UPC++: a PGAS C++ Library

http://upcxx.lbl.gov

Execution model and PGAS interface

UPC++ provides PGAS-style lightweight one-sided communication
and asynchronous task execution features to C++ applications

Global address space « Easy on-ramp for applications
Function shipping across nodes * A C++11 “brary
» Compatible with existing MPI+OpenMP/CUDA code bases
Y All data motion is asynchronous

Local i Futures and continuations to manage overlap

;aj:ué”’ ’: : * RMA operations for direct access to remote shared data

—_— - » Co-processor memory support

» Supports distributed irregular data structures used in adaptive
mesh refinement, sparse solvers, graph algorithms

104

Rank 0 Rank 1 Rank 2 Rank 3 « Remote Procedure Calls (RPC)
T T v » Distributed objects
Private address spaces « Non-contiguous RMA communication

* Remote atomics
» Teams and collectives

* Remote Procedure Calls simplify distributed data-structure design.
 Use rpc to ship updates to the key’s owning rank. P

» One-sided nature avoids tedious work of declaring expected
messages as is typical with two-sided messaging.

wl
"In-bound function
invocations

* Futures hide the latency of remote operations, naturally express b
overlap of independent operations.

.

]
I
1
1

\
// c++ "global" variables become rank-local state. ‘l

std::unordered_map<int, int> my_dht_local,

i
Outbound function

// owner does the work, result is a future<int> mvocatlon!b
upcxx::future<int> dht_fetch_inc (int key) {
return upcxx::rpc(// “rpc’ sends lambda to rank Rank 0 Rank 1 Rank 2 Rank 3
key % upcxx::rank_n(), // owner rank in key-to-rank partition (Hash table partitions: one std::unordered_map per rank)

[=]0) { return my_dht_local[key]++; } // [F] captures “key’, used remotely
);
}

symPACK: UPC++ asynchronous task-based sparse symmetric solver
Strong Scaling on NERSC Edison - Cray XC30 (24 cores/node)

linear solver for symmetric matrices. Impact of communication strategy (boneS10) Comparison to competing solvers (Flan_1565)

» Application: symPACK, a sparse direct

» Challenges: Sparse matrix factorizations
have low computational intensity and
irregular communication patterns. '}

 Solution: UPC++ rpcs and rgets
enable efficient pull communication
strategy and event-driven scheduling.

=@ MUMPS 5.1.2
¥=¥ PASTIX 5.2.3
A=A symPACK

@@ symPACK - Push - MPI 2-sided
V=¥ symPACK - Pull - UPC++ 1-sided

a—a SYMPACK - Pull with event-driven
scheduling - UPC++ 1-sided

» Impact: on average, symPACK delivers
a X2.65 speedup over the best state-of-
the-art sparse symmetric solver.

(O

—

UPC++ enables a one-sided pull strategy: = - T v s os o . . .
RPC avoids the need (and cost) of Cores o v >
scheduling messages in MPI, to avoid Push — MPI 2-sided communication

deadlocking on many small messages. Pull — UPC++ 1-sided communication

with/without event driven scheduling

O v » &
) ,\,V N ’1:0 ,,)‘b

Cores

)

Strong scaling of symmetric solvers
(factorization time only)

Partners and acknowledgements

Pagoda Team UPC++ is part of the Application Partners
Scott B. Baden, Paul H. Hargrove LBNL Pagoda Project « AMREXx
John Bachan, Dan Bonachea, Steven Hofmeyr, Funded by the DOE « ExaBiome
Mathias Jacquelin, Amir Kamil, Brian van Straalen Exascale Computing Project

» Sparse Solvers

= This research was supported in part by the Office of Science of the U.S.

—
\\) Department of Energy under contract DE-AC02-05CH11231. This research
t (l) I used resources of the National Energy Research Scientific Computing
\\ Center supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-05CH11231.

FreErreee ‘"l|

BERKELEY,LAB

© 2017 Lawrence Berkeley National Laboratory EXASCALE COMPUTING PROJECT

