UPC++: a PGAS C++ Library

http://upcxx.lbl.gov

Execution model and PGAS interface

UPC++ provides PGAS-style lightweight one-sided communication and asynchronous task execution features to C++ applications

- Easy on-ramp for applications
- A C++11 library
- Compatible with existing MPI+OpenMP/CUDA code bases
- All data motion is asynchronous
- Futures and continuations to manage overlap
- DMA operations for direct access to remote shared data
- Co-processor memory support
- Supports distributed irregular data structures used in adaptive mesh refinement, sparse solvers, graph algorithms
 - Remote Procedure Calls (RPC)
 - Distributed objects
 - Non-contiguous DMA communication
 - Remote atomics
 - Teams and collectives

Easy distributed hash-table via remote procedure call and futures

- **Remote Procedure Calls** simplify distributed data-structure design.
 - Use `rpc` to ship updates to the key’s owning rank.
 - One-sided nature avoids tedious work of declaring expected messages as is typical with two-sided messaging.

- **Futures** hide the latency of remote operations, naturally express overlap of independent operations.

```cpp
// c++ "global" variables become rank-local state.
std::unordered_map<int, int> my_dht_local;

// owner does the work, result is a future<int>
upcxx::future<int> dht_fetch_inc (int key) {
    return upcxx::rpc(
        key % upcxx::rank_n(),
        [=]() { return my_dht_local[key]++; }
    );
}
```

symPACK: UPC++ asynchronous task-based sparse symmetric solver

- **Application:** **symPACK**, a sparse direct linear solver for symmetric matrices.
- **Challenges:** Sparse matrix factorizations have low computational intensity and irregular communication patterns.
- **Solution:** UPC++’s `rpcs` and `rgets` enable efficient pull communication strategy and event-driven scheduling.
- **Impact:** on average, **symPACK** delivers a x2.65 speedup over the best state-of-the-art sparse symmetric solver.

Strong Scaling on NERSC Edison - Cray XC30 (24 cores/node)

Impact of communication strategy (boneS10)

Comparison to competing solvers (Flan_1565)

Partners and acknowledgements

Pagoda Team
Scott B. Baden, Paul H. Hargrove
John Bachan, Dan Bonachea, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Brian van Straalen

UPC++ is part of the
BNL Pagoda Project
Funded by the DOE
Exascale Computing Project

Application Partners
- AMREx
- ExaBiome
- Sparse Solvers

This research was supported in part by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.