QyZBUS1IeXBlckludC5tcGw2IiEiIj5JOV9oeXBlcl9jaGVja19kaXZlcmdlbmNlc0dGJUkmZmFsc2VHJSpwcm90ZWN0ZWRHRiY= HyperInt, version 1.0, Copyright (C) 2014 Erik Panzer Please report any errors or suggestions to panzer@mathematik.hu-berlin.de Loading periods from /home/erikpanzer/HyperInt/Maple/periodLookups.m Wheel with 3 spokes in phi^4 Qyg+SSZlZGdlc0c2IjcoNyQiIiIiIiM3JEYoIiIkNyRGKCIiJTckRilGKzckRitGLTckRi1GKSEiIj5JIlBHRiUtSTBncmFwaFBvbHlub21pYWxHRiU2I0YkRigtSSpkcmF3R3JhcGhHRiVGNkYo LEIqKCZJInhHNiI2IyIiIkYoJkYlNiMiIiNGKCZGJTYjIiIlRihGKCooRiRGKEYpRigmRiU2IyIiJkYoRigqKEYkRihGKUYoJkYlNiMiIidGKEYoKihGJEYoJkYlNiMiIiRGKEYsRihGKCooRiRGKEY4RihGMEYoRigqKEYkRihGOEYoRjRGKEYoKihGJEYoRixGKEYwRihGKCooRiRGKEYwRihGNEYoRigqKEYpRihGOEYoRixGKEYoKihGKUYoRjhGKEYwRihGKCooRilGKEY4RihGNEYoRigqKEYpRihGLEYoRjRGKEYoKihGKUYoRjBGKEY0RihGKCooRjhGKEYsRihGMEYoRigqKEY4RihGLEYoRjRGKEYoKihGLEYoRjBGKEY0RihGKA== NjotJSlQT0xZR09OU0c2KDcmNyQkIjBDdS0rK08tJiEjOiQhMGNiJG9tMSQqRyEjOjckJCIwQ3UtKytPLSYhIzokITBjYiRvbUVTTSEjOjckJCIwQ3UtKytrWiUhIzokITBjYiRvbUVTTSEjOjckJCIwQ3UtKytrWiUhIzokITBjYiRvbTEkKkchIzo3JjckJCEwd0QoKioqKlJ3VyEjOiQhMEFBJ3BtMSQqRyEjOjckJCEwd0QoKioqKlJ3VyEjOiQhMEFBJ3BtRVNNISM6NyQkITB3RCgqKioqZkJdISM6JCEwQUEncG1FU00hIzo3JCQhMHdEKCoqKipmQl0hIzokITBBQSdwbTEkKkchIzo3JjckJCIlT0YhIiYkIjB5eC5MTHBnJyEjOjckJCIlT0YhIiYkIjB5eC5MTChmZyEjOjckJCElT0YhIiYkIjB5eC5MTChmZyEjOjckJCElT0YhIiYkIjB5eC5MTHBnJyEjOjcmNyQkIjBHRz0rK2d0IyEjOyQiMG1tWSgqKipmdCMhIzs3JCQiMEdHPSsrZ3QjISM7JCEwTExgLStndCMhIzs3JCQhMHNyIikqKioqZnQjISM7JCEwTExgLStndCMhIzs3JCQhMHNyIikqKioqZnQjISM7JCIwbW1ZKCoqKmZ0IyEjOy0lJkNPTE9SRzYvJSRSR0JHJCIjNSEiIiQiIzUhIiIkIiIjISIiJCIjNSEiIiQiIzUhIiIkIiIjISIiJCIjNSEiIiQiIzUhIiIkIiIjISIiJCIjNSEiIiQiIzUhIiIkIiIjISIiLSUmU1RZTEVHNiMlLFBBVENITk9HUklERy0lJVRFWFRHNiU3JCQiMEN1LSsrK3YlISM6JCEwY2Ikb21tbUohIzotJSlfVFlQRVNFVEc2Iy1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjZRIjE2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EldHJ1ZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSVib2xkNiIvJStmb250d2VpZ2h0R1ElYm9sZDYiLSUlRk9OVEc2JSUqSEVMVkVUSUNBRyUlQk9MREciIzctJSVURVhURzYlNyQkITB3RCgqKioqKipcWiEjOiQhMEFBJ3BtbW1KISM6LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USIyNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCIiISEiIiQiMHl4LkxMTEwnISM6LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USIzNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCIwMjdXK3cjRz0hI0QkITAwZzxhTExgIyEjQy0lKV9UWVBFU0VURzYjLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NlEiNDYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSV0cnVlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJWJvbGQ2Ii8lK2ZvbnR3ZWlnaHRHUSVib2xkNiItJSVGT05URzYlJSpIRUxWRVRJQ0FHJSVCT0xERyIjNy0lKVBPTFlHT05TRzYmNyQ3JCQhMHdEKCoqKioqKlxaISM6JCEwQUEncG1tbUohIzo3JCQiMEN1LSsrK3YlISM6JCEwY2Ikb21tbUohIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiIiEhIiIkIjB5eC5MTExMJyEjOjckJCIwQ3UtKysrdiUhIzokITBjYiRvbW1tSiEjOi0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUpUE9MWUdPTlNHNiY3JDckJCIiISEiIiQiMHl4LkxMTEwnISM6NyQkITB3RCgqKioqKipcWiEjOiQhMEFBJ3BtbW1KISM6LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkIjAyN1crdyNHPSEjRCQhMDBnPGFMTGAjISNDNyQkIjBDdS0rKyt2JSEjOiQhMGNiJG9tbW1KISM6LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkIjAyN1crdyNHPSEjRCQhMDBnPGFMTGAjISNDNyQkITB3RCgqKioqKipcWiEjOiQhMEFBJ3BtbW1KISM6LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkIjAyN1crdyNHPSEjRCQhMDBnPGFMTGAjISNDNyQkIiIhISIiJCIweXguTExMTCchIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lJVRFWFRHNic3JCQhMGZkcyoqKioqKlwqISM7JCEwYzoicG07PkohIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjE2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05BQk9WRUctJSVURVhURzYnNyQkIjAwUW42JSpwIj4hIzokIjBDKyMqUUk9YSMhIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjI2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05BQk9WRUctJSVURVhURzYnNyQkIjBmWFJJUjAiPiEjOiQhMFRvS3JkM0QiISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSIzNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQUJPVkVHLSUlVEVYVEc2JzckJCEwJCplXVpFTiM9ISM6JCIvVid6Yyc0JlwjISM5LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSI0NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQkVMT1dHLSUlVEVYVEc2JzckJCEwTSkqSDh0RCY9ISM6JCEwVkomcHAheUwiISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSI2NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQkVMT1dHLSUlVEVYVEc2JzckJCIwbXA0LCsrbCchIzwkIjA2SjFMTExgIyEjOi0lKV9UWVBFU0VURzYjLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1LUkjbXNHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2I1EiNTYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTE2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii0lJUZPTlRHNiQlKkhFTFZFVElDQUciIzYlK0FMSUdOUklHSFRHJStBTElHTkJFTE9XRy0mJSZfQVhJU0c2IyIiIjYnLSUrX0dSSURMSU5FU0c2Jy0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lKV9WSVNJQkxFRzYjIiIhLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSYlJl9BWElTRzYjIiIjNictJStfR1JJRExJTkVTRzYnLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSUpX1ZJU0lCTEVHNiMiIiEtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSpBWEVTU1RZTEVHNiMlJU5PTkVHLSUoU0NBTElOR0c2IyUsQ09OU1RSQUlORURHLSUpX1ZJU0lCTEVHNiMiIiItJSVST09URzYnLSUpQk9VTkRTX1hHNiMkIiNdISIiLSUpQk9VTkRTX1lHNiMkIiNdISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlK1IhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlK1IhIiItJSlDSElMRFJFTkc2Ii0lK0FOTk9UQVRJT05HNictJSlCT1VORFNfWEc2IyQiIiEhIiItJSlCT1VORFNfWUc2IyQiIiEhIiItJS1CT1VORFNfV0lEVEhHNiMkIiUrUyEiIi0lLkJPVU5EU19IRUlHSFRHNiMkIiUrUyEiIi0lKUNISUxEUkVORzYiRzYi Choose a sequence of edges and integrate one after the other: QyY+SSV2YXJzRzYiNycmSSJ4R0YlNiMiIiImRig2IyIiIyZGKDYjIiIkJkYoNiMiIiUmRig2IyIiJiEiIj5JIlhHRiUtSShjb252ZXJ0RyUqcHJvdGVjdGVkRzYkKiRJIlBHRiUhIiNJK0hsb2dSZWdJbmZHRiVGKg== NyM3JCokLEIqKCZJInhHNiI2IyIiIiIiIiZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJSIiIiIiIiooJkkieEc2IjYjIiIiIiIiJkkieEc2IjYjIiIjIiIiJkkieEc2IjYjIiImIiIiIiIiKigmSSJ4RzYiNiMiIiIiIiImSSJ4RzYiNiMiIiMiIiImSSJ4RzYiNiMiIiciIiIiIiIqKCZJInhHNiI2IyIiIiIiIiZJInhHNiI2IyIiJCIiIiZJInhHNiI2IyIiJSIiIiIiIiooJkkieEc2IjYjIiIiIiIiJkkieEc2IjYjIiIkIiIiJkkieEc2IjYjIiImIiIiIiIiKigmSSJ4RzYiNiMiIiIiIiImSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiciIiIiIiIqKCZJInhHNiI2IyIiIiIiIiZJInhHNiI2IyIiJSIiIiZJInhHNiI2IyIiJiIiIiIiIiooJkkieEc2IjYjIiIiIiIiJkkieEc2IjYjIiImIiIiJkkieEc2IjYjIiInIiIiIiIiKigmSSJ4RzYiNiMiIiMiIiImSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiUiIiIiIiIqKCZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJCIiIiZJInhHNiI2IyIiJiIiIiIiIiooJkkieEc2IjYjIiIjIiIiJkkieEc2IjYjIiIkIiIiJkkieEc2IjYjIiInIiIiIiIiKigmSSJ4RzYiNiMiIiMiIiImSSJ4RzYiNiMiIiUiIiImSSJ4RzYiNiMiIiciIiIiIiIqKCZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJiIiIiZJInhHNiI2IyIiJyIiIiIiIiooJkkieEc2IjYjIiIkIiIiJkkieEc2IjYjIiIlIiIiJkkieEc2IjYjIiImIiIiIiIiKigmSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiUiIiImSSJ4RzYiNiMiIiciIiIiIiIqKCZJInhHNiI2IyIiJSIiIiZJInhHNiI2IyIiJiIiIiZJInhHNiI2IyIiJyIiIiIiIiEiIzci QyQ/JkkiZUc2IkkldmFyc0dGJUkldHJ1ZUclKnByb3RlY3RlZEdDJT5JIlhHRiUtSTBpbnRlZ3JhdGlvblN0ZXBHRiU2JEYrRiQtSSdwcmludGZHNiRGKEkoX3N5c2xpYkdGJTYkUUZJbnRlZ3JhbmR+YWZ0ZXJ+aW50ZWdyYXRpbmd+b3V0fiVhOlxuRiVGJC1JJnByaW50R0YoNiNGKyEiIg== Integrating variable x[1] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[1] in .29e-1 seconds, produced 1 terms Integrand after integrating out x[1]: NyM3JComLDIqKCZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJCIiIiZJInhHNiI2IyIiJSIiIiIiIiooJkkieEc2IjYjIiIjIiIiJkkieEc2IjYjIiIkIiIiJkkieEc2IjYjIiImIiIiIiIiKigmSSJ4RzYiNiMiIiMiIiImSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiciIiIiIiIqKCZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJSIiIiZJInhHNiI2IyIiJyIiIiIiIiooJkkieEc2IjYjIiIjIiIiJkkieEc2IjYjIiImIiIiJkkieEc2IjYjIiInIiIiIiIiKigmSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiUiIiImSSJ4RzYiNiMiIiYiIiIiIiIqKCZJInhHNiI2IyIiJCIiIiZJInhHNiI2IyIiJSIiIiZJInhHNiI2IyIiJyIiIiIiIiooJkkieEc2IjYjIiIlIiIiJkkieEc2IjYjIiImIiIiJkkieEc2IjYjIiInIiIiIiIiISIiLDIqJiZJInhHNiI2IyIiIyIiIiZJInhHNiI2IyIiJSIiIiIiIiomJkkieEc2IjYjIiIjIiIiJkkieEc2IjYjIiImIiIiIiIiKiYmSSJ4RzYiNiMiIiMiIiImSSJ4RzYiNiMiIiciIiIiIiIqJiZJInhHNiI2IyIiJCIiIiZJInhHNiI2IyIiJSIiIiIiIiomJkkieEc2IjYjIiIkIiIiJkkieEc2IjYjIiImIiIiIiIiKiYmSSJ4RzYiNiMiIiQiIiImSSJ4RzYiNiMiIiciIiIiIiIqJiZJInhHNiI2IyIiJSIiIiZJInhHNiI2IyIiJiIiIiIiIiomJkkieEc2IjYjIiImIiIiJkkieEc2IjYjIiInIiIiIiIiISIiNyI= Integrating