
T
im

e
(s

)

Partners and acknowledgements

• Application: symPACK, a sparse direct
linear solver for symmetric matrices.

• Challenges: Sparse matrix factorizations
have low computational intensity and
irregular communication patterns.

• Solution: UPC++ rpcs and rgets
enable efficient pull communication
strategy and event-driven scheduling.

• Impact: on average, symPACK delivers
a ✕2.65 speedup over the best state-of-
the-art sparse symmetric solver.
UPC++ enables a one-sided pull strategy:
RPC avoids the need (and cost) of
scheduling messages in MPI, to avoid
deadlocking on many small messages.

Push – MPI 2-sided communication
Pull – UPC++ 1-sided communication

with/without event driven scheduling

UPC++: a PGAS C++ LibraryUPC++: a PGAS C++ Library

© 2017 Lawrence Berkeley National Laboratory

http://upcxx.lbl.govhttp://upcxx.lbl.gov

This research was supported in part by the Office of Science of the U.S.
Department of Energy under contract DE‐AC02‐05CH11231. This research
used resources of the National Energy Research Scientific Computing
Center supported by the Office of Science of the U.S. Department of
Energy under contract DE‐AC02‐05CH11231.

Execution model and PGAS interface

Easy distributed hash-table via remote procedure call and futures

symPACK: UPC++ asynchronous task-based sparse symmetric solver

Private address spaces

Global address space

Local
task
queue

UPC++ provides PGAS-style lightweight one-sided communication
and asynchronous task execution features to C++ applications

• Easy on-ramp for applications
• A C++11 library
• Compatible with existing MPI+OpenMP/CUDA code bases

• All data motion is asynchronous
• Futures and continuations to manage overlap
• RMA operations for direct access to remote shared data
• Co-processor memory support

• Supports distributed irregular data structures used in adaptive
mesh refinement, sparse solvers, graph algorithms

• Remote Procedure Calls (RPC)
• Distributed objects
• Non-contiguous RMA communication
• Remote atomics

• Teams and collectives

Strong scaling of symmetric solvers
(factorization time only)

• Remote Procedure Calls simplify distributed data-structure design.

• Use rpc to ship updates to the key’s owning rank.

• One-sided nature avoids tedious work of declaring expected
messages as is typical with two-sided messaging.

• Futures hide the latency of remote operations, naturally express
overlap of independent operations.

// c++ "global" variables become rank-local state.
std::unordered_map<int, int> my_dht_local;

// owner does the work, result is a future<int>
upcxx::future<int> dht_fetch_inc (int key) {

return upcxx::rpc(// `rpc` sends lambda to rank
key % upcxx::rank_n(), // owner rank in key-to-rank partition
[=]() { return my_dht_local[key]++; } // [=] captures `key`, used remotely

);
}

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

In-bound function
invocations

Outbound function
invocations

(Hash table partitions: one std::unordered_map per rank)

Pagoda Team

Scott B. Baden, Paul H. Hargrove
John Bachan, Dan Bonachea, Steven Hofmeyr,

Mathias Jacquelin, Amir Kamil, Brian van Straalen

Application Partners

• AMREx

• ExaBiome

• Sparse Solvers

Global address space

Function shipping across nodes

UPC++ is part of the
LBNL Pagoda Project
Funded by the DOE

Exascale Computing Project

Strong Scaling on NERSC Edison - Cray XC30 (24 cores/node)

T
im

e
(s

)

Comparison to competing solvers (Flan_1565)Impact of communication strategy (boneS10)

CoresCores

