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Partners and acknowledgements

• Application: symPACK, a sparse direct 
linear solver for symmetric matrices.

• Challenges: Sparse matrix factorizations 
have low computational intensity and 
irregular communication patterns.

• Solution: UPC++ rpcs and rgets
enable efficient pull communication 
strategy and event-driven scheduling.

• Impact: on average, symPACK delivers 
a ✕2.65 speedup over the best state-of-
the-art sparse symmetric solver. 
UPC++ enables a one-sided pull strategy: 
RPC avoids the need (and cost) of 
scheduling messages in MPI, to avoid 
deadlocking on many small messages.

Push – MPI 2-sided communication
Pull – UPC++ 1-sided communication   

with/without event driven scheduling

UPC++: a PGAS C++ LibraryUPC++: a PGAS C++ Library
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Execution model and PGAS interface

Easy distributed hash-table via remote procedure call and futures

symPACK: UPC++ asynchronous task-based sparse symmetric solver

Private address spaces

Global address space

Local 
task 
queue

UPC++ provides PGAS-style lightweight one-sided communication 
and asynchronous task execution features to C++ applications

• Easy on-ramp for applications
• A C++11 library
• Compatible with existing MPI+OpenMP/CUDA code bases

• All data motion is asynchronous
• Futures and continuations to manage overlap
• RMA operations for direct access to remote shared data
• Co-processor memory support

• Supports distributed irregular data structures used in adaptive 
mesh refinement, sparse solvers, graph algorithms

• Remote Procedure Calls (RPC)
• Distributed objects
• Non-contiguous RMA communication 
• Remote atomics

• Teams and collectives

Strong scaling of symmetric solvers 
(factorization time only)

• Remote Procedure Calls simplify distributed data-structure design.

• Use rpc to ship updates to the key’s owning rank.

• One-sided nature avoids tedious work of declaring expected 
messages as is typical with two-sided messaging.

• Futures hide the latency of remote operations, naturally express 
overlap of independent operations.

// c++ "global" variables become rank-local state.
std::unordered_map<int, int> my_dht_local;

// owner does the work, result is a future<int>
upcxx::future<int> dht_fetch_inc (int key) {

return upcxx::rpc( // `rpc` sends lambda to rank
key % upcxx::rank_n(), // owner rank in key-to-rank partition
[=]() { return my_dht_local[key]++; } // [=] captures `key`, used remotely

);
}

Rank 0 Rank 1 Rank 2 Rank 3

Rank 0 Rank 1 Rank 2 Rank 3

In-bound function
invocations

Outbound function 
invocations

(Hash table partitions: one std::unordered_map per rank)
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Application Partners

• AMREx

• ExaBiome

• Sparse Solvers

Global address space

Function shipping across nodes

UPC++ is part of the 
LBNL Pagoda Project
Funded by the DOE 

Exascale Computing Project

Strong Scaling on NERSC Edison - Cray XC30 (24 cores/node)
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Comparison to competing solvers (Flan_1565)Impact of communication strategy (boneS10)
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