variable x[2] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[2] in .26e-1 seconds, produced 2 terms Integrand after integrating out x[2]: NyQ3JCwkKiQsKiomJkkieEc2IjYjIiIkIiIiJkYpNiMiIiVGLUYtKiZGKEYtJkYpNiMiIiZGLUYtKiZGKEYtJkYpNiMiIidGLUYtKiZGMkYtRjZGLUYtISIjISIiNyM3IywkKiYsLEYnRi1GMUYtRjVGLSomRi5GLUYyRi1GLUY5Ri1GLSwoRi5GLUYyRi1GNkYtRjtGOzckRiU3IzcjLCQqJiwoKihGKEYtRi5GLUYyRi1GLSooRihGLUYuRi1GNkYtRi0qKEYuRi1GMkYtRjZGLUYtRi0sLEYnRi1GMUYtRjVGLSomRi5GLUY2Ri1GLUY5Ri1GO0Y7 Integrating variable x[3] from 0 to infinity, integrand has 2 terms Warning, not checking divergences finished integration of variable x[3] in .27e-1 seconds, produced 5 terms Integrand after integrating out x[3]: Nyc3JCwkKigmSSJ4RzYiNiMiIiUhIiImRic2IyIiJ0YrLChGJiIiIiZGJzYjIiImRjBGLEYwRitGKzcjNyMsJComLCYqJkYmRjBGLEYwRjAqJkYxRjBGLEYwRjBGMEYvRitGKzckLCQqKEYmRitGMUYrRi9GK0YrNyM3IywkKiYsJiomRiZGMEYxRjBGMEY6RjBGMEYvRitGKzckKihGMUYrRixGK0YvRis3IzcjLCQqKEYmRjBGMUYwLCZGJkYwRjFGMEYrRis3JCwkRkVGKzcjNyMsJCooRjFGMCwmRiZGMEYsRjBGMEYvRitGKzckKixGL0YrLCZGMUYwRixGMEYwRiZGK0YxRitGLEYrNyM3IywkKihGMUYwRixGMEZURitGKw== Integrating variable x[4] from 0 to infinity, integrand has 5 terms Warning, not checking divergences finished integration of variable x[4] in .28e-1 seconds, produced 5 terms Integrand after integrating out x[4]: Nyc3JComLCYmSSJ4RzYiNiMiIiYiIiImRic2IyIiJ0YrISIiRiZGLzcjNyQiIiEsJEYsRi83JComRiVGL0YsRi83IzckRjIsJEYmRi83JEYkNyM3JCwmRiZGL0YsRi9GODckLCQqJkYmRi9GLEYvRi83JDcjLCQqKEYmRitGLEYrRiVGL0YvNyNGPDckRjU3IzckRjxGMw== Integrating variable x[5] from 0 to infinity, integrand has 5 terms Warning, not checking divergences finished integration of variable x[5] in .24e-1 seconds, produced 6 terms Integrand after integrating out x[5]: Nyg3JComJkkieEc2IjYjIiInISIiJkklemV0YUdGJzYjIiIjIiIiNyM3IywkRiVGKjckLCQqJEYlRiohIiM3JEYxNyQiIiFGMjckRjU3JEYxNyRGMkYyNyQsJEY1IiIkNyM3JUY5RjlGMjckRjQ3IzclRjJGOUYyNyQsJEY1Ri43IzclRjlGMkYy Explanation: The words like LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZKLUkobWZlbmNlZEdGJDYmLUYjNistSSNtbkdGJDYkUSIwRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUkjbW9HRiQ2LVEiLEYnRjQvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHUSV0cnVlRicvJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdRLDAuMzMzMzMzM2VtRictRiM2KC1GODYtUSomdW1pbnVzMDtGJ0Y0RjsvRj9GPUZBRkNGRUZHRkkvRkxRLDAuMjIyMjIyMmVtRicvRk9GWC1JJW1zdWJHRiQ2JS1JI21pR0YkNiVRInhGJy8lJ2l0YWxpY0dGQC9GNVEnaXRhbGljRictRiM2Jy1GMTYkUSI2RidGNC8lK2ZvcmVncm91bmRHUSpbMCwwLDI1NV1GJy8lKXJlYWRvbmx5R0ZALyUwZm9udF9zdHlsZV9uYW1lR1EqMkR+T3V0cHV0RidGNC8lL3N1YnNjcmlwdHNoaWZ0R0YzRmRvRmdvRmlvRjRGN0ZRRmRvRmdvRmlvRjRGNC8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GODYtUSJ+RidGNEY7RlZGQUZDRkVGR0ZJRksvRk9GTS1GaG42JVEqcmVwcmVzZW50RidGW29GXW9GZHAtRmVuNiUtRmhuNiVRJ1JlZ0xpbUYnRltvRl1vLUYjNictRmhuNiVRInpGJ0Zbb0Zdby1GODYtUSgmc3JhcnI7RidGNEY7RlZGQUZDRkVGR0ZJRktGZ3AtRmhuNiVRKWluZmluaXR5RidGW29GXW9GW29GXW9GXHAtRiw2JC1GIzYmLUZlbjYlLUZobjYlUSlIeXBlcmxvZ0YnRltvRl1vLUYjNitGMEY3RlMtRmVuNiVGZ24tRiM2JUZhb0Zbb0Zdb0ZccEY3RlNGZnJGW29GXW9GXHAtRiw2JC1GIzYkRmJxRjRGNC1GODYtUSFGJ0Y0RjtGVkZBRkNGRUZHRklGS0ZncEY0RjRGZHAtRjg2L1EkYW5kRicvJSVib2xkR0ZAL0Y1USVib2xkRicvJStmb250d2VpZ2h0R0Znc0Y7RlZGQUZDRkVGR0ZJRktGZ3BGZHAtRmhuNiVRJWdpdmVGJ0Zbb0Zdb0ZkcC1GaG42JVEkTVpWRidGW29GXW8tRjg2LVEiJ0YnRjRGO0ZWRkFGQ0ZFRkdGSS9GTFEsMC4xMTExMTExZW1GJ0ZncC1GaG42JVEic0YnRltvRl1vLUY4Ni1RIi5GJ0Y0RjtGVkZBRkNGRUZHRklGS0ZncEZkcC1GaG42JVErQ29udmVyc2lvbkYnRltvRl1vRmRwLUY4Ni9RI3RvRidGZHNGZnNGaHNGO0ZWRkFGQ0ZFRkdGSUZLRmdwRmRwLUZobjYlUSlpdGVyYXRlZEYnRltvRl1vRmRwLUZobjYlUSppbnRlZ3JhbHNGJ0Zbb0Zdb0ZkcC1GODYvUSVmcm9tRidGZHNGZnNGaHNGO0ZWRkFGQ0ZFRkdGSUZLRmdwRmRwRjBGZHBGXnVGZHAtRjE2JFEiMUYnRjRGZHAtRmhuNiVRI2lzRidGW29GXW9GZHAtRmhuNiVRJW1hZGVGJ0Zbb0Zdb0ZkcC1GODYvUSNieUYnRmRzRmZzRmhzRjtGVkZBRkNGRUZHRklGS0ZncEZkcC1GLDYkLUYjNjUtRmhuNiVRJmFmdGVyRidGW29GXW9GZHAtRmhuNiVRKHNldHRpbmdGJ0Zbb0Zdb0ZkcEZnbi1GLDYmLUYjNiRGYW9GNEY0Rl5wRmFwLUY4Ni1RIj1GJ0Y0RjtGVkZBRkNGRUZHRkkvRkxRLDAuMjc3Nzc3OGVtRicvRk9GaHdGanVGZHBGYXNGZHAtRmhuNiVRK2NvbnZlcnRpbmdGJ0Zbb0Zdb0ZkcC1GaG42JVEpcHJvZHVjdHNGJ0Zbb0Zdb0ZkcEZedUZkcC1GaG42JVEpc2h1ZmZsZXNGJ0Zbb0Zdb0Y0RjRGNA== LUkvY29udmVydFplcm9PbmVHNiI2Iy1JJ3JlZ2luZkdGJDYjLUkwc2h1ZmZsZUNvbXByZXNzR0YkNiMtSSVldmFsRyUqcHJvdGVjdGVkRzYkSSJYR0YkLyZJInhHRiQ2IyIiJyIiIg== NyQ3JCIiJDclIiIhIiIiRic3JCEiJDclRiZGJkYn