn

Input: k-mers and 
their high quality 

extensions

Read k-mers
& extensions

Distributed
Hash table

Store k-mers
& extensions

…

Parallel De Bruijn Graph Construction

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov



101

ExaBiome / MetaHipMer distributed hashmap

Memory-limited graph stages
• k-mers, contig, scaffolding

Optimized graph construction
• Larger messages for better 

network bandwidth

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group
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ExaBiome / MetaHipMer distributed hashmap

Memory-limited graph stages
• k-mers, contig, scaffolding

Optimized graph construction
• Larger messages for better 

network bandwidth

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Large message, 
high bandwidth

Small message, 
low bandwidth

Work and results by Rob Egan,
funded by ECP ExaBiome Group



103

ExaBiome / MetaHipMer distributed hashmap
Aggregated store

• Buffer calls to dist_hash::update(key,value)

• Send fewer but larger messages to target rank

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Distributed Alignment: Hash Tables and Alignment

A     B    C    A    B     B    A

C

B

A

B

A

C

R
ef

er
en

ce

Query

Given strings s and t, align to find 
minimum # of edits

Dynamic programming on short strings  with  
early stopping for bad alignments

AAC     TGA     CCG
ACC     GAT     CGT
CCT     ATT     GTC

Given sets of strings S and T, find 
good alignments
Make hash table of k-mers in S, only align to 
things in T with at least 1 identical k-mer

1-sided comm or irregular all-to-all + memory

Many variations 
of both!  

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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API - AggrStore<FuncDistObject, T>
struct FunctionObject {
void operator()(T &elem) { /* do something */ }

};
using FuncDistObject = upcxx::dist_object<FunctionObject>;

// AggrStore holds a reference to func
AggrStore(FuncDistObj &func); 
~AggrStore() { clear(); }

// clear all internal memory
void clear();

// allocate all internal memory for buffering
void set_size(size_t max_bytes);

// add one element to the AggrStore
void update(intrank_t target_rank, T &elem);

// flush and quiesse
void flush_updates();

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group
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100

1000

10000

64 128 256 512 1024 1536 2048

Ti
m

e 
(s

)

Nodes

Scaling of Wetlands (one lane) on Edison

Overall

without oNo

linear

MetaHipMer Scaling

First release of metagenome HipMer (MetaHipMer) 12/2017

Open source: https://sites.google.com/lbl.gov/exabiome/downloads

Runs without errors on several datasets and on multiple HPC systems. 

The quality is comparable to other metagenome assemblers

x24 cores per node

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

https://sites.google.com/lbl.gov/exabiome/downloads


107

MetaHipMer utilized UPC++ features
C++ templates - efficient code reuse

dist_object - as a templated functor & data store

Asynchronous all-to-all exchange - not batch synchronous

• 5x improvement at scale relative to previous MPI implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill - for a fixed-size memory footprint

• Issue promise when full, fulfill when available

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
Work and results by Rob Egan,

funded by ECP ExaBiome Group
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UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information and support forum

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

“UPC++ has an excellent blend of ease-
of-use combined with high performance. 
Features such as RPCs make it really 
easy to rapidly prototype applications, 

and still have decent performance. 
Other features (such as one-sided 

RMAs and asynchrony) enable fine-
tuning to get really great performance.”

-- Steven Hofmeyr, LBNL

“If your code is already written in a one-
sided fashion, moving from MPI RMA or 

SHMEM to UPC++ RMA is quite 
straightforward and intuitive; it took me 
about 30 minutes to convert MPI RMA 
functions in my application to UPC++ 

RMA, and I am getting similar 
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training
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Exercise Solutions

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov
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Solution 1: Ordered hello world
int main() {

upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::barrier();
if (upcxx::rank_me() == i) {

std::ofstream fout("output.txt", std::iosbase::app);
fout << "Hello from process " << upcxx::rank_me()

<< " out of " << upcxx::rank_n() << std::endl;
sync();

}
}
upcxx::finalize();

} 

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to exercise
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Solution 2: Distributed object in Jacobi
Modify the Jacobi code to perform bootstrapping using UPC++ distributed 
objects (ex2.cpp)
global_ptr<double> old_grid_gptr, new_grid_gptr;
global_ptr<double> right_old_grid, right_new_grid;
int right; // rank of my right neighbor

// Obtains grid pointers from the right neighbor and
// sets right_old_grid and right_new_grid accordingly.
void bootstrap_right() {

dist_object<global_ptr<double>>
dobj_old(old_grid_gptr), dobj_new(new_grid_gptr);

right_old_grid = dobj_old.fetch(right).wait();
right_new_grid = dobj_new.fetch(right).wait();

barrier();
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Ensures distributed objects are 
not destructed until all ranks 
have completed their fetches

Link to exercise
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Better solution 2: Distributed object in Jacobi

Modify the Jacobi code to perform bootstrapping using UPC++ distributed 
objects (ex2.cpp)
void bootstrap_right() {

using ptr_pair = std::pair<global_ptr<double>,
global_ptr<double>>;

dist_object<ptr_pair> dobj({old_grid_gptr, new_grid_gptr});

std::tie(right_old_grid, right_new_grid) = dobj.fetch(right).wait();
// equivalent to the statement above:
//   ptr_pair result = dobj.fetch(right).wait();
//   right_old_grid = result.first;
//   right_new_grid = result.second;

barrier();
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Link to exercise
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Solution 3: Distributed hash table
Implement the erase and update methods (ex3.hpp)
future<> erase(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

lmap->erase(key);
}, local_map, key);

}

future<string> update(const string &key,
const string &value) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key,

const string &value) {
return local_update(*lmap, key, value);

}, local_map, key, value);
}

Yelick, Kamil, Bonachea, Hargrove / UPC++ / SC20 Tutorial / upcxx.lbl.gov

Lambda to remove 
the key from the local 

map at the target

Lambda to 
update the key 

in the local map 
at the target

Link to exercise
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