
Pagoda:	Lightweight	Communica3ons	and	Global	Address	Space	
Support	for	Exascale	Applica3ons	-	UPC++	

ScoB	B.	Baden	(PI),	Paul	H.	Hargrove	(co-PI),	
Hadia	Ahmed,	John	Bachan,	Dan	Bonachea,	Steve	Hofmeyr,	Mathias	Jacquelin,	Amir	Kamil,	Brian	van	Straalen	

UPC++	at	Lawrence	Berkeley	Na3onal	Lab		(hBp://upcxx.lbl.gov)	

Case	1:	Easy	Distributed	Hash-Table	via	Func3on	Shipping	and	Futures	

	
	

•  Distributed hash-table design is based on function shipping
•  RPC inserts the key metadata at the target
•  Once the RPC completes, an attached callback issues a

one-sided RMA Put (rput) to store the value data

// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char>> local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
 future<global_ptr<char>> fut =
 rpc(key % rank_n(), // RPC obtains location for the data
 [key,sz]() -> global_ptr<char> { // lambda invoked by RPC
 global_ptr<char> gptr = new_array<char>(sz);
 local_map[key] = gptr; // insert in local map
 return gptr;
 });
 return fut.then(// callback executes when RPC completes
 [val,sz](global_ptr<char> loc) -> future<> {
 return rput(val, loc, sz); }); // RMA Put the value payload
}

l  UPC++ is a C++11 PGAS library
l  Lightweight, asynchronous, one-sided communication (RMA)
l  Asynchronous remote procedure call (RPC)
l  Data transfers may be non-contiguous
l  Futures manage asynchrony, enable communication overlap
l  Collectives, teams, remote atomic updates
l  Provides building blocks to construct irregular data structures

l  Easy on-ramp and integration

l  Enables incremental development
l  Selectively replace performance-critical sections with UPC++
l  Interoperable with MPI, OpenMP, CUDA, etc.

l  Latest software release: September 2018
l  Runs on systems from laptops to supercomputers

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi

•  Impact:
•  UPC++ enhances overlap in Extend-add, yielding up to a 1.63x

speedup over MPI collective and 3.11x over MPI message-
passing implementations. The green line in the figure below
corresponds to the fastest of these two variants.

Case	2:	Asynchronous	Sparse	Matrix	Solvers	

•  A time consuming operation in multifrontal sparse solvers:
•  Extend-add: update a distributed sparse matrix, scattering the

packed data source
•  Challenge:

•  This operation has low computational intensity and exhibits irregular
communication patterns

•  Solution:
•  UPC++ function shipping via RPC enables efficient

communication and asynchrony, increasing overlap and improving
performance of Extend-add

Processes

Ti
m

e
(s

)

Strong scaling comparison of the UPC++ implementation of
Extend-add using RPC and an MPI variant for the audikw_1
matrix on NERSC Cori Xeon Phi (using 64 cores/node)

U
P

IS

G
O

O
D

© 2019, Lawrence Berkeley National Laboratory

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

Rank	0	 Rank	1	 Rank	2	 Rank	3	

Private address spaces

•  Benefits:
•  Use of RPC simplifies distributed data-structure design

•  Argument passing, remote queue management and
progress engine are factored out of the application code

•  Asynchronous execution enables overlap

Rget

Overview of Extend-add
•  Updates are shown for the left child only.
•  Colored squares depict the distribution of

parent and child matrices.
•  Dots in the lower left child matrix depict

the data to be sent and accumulated in
the parent.

•  The communication step initiated by one
process in the left child is depicted in the
lower right corner.

•  RPCs communicate the data to the
parent, which carries out the
accumulation. Data linearization is
handled by UPC++ views.

Pa
re
nt
	

Child	
F11

F21

R PC R PC R PC

communication

i1 i4i3i2

i1
i2

i3
i4

i1

i2

i3
i4

i1 i2 i3 i4

F11

F21

F12

F22

F

F22

12

D
O

W
N

 IS

G
O

O
D