which reads 3*(zeta(1,2)+zeta(3)) = 6*zeta(3). This is automated in QyQtSS9maWJyYXRpb25CYXNpc0c2IjYjLUklZXZhbEclKnByb3RlY3RlZEc2JEkiWEdGJS8mSSJ4R0YlNiMiIiciIiJGMQ== LCQmSSV6ZXRhRzYiNiMiIiQiIic= Wheel with 4 spokes in phi^4 Qyg+SSZlZGdlc0c2IjcqNyQiIiIiIiM3JEYoIiIkNyRGKCIiJTckRigiIiY3JEYpRis3JEYrRi03JEYtRi83JEYvRikhIiI+SSJQR0YlLUkwZ3JhcGhQb2x5bm9taWFsR0YlNiNGJEYoLUkqZHJhd0dyYXBoR0YlRjlGKA== LGZwKiomSSJ4RzYiNiMiIiJGKCZGJTYjIiIjRigmRiU2IyIiJEYoJkYlNiMiIiZGKEYoKipGJEYoRilGKEYsRigmRiU2IyIiJ0YoRigqKkYkRihGKUYoRixGKCZGJTYjIiIoRihGKCoqRiRGKEYpRihGLEYoJkYlNiMiIilGKEYoKipGJEYoRilGKCZGJTYjIiIlRihGL0YoRigqKkYkRihGKUYoRj9GKEYzRihGKCoqRiRGKEYpRihGP0YoRjdGKEYoKipGJEYoRilGKEY/RihGO0YoRigqKkYkRihGKUYoRi9GKEY3RihGKCoqRiRGKEYpRihGM0YoRjdGKEYoKipGJEYoRilGKEY3RihGO0YoRigqKkYkRihGLEYoRj9GKEYvRihGKCoqRiRGKEYsRihGP0YoRjNGKEYoKipGJEYoRixGKEY/RihGN0YoRigqKkYkRihGLEYoRj9GKEY7RihGKCoqRiRGKEYsRihGL0YoRjNGKEYoKipGJEYoRixGKEYvRihGN0YoRigqKkYkRihGLEYoRjNGKEY7RihGKCoqRiRGKEYsRihGN0YoRjtGKEYoKipGJEYoRj9GKEYvRihGM0YoRigqKkYkRihGP0YoRjNGKEY3RihGKCoqRiRGKEY/RihGM0YoRjtGKEYoKipGJEYoRi9GKEYzRihGN0YoRigqKkYkRihGM0YoRjdGKEY7RihGKCoqRilGKEYsRihGP0YoRi9GKEYoKipGKUYoRixGKEY/RihGM0YoRigqKkYpRihGLEYoRj9GKEY3RihGKCoqRilGKEYsRihGP0YoRjtGKEYoKipGKUYoRixGKEYvRihGO0YoRigqKkYpRihGLEYoRjNGKEY7RihGKCoqRilGKEYsRihGN0YoRjtGKEYoKipGKUYoRj9GKEYvRihGN0YoRigqKkYpRihGP0YoRi9GKEY7RihGKCoqRilGKEY/RihGM0YoRjdGKEYoKipGKUYoRj9GKEYzRihGO0YoRigqKkYpRihGL0YoRjdGKEY7RihGKCoqRilGKEYzRihGN0YoRjtGKEYoKipGLEYoRj9GKEYvRihGM0YoRigqKkYsRihGP0YoRi9GKEY3RihGKCoqRixGKEY/RihGL0YoRjtGKEYoKipGLEYoRi9GKEYzRihGO0YoRigqKkYsRihGL0YoRjdGKEY7RihGKCoqRj9GKEYvRihGM0YoRjdGKEYoKipGP0YoRi9GKEYzRihGO0YoRigqKkYvRihGM0YoRjdGKEY7RihGKA== Nj8tJSlQT0xZR09OU0c2KTcmNyQkIjAnPSdcKioqXDJGISM7JCIwLk5NLCt2cSMhIzs3JCQiMCc9J1wqKipcMkYhIzskITAoXGMnKSoqXDJGISM7NyQkITA5UV0rK3ZxIyEjOyQhMChcYycpKipcMkYhIzs3JCQhMDlRXSsrdnEjISM7JCIwLk5NLCt2cSMhIzs3JjckJCEwRDo/K10jelchIzokITB1KEgmKipcI3pXISM6NyQkITBEOj8rXSN6VyEjOiQhMHUoSCYqKlwyLSYhIzo3JCQhMEQ6PytdMi0mISM6JCEwdShIJioqXDItJiEjOjckJCEwRDo/K10yLSYhIzokITB1KEgmKipcI3pXISM6NyY3JCQiMHYlKXoqKlwyLSYhIzokITBERyQqKipcI3pXISM6NyQkIjB2JSl6KipcMi0mISM6JCEwREckKioqXDItJiEjOjckJCIwdiUpeioqXCN6VyEjOiQhMERHJCoqKlwyLSYhIzo3JCQiMHYlKXoqKlwjelchIzokITBERyQqKipcI3pXISM6NyY3JCQiMHYlKXoqKlwyLSYhIzokIjBERyQqKipcMi0mISM6NyQkIjB2JSl6KipcMi0mISM6JCIwREckKioqXCN6VyEjOjckJCIwdiUpeioqXCN6VyEjOiQiMERHJCoqKlwjelchIzo3JCQiMHYlKXoqKlwjelchIzokIjBERyQqKipcMi0mISM6NyY3JCQhMFxwZioqXCN6VyEjOiQiMHZyMStdMi0mISM6NyQkITBccGYqKlwjelchIzokIjB2cjErXSN6VyEjOjckJCEwXHBmKipcMi0mISM6JCIwdnIxK10jelchIzo3JCQhMFxwZioqXDItJiEjOiQiMHZyMStdMi0mISM6LSUmQ09MT1JHNjIlJFJHQkckIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiItJSZTVFlMRUc2IyUsUEFUQ0hOT0dSSURHLSUlVEVYVEc2JTckJCEwYGwpSGk4UV0hI0QkIjAiM1ImKkhdVjghI0MtJSlfVFlQRVNFVEc2Iy1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjZRIjE2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EldHJ1ZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSVib2xkNiIvJStmb250d2VpZ2h0R1ElYm9sZDYiLSUlRk9OVEc2JSUqSEVMVkVUSUNBRyUlQk9MREciIzctJSVURVhURzYlNyQkITBEOj8rKyt2JSEjOiQhMHUoSCYqKioqKlxaISM6LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USIyNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCIwdiUpeioqKioqXFohIzokITBERyQqKioqKipcWiEjOi0lKV9UWVBFU0VURzYjLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NlEiMzYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSV0cnVlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJWJvbGQ2Ii8lK2ZvbnR3ZWlnaHRHUSVib2xkNiItJSVGT05URzYlJSpIRUxWRVRJQ0FHJSVCT0xERyIjNy0lJVRFWFRHNiU3JCQiMHYlKXoqKioqKlxaISM6JCIwREckKioqKioqXFohIzotJSlfVFlQRVNFVEc2Iy1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjZRIjQ2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EldHJ1ZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSVib2xkNiIvJStmb250d2VpZ2