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Case	1:	Easy	Distributed	Hash-Table	via	Func3on	Shipping	and	Futures	

	
	

•  Distributed hash-table design is based on function shipping 
•  RPC inserts the key metadata at the target 
•  Once the RPC completes, an attached callback issues a 

one-sided RMA Put (rput) to store the value data 

// C++ global variables correspond to rank-local state 
std::unordered_map<uint64_t, global_ptr<char>> local_map; 
// insert a key-value pair and return a future 
future<> dht_insert(uint64_t key, char *val, size_t sz) { 
 future<global_ptr<char>> fut = 
     rpc(key % rank_n(),             // RPC obtains location for the data 
             [key,sz]() -> global_ptr<char> {    // lambda invoked by RPC 
               global_ptr<char> gptr = new_array<char>(sz);  
               local_map[key] = gptr;              // insert in local map 
               return gptr; 
             }); 
 return fut.then(       // callback executes when RPC completes 
       [val,sz](global_ptr<char> loc) -> future<> {  
           return rput(val, loc, sz); });    // RMA Put the value payload 
} 

l   UPC++ is a C++11 PGAS library 
l   Lightweight, asynchronous, one-sided communication (RMA) 
l   Asynchronous remote procedure call (RPC) 
l   Data transfers may be non-contiguous 
l   Futures manage asynchrony, enable communication overlap 
l   Collectives, teams, remote atomic updates 
l   Provides building blocks to construct irregular data structures 

 
l   Easy on-ramp and integration 

l   Enables incremental development 
l   Selectively replace performance-critical sections with UPC++ 
l   Interoperable with MPI, OpenMP, CUDA, etc.  

l   Latest software release: September 2018 
l   Runs on systems from laptops to supercomputers 

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi 

•  Impact: 
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x 

speedup over MPI collective and 3.11x over MPI message-
passing implementations.  The green line in the figure below 
corresponds to the fastest of these two variants. 

Case	2:	Asynchronous	Sparse	Matrix	Solvers	

•  A time consuming operation in multifrontal sparse solvers: 
•  Extend-add: update a distributed sparse matrix, scattering the 

packed data source 
•  Challenge: 

•  This operation has low computational intensity and exhibits irregular 
communication patterns 

•  Solution: 
•  UPC++ function shipping via RPC enables efficient 

communication and asynchrony, increasing overlap and improving 
performance of Extend-add 
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Strong scaling comparison of the UPC++ implementation of 
Extend-add using RPC and an MPI variant for the audikw_1 
matrix on NERSC Cori Xeon Phi (using 64 cores/node) 
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Private address spaces 

•  Benefits: 
•  Use of RPC simplifies distributed data-structure design 

•  Argument passing, remote queue management and 
progress engine are factored out of the application code 

•  Asynchronous execution enables overlap 
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Overview of Extend-add 
•  Updates are shown for the left child only. 
•  Colored squares depict the distribution of 

parent and child matrices. 
•  Dots in the lower left child matrix depict 

the data to be sent and accumulated in 
the parent. 

•  The communication step initiated by one 
process in the left child is depicted in the 
lower right corner. 

•  RPCs communicate the data to the 
parent, which carries out the 
accumulation. Data linearization is 
handled by UPC++ views. 
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