h0R1ElYm9sZDYiLSUlRk9OVEc2JSUqSEVMVkVUSUNBRyUlQk9MREciIzctJSVURVhURzYlNyQkITBccGYqKioqKlxaISM6JCIwdnIxKysrdiUhIzotJSlfVFlQRVNFVEc2Iy1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjZRIjU2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EldHJ1ZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSVib2xkNiIvJStmb250d2VpZ2h0R1ElYm9sZDYiLSUlRk9OVEc2JSUqSEVMVkVUSUNBRyUlQk9MREciIzctJSlQT0xZR09OU0c2JjckNyQkITBEOj8rKyt2JSEjOiQhMHUoSCYqKioqKlxaISM6NyQkITBgbClIaThRXSEjRCQiMCIzUiYqSF1WOCEjQy0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUpUE9MWUdPTlNHNiY3JDckJCIwdiUpeioqKioqXFohIzokITBERyQqKioqKipcWiEjOjckJCEwYGwpSGk4UV0hI0QkIjAiM1ImKkhdVjghI0MtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiMHYlKXoqKioqKlxaISM6JCEwREckKioqKioqXFohIzo3JCQhMEQ6PysrK3YlISM6JCEwdShIJioqKioqXFohIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiMHYlKXoqKioqKlxaISM6JCIwREckKioqKioqXFohIzo3JCQhMGBsKUhpOFFdISNEJCIwIjNSJipIXVY4ISNDLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkIjB2JSl6KioqKipcWiEjOiQiMERHJCoqKioqKlxaISM6NyQkIjB2JSl6KioqKipcWiEjOiQhMERHJCoqKioqKlxaISM6LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkITBccGYqKioqKlxaISM6JCIwdnIxKysrdiUhIzo3JCQhMGBsKUhpOFFdISNEJCIwIjNSJipIXVY4ISNDLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkITBccGYqKioqKlxaISM6JCIwdnIxKysrdiUhIzo3JCQhMEQ6PysrK3YlISM6JCEwdShIJioqKioqXFohIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQhMFxwZioqKioqXFohIzokIjB2cjErKyt2JSEjOjckJCIwdiUpeioqKioqXFohIzokIjBERyQqKioqKipcWiEjOi0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUlVEVYVEc2JzckJCEwQV07UFUmKnkjISM6JCEwcGpraWQvIkghIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjE2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05CRUxPV0ctJSVURVhURzYnNyQkIjAmXFZGXVZqRyEjOiQhMDQ/LShcY09HISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSIyNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQUJPVkVHLSUlVEVYVEc2JzckJCIwZHgkR3dYNUghIzokIjBwUi5QVSYqeSMhIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjM2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05CRUxPV0ctJSVURVhURzYnNyQkITBATipvXGNPRyEjOiQiMGB4KEhdVmpHISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSI0NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQUJPVkVHLSUlVEVYVEc2JzckJCIwWVopeioqKioqXCohIzskITAwO3gqKipcLVohIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjU2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05BQk9WRUctJSVURVhURzYnNyQkIS95USkqKipcJG8lISM5JCIwYlJHLSsrXSohIzstJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjg2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05CRUxPV0ctJSVURVhURzYnNyQkIjB2JSl6KioqXDtbISM6JCIvbGwpKioqKioqXCohIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjY2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05CRUxPV0ctJSVURVhURzYnNyQkITAneihRKSoqKioqXCohIzskIjBOTSwrK3Z6JSEjOi0lKV9UWVBFU0VURzYjLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1LUkjbXNHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2I1EiNzYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTE2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii0lJUZPTlRHNiQlKkhFTFZFVElDQUciIzYlK0FMSUdOUklHSFRHJStBTElHTkFCT1ZFRy0mJSZfQVhJU0c2IyIiIjYnLSUrX0dSSURMSU5FU0c2Jy0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lKV9WSVNJQkxFRzYjIiIhLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSYlJl9BWElTRzYjIiIjNictJStfR1JJRExJTkVTRzYnLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSUpX1ZJU0lCTEVHNiMiIiEtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSpBWEVTU1RZTEVHNiMlJU5PTkVHLSUoU0NBTElOR0c2IyUsQ09OU1RSQUlORURHLSUpX1ZJU0lCTEVHNiMiIiItJSVST09URzYnLSUpQk9VTkRTX1hHNiMkIiNdISIiLSUpQk9VTkRTX1lHNiMkIiQ/IiEiIi0lLUJPVU5EU19XSURUSEc2IyQiJTVRISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJT9RISIiLSUpQ0hJTERSRU5HNiItJStBTk5PVEFUSU9ORzYnLSUpQk9VTkRTX1hHNiMkIiIhISIiLSUpQk9VTkRTX1lHNiMkIiIhISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlK1MhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlK1MhIiItJSlDSElMRFJFTkc2Ig==Ig== Integrate all steps at once without intermediate results: LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEpaHlwZXJJbnRGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Jy1JJm1mcmFjR0YkNigtSSNtbkdGJDYkUSIxRicvRjNRJ25vcm1hbEYnLUYjNiQtSSVtc3VwR0YkNiUtRiw2JVEiUEYnRi9GMi1GIzYkLUY+NiRRIjJGJ0ZBRkEvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRkEvJS5saW5ldGhpY2tuZXNzR0ZALyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRlcvJSliZXZlbGxlZEdRJmZhbHNlRictSSNtb0dGJDYtUSIsRidGQS8lJmZlbmNlR0Zmbi8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0Zmbi8lKnN5bW1ldHJpY0dGZm4vJShsYXJnZW9wR0Zmbi8lLm1vdmFibGVsaW1pdHNHRmZuLyUnYWNjZW50R0Zmbi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUYjNiUtRmhuNi1RIUYnRkFGW28vRl5vRmZuRl9vRmFvRmNvRmVvRmdvRmlvL0ZdcEZbcC1GNjYmLUYjNjctRiw2JVEieEYnRi9GMi1GNjYmLUYjNiRGPUZBRkEvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGZ25GanAtRjY2JkZLRkFGYXFGZHFGZ25GanAtRjY2Ji1GIzYkLUY+NiRRIjVGJ0ZBRkFGQUZhcUZkcUZnbkZqcC1GNjYmLUYjNiQtRj42JFEiNkYnRkFGQUZBRmFxRmRxRmduRmpwLUY2NiYtRiM2JC1GPjYkUSI4RidGQUZBRkFGYXFGZHFGZ25GanAtRjY2Ji1GIzYkLUY+NiRRIjNGJ0ZBRkFGQUZhcUZkcUZnbkZqcC1GNjYmLUYjNiQtRj42JFEiNEYnRkFGQUZBRmFxRmRxRkFGQUZhcUZkcUZBRmFwRkFGQS1GaG42LVEiO0YnRkFGW29GXW9GX29GYW9GY29GZW9GZ29GaW8vRl1wUSwwLjI3Nzc3NzhlbUYnLyUrZXhlY3V0YWJsZUdGZm5GQQ== Integrating variable x[1] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[1] in .23e-1 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[2] in .20e-1 seconds, produced 2 terms Integrating variable x[5] from 0 to infinity, integrand has 2 terms Warning, not checking divergences finished integration of variable x[5] in .33e-1 seconds, produced 4 terms Integrating variable x[6] from 0 to infinity, integrand has 4 terms Warning, not checking divergences finished integration of variable x[6] in .19e-1 seconds, produced 10 terms Integrating variable x[8] from 0 to infinity, integrand has 10 terms Warning, not checking divergences finished integration of variable x[8] in .29e-1 seconds, produced 37 terms Integrating variable x[3] from 0 to infinity, integrand has 37 terms Warning, not checking divergences finished integration of variable x[3] in .336 seconds, produced 27 terms Integrating variable x[4] from 0 to infinity, integrand has 27 terms Warning, not checking divergences finished integration of variable x[4] in .63e-1 seconds, produced 28 terms Nz43JCwkKiQmSSJ4RzYiNiMiIighIiIhIiY3IzcnLCRGJkYrIiIhRjBGL0YvNyQsJEYlIiM1NyM3J0YwRjBGMEYwRi83JCwkRiUiIiM3IzcnRi9GL0YwRi9GLzckLCRGJSEiIzcjNydGMEYvRi9GMEYvNyQsJEYlIiIkNyQ3I0YvNyZGL0YwRi9GLzckLCQqJkYmRismSSV6ZXRhR0YoNiNGOCIiIkYrNyRGRDckRjBGLzckLCRGJSEiJDckRkQ3JkYwRjBGL0YvNyQsJEYlISIlNyM3J0YvRjBGMEYwRi83JEY8NyQ3JEYvRi83JUYvRjBGLzckRlA3IzcnRjBGMEYvRjBGLzckLCRGSEZCNyM3JUYwRjBGLzckLCRGJUYrNyM3J0YwRi9GMEYwRi83JEZHNyM3JUYvRi9GLzckLCRGJSIiKTcjNydGMEYwRjBGL0YvNyRGQTcjNydGMEYwRi9GL0YvNyRGJDcjNydGMEYvRjBGL0YvNyRGX283JEZORmRvNyRGPDcjNydGL0YvRjBGMEYvNyRGJTcjNydGL0YwRi9GMEYvNyRGQTckRmVuRl1vNyRGVTcjNydGL0YwRi9GL0YvNyRGSDckRkRGZW43JEYlNyRGRDcmRjBGL0YvRi83JCwkRiUhIic3JEZENyZGMEYwRjBGLzckRjc3IzcnRi9GL0YvRjBGLzckRjc3JEZENyZGMEYvRjBGLzckLCRGSEY9NyNGZm43JEZBNyRGRDcmRi9GMEYwRi8= QyQtSS9maWJyYXRpb25CYXNpc0c2IjYjLUklZXZhbEclKnByb3RlY3RlZEc2JEkiJUdGJS8mSSJ4R0YlNiMiIigiIiJGMQ== LCQmSSV6ZXRhRzYiNiMiIiYiIz8= Wheel with 5 spokes in phi^4 Qyg+SSZlZGdlc0c2IjcsNyQiIiIiIiM3JEYoIiIkNyRGKCIiJTckRigiIiY3JEYoIiInNyRGKUYrNyRGK0YtNyRGLUYvNyRGL0YxNyRGMUYpISIiPkkiUEdGJS1JMGdyYXBoUG9seW5vbWlhbEdGJTYjRiRGKC1JKmRyYXdHcmFwaEdGJUY8Rig= LF56KiwmSSJ4RzYiNiMiIiJGKCZGJTYjIiIjRigmRiU2IyIiJEYoJkYlNiMiIiVGKCZGJTYjIiInRihGKCosRiRGKEYpRihGLEYoRi9GKCZGJTYjIiIoRihGKCosRiRGKEYpRihGLEYoRi9GKCZGJTYjIiIpRihGKCosRiRGKEYpRihGLEYoRi9GKCZGJTYjIiIqRihGKCosRiRGKEYpRihGLEYoRi9GKCZGJTYjIiM1RihGKCosRiRGKEYpRihGLEYoJkYlNiMiIiZGKEYyRihGKCosRiRGKEYpRihGLEYoRkZGKEY2RihGKCosRiRGKEYpRihGLEYoRkZGKEY6RihGKCosRiRGKEYpRihGLEYoRkZGKEY+RihGKCosRiRGKEYpRihGLEYoRkZGKEZCRihGKCosRiRGKEYpRihGLEYoRjJGKEY+RihGKCosRiRGKEYpRihGLEYoRjZGKEY+RihGKCosRiRGKEYpRihGLEYoRjpGKEY+RihGKCosRiRGKEYpRihGLEYoRj5GKEZCRihGKCosRiRGKEYpRihGL0YoRkZGKEYyRihGKCosRiRGKEYpRihGL0YoRkZGKEY2RihGKCosRiRGKEYpRihGL0YoRkZGKEY6RihGKCosRiRGKEYpRihGL0YoRkZGKEY+RihGKCosRiRGKEYpRihGL0YoRkZGKEZCRihGKCosRiRGKEYpRihGL0YoRjJGKEY6RihGKCosRiRGKEYpRihGL0YoRjJGKEY+RihGKCosRiRGKEYpRihGL0YoRjZGKEY6RihGKCosRiRGKEYpRihGL0YoRjZGKEY+RihGKCosRiRGKEYpRihGL0YoRjpGKEZCRihGKCosRiRGKEYpRihGL0YoRj5GKEZCRihGKCosRiRGKEYpRihGRkYoRjJGKEY6RihGKCosRiRGKEYpRihGRkYoRjZGKEY6RihGKCosRiRGKEYpRihGRkYoRjpGKEY+RihGKCosRiRGKEYpRihGRkYoRjpGKEZCRihGKCosRiRGKEYpRihGMkYoRjpGKEY+RihGKCosRiRGKEYpRihGNkYoRjpGKEY+RihGKCosRiRGKEYpRihGOkYoRj5GKEZCRihGKCosRiRGKEYsRihGL0YoRkZGKEYyRihGKCosRiRGKEYsRihGL0YoRkZGKEY2RihGKCosRiRGKEYsRihGL0YoRkZGKEY6RihGKCosRiRGKEYsRihGL0YoRkZGKEY+RihGKCosRiRGKEYsRihGL0YoRkZGKEZCRihGKCosRiRGKEYsRihGL0YoRjJGKEY2RihGKCosRiRGKEYsRihGL0YoRjJGKEY6RihGKCosRiRGKEYsRihGL0YoRjJGKEY+RihGKCosRiRGKEYsRihGL0YoRjZGKEZCRihGKCosRiRGKEYsRihGL0YoRjpGKEZCRihGKCosRiRGKEYsRihGL0YoRj5GKEZCRihGKCosRiRGKEYsRihGRkYoRjJGKEY2RihGKCosRiRGKEYsRihGRkYoRjJGKEY6RihGKCosRiRGKEYsRihGRkYoRjZGKEY+RihGKCosRiRGKEYsRihGRkYoRjZGKEZCRihGKCosRiRGKEYsRihGRkYoRjpGKEY+RihGKCosRiRGKEYsRihGRkYoRjpGKEZCRihGKCosRiRGKEYsRihGMkYoRjZGKEY+RihGKCosRiRGKEYsRihGMkYoRjpGKEY+RihGKCosRiRGKEYsRihGNkYoRj5GKEZCRihGKCosRiRGKEYsRihGOkYoRj5GKEZCRihGKCosRiRGKEYvRihGRkYoRjJGKEY2RihGKCosRiRGKEYvRihGRkYoRjZGKEY6RihGKCosRiRGKEYvRihGRkYoRjZGKEY+RihGKCosRiRGKEYvRihGRkYoRjZGKEZCRihGKCosRiRGKEYvRihGMkYoRjZGKEY6RihGKCosRiRGKEYvRihGMkYoRjZGKEY+RihGKCosRiRGKEYvRihGNkYoRjpGKEZCRihGKCosRiRGKEYvRihGNkYoRj5GKEZCRihGKCosRiRGKEZGRihGMkYoRjZGKEY6RihGKCosRiRGKEZGRihGNkYoRjpGKEY+RihGKCosRiRGKEZGRihGNkYoRjpGKEZCRihGKCosRiRGKEYyRihGNkYoRjpGKEY+RihGKCosRiRGKEY2RihGOkYoRj5GKEZCRihGKCosRilGKEYsRihGL0YoRkZGKEYyRihGKCosRilGKEYsRihGL0YoRkZGKEY2RihGKCosRilGKEYsRihGL0YoRkZGKEY6RihGKCosRilGKEYsRihGL0YoRkZGKEY+RihGKCosRilGKEYsRihGL0YoRkZGKEZCRihGKCosRilGKEYsRihGL0YoRjJGKEZCRihGKCosRilGKEYsRihGL0YoRjZGKEZCRihGKCosRilGKEYsRihGL0YoRjpGKEZCRihGKCosRilGKEYsRihGL0YoRj5GKEZCRihGKCosRilGKEYsRihGRkYoRjJGKEY+RihGKCosRilGKEYsRihGRkYoRjJGKEZCRihGKCosRilGKEYsRihGRkYoRjZGKEY+RihGKCosRilGKEYsRihGRkYoRjZGKEZCRihGKCosRilGKEYsRihGRkYoRjpGKEY+RihGKCosRilGKEYsRihGRkYoRjpGKEZCRihGKCosRilGKEYsRihGMkYoRj5GKEZCRihGKCosRilGKEYsRihGNkYoRj5GKEZCRihGKCosRilGKEYsRihGOkYoRj5GKEZCRihGKCosRilGKEYvRihGRkYoRjJGKEY6RihGKCosRilGKEYvRihGRkYoRjJGKEY+RihGKCosRilGKEYvRihGRkYoRjJGKEZCRihGKCosRilGKEYvRihGRkYoRjZGKEY6RihGKCosRilGKEYvRihGRkYoRjZGKEY+RihGKCosRilGKEYvRihGRkYoRjZGKEZCRihGKCosRilGKEYvRihGMkYoRjpGKEZCRihGKCosRilGKEYvRihGMkYoRj5GKEZCRihGKCosRilGKEYvRihGNkYoRjpGKEZCRihGKCosRilGKEYvRihGNkYoRj5GKEZCRihGKCosRilGKEZGRihGMkYoRjpGKEY+RihGKCosRilGKEZGRihGMkYoRjpGKEZCRihGKCosRilGKEZGRihGNkYoRjpGKEY+RihGKCosRilGKEZGRihGNkYoRjpGKEZCRihGKCosRilGKEYyRihGOkYoRj5GKEZCRihGKCosRilGKEY2RihGOkYoRj5GKEZCRihGKCosRixGKEYvRihGRkYoRjJGKEY2RihGKCosRixGKEYvRihGRkYoRjJGKEY6RihGKCosRixGKEYvRihGRkYoRjJGKEY+RihGKCosRixGKEYvRihGRkYoRjJGKEZCRihGKCosRixGKEYvRihGMkYoRjZGKEZCRihGKCosRixGKEYvRihGMkYoRjpGKEZCRihGKCosRixGKEYvRihGMkYoRj5GKEZCRihGKCosRixGKEZGRihGMkYoRjZGKEY+RihGKCosRixGKEZGRihGMkYoRjZGKEZCRihGKCosRixGKEZGRihGMkYoRjpGKEY+RihGKCosRixGKEZGRihGMkYoRjpGKEZCRihGKCosRixGKEYyRihGNkYoRj5GKEZCRihGKCosRixGKEYyRihGOkYoRj5GKEZCRihGKCosRi9GKEZGRihGMkYoRjZGKEY6RihGKCosRi9GKEZGRihGMkYoRjZGKEY+RihGKCosRi9GKEZGRihGMkYoRjZGKEZCRihGKCosRi9GKEYyRihGNkYoRjpGKEZCRihGKCosRi9GKEYyRihGNkYoRj5GKEZCRihGKCosRkZGKEYyRihGNkYoRjpGKEY+RihGKCosRkZGKEYyRihGNkYoRjpGKEZCRihGKCosRjJGKEY2RihGOkYoRj5GKEZCRihGKA== NkQtJSlQT0xZR09OU0c2KjcmNyQkIjBXL2cqKioqKnlFISM7JCIwclwqKSoqKioqeUUhIzs3JCQiMFcvZyoqKioqeUUhIzskITBIXTUrKyF6RSEjOzckJCEwYyYqUisrIXpFISM7JCEwSF01KyshekUhIzs3JCQhMGMmKlIrKyF6RSEjOyQiMHJcKikqKioqKnlFISM7NyY3JCQhMCdwVVw5d25FISM6JCEwKm8pXDpIMSlSISM6NyQkITAncFVcOXduRSEjOiQhMCpvKVw6SGteJSEjOjckJCEwJ3BVXDljLkshIzokITAqbylcOkhrXiUhIzo3JCQhMCdwVVw5Yy5LISM6JCEwKm8pXDpIMSlSISM6NyY3JCQiMCYzJGZXaE4/JCEjOiQhMGk3dzpIMSlSISM6NyQkIjAmMyRmV2hOPyQhIzokITBpN3c6SGteJSEjOjckJCIwJjMkZldoeG0jISM6JCEwaTd3OkhrXiUhIzo3JCQiMCYzJGZXaHhtIyEjOiQhMGk3dzpIMSlSISM6NyY3JCQiMDxcMisreiwmISM6JCIvSHVLUHAhKj0hIzk3JCQiMDxcMisreiwmISM6JCIvSHVLUCpbTiIhIzk3JCQiMDxcMisrQFslISM6JCIvSHVLUCpbTiIhIzk3JCQiMDxcMisrQFslISM6JCIvSHVLUHAhKj0hIzk3JjckJCIlekUhIiYkIjBRKFFVM1A+YiEjOjckJCIlekUhIiYkIjBRKFFVM2QkKVwhIzo3JCQhJXpFISImJCIwUShRVTNkJClcISM6NyQkISV6RSEiJiQiMFEoUVUzUD5iISM6NyY3JCQhMCQzRCoqKio0I1slISM6JCIwM1dwdCRwISo9ISM6NyQkITAkM0QqKioqNCNbJSEjOiQiMDNXcHQkKltOIiEjOjckJCEwJDNEKioqKip5LCYhIzokIjAzV3B0JCpbTiIhIzo3JCQhMCQzRCoqKioqeSwmISM6JCIwM1dwdCRwISo9ISM6LSUmQ09MT1JHNjUlJFJHQkckIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiIkIiM1ISIiJCIjNSEiIiQiIiMhIiItJSZTVFlMRUc2IyUsUEFUQ0hOT0dSSURHLSUlVEVYVEc2JTckJCEwIylvQ3ljYipSISNEJCEvI3pgRCVIXTUhI0MtJSlfVFlQRVNFVEc2Iy1JI21uRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjZRIjE2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzEyNiIvJSVib2xkR1EldHJ1ZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSVib2xkNiIvJStmb250d2VpZ2h0R1ElYm9sZDYiLSUlRk9OVEc2JSUqSEVMVkVUSUNBRyUlQk9MREciIzctJSVURVhURzYlNyQkITAncFVcOW1OSCEjOiQhMCpvKVw6SCZbVSEjOi0lKV9UWVBFU0VURzYjLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NlEiMjYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSV0cnVlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJWJvbGQ2Ii8lK2ZvbnR3ZWlnaHRHUSVib2xkNiItJSVGT05URzYlJSpIRUxWRVRJQ0FHJSVCT0xERyIjNy0lJVRFWFRHNiU3JCQiMCYzJGZXaGMkSCEjOiQhMGk3dzpIJltVISM6LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USIzNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCIwPFwyKysrdiUhIzokIi9IdUtQekE7ISM5LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USI0NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCIiISEiIiQiMFEoUVUzWl5fISM6LSUpX1RZUEVTRVRHNiMtSSNtbkc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY2USI1NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMjYiLyUlYm9sZEdRJXRydWU2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1ElYm9sZDYiLyUrZm9udHdlaWdodEdRJWJvbGQ2Ii0lJUZPTlRHNiUlKkhFTFZFVElDQUclJUJPTERHIiM3LSUlVEVYVEc2JTckJCEwJDNEKioqKioqXFohIzokIjAzV3B0JHpBOyEjOi0lKV9UWVBFU0VURzYjLUkjbW5HNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NlEiNjYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTI2Ii8lJWJvbGRHUSV0cnVlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJWJvbGQ2Ii8lK2ZvbnR3ZWlnaHRHUSVib2xkNiItJSVGT05URzYlJSpIRUxWRVRJQ0FHJSVCT0xERyIjNy0lKVBPTFlHT05TRzYmNyQ3JCQhMCdwVVw5bU5IISM6JCEwKm8pXDpIJltVISM6NyQkITAjKW9DeWNiKlIhI0QkIS8jemBEJUhdNSEjQy0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUpUE9MWUdPTlNHNiY3JDckJCIwJjMkZldoYyRIISM6JCEwaTd3OkgmW1UhIzo3JCQhMCMpb0N5Y2IqUiEjRCQhLyN6YEQlSF01ISNDLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkIjAmMyRmV2hjJEghIzokITBpN3c6SCZbVSEjOjckJCEwJ3BVXDltTkghIzokITAqbylcOkgmW1UhIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiMDxcMisrK3YlISM6JCIvSHVLUHpBOyEjOTckJCEwIylvQ3ljYipSISNEJCEvI3pgRCVIXTUhI0MtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiMDxcMisrK3YlISM6JCIvSHVLUHpBOyEjOTckJCIwJjMkZldoYyRIISM6JCEwaTd3OkgmW1UhIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiIiEhIiIkIjBRKFFVM1peXyEjOjckJCEwIylvQ3ljYipSISNEJCEvI3pgRCVIXTUhI0MtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQiIiEhIiIkIjBRKFFVM1peXyEjOjckJCIwPFwyKysrdiUhIzokIi9IdUtQekE7ISM5LSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSpUSElDS05FU1NHNiMiIiMtJSZTVFlMRUc2IyUlTElORUctJSlQT0xZR09OU0c2JjckNyQkITAkM0QqKioqKipcWiEjOiQiMDNXcHQkekE7ISM6NyQkITAjKW9DeWNiKlIhI0QkIS8jemBEJUhdNSEjQy0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUpUE9MWUdPTlNHNiY3JDckJCEwJDNEKioqKioqXFohIzokIjAzV3B0JHpBOyEjOjckJCEwJ3BVXDltTkghIzokITAqbylcOkgmW1UhIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lKlRISUNLTkVTU0c2IyIiIy0lJlNUWUxFRzYjJSVMSU5FRy0lKVBPTFlHT05TRzYmNyQ3JCQhMCQzRCoqKioqKlxaISM6JCIwM1dwdCR6QTshIzo3JCQiIiEhIiIkIjBRKFFVM1peXyEjOi0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiEhIiIkIiIhISIiLSUqVEhJQ0tORVNTRzYjIiIjLSUmU1RZTEVHNiMlJUxJTkVHLSUlVEVYVEc2JzckJCEwWE52JmUwInAiISM6JCEwUCc9UD5zKGYjISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSIxNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQkVMT1dHLSUlVEVYVEc2JzckJCIvKW9NP0dxeCIhIzkkITBWSnFdOyRRRCEjOi0lKV9UWVBFU0VURzYjLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1LUkjbXNHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2I1EiMjYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTE2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii0lJUZPTlRHNiQlKkhFTFZFVElDQUciIzYlK0FMSUdOUklHSFRHJStBTElHTkFCT1ZFRy0lJVRFWFRHNic3JCQiMGUjcF47a3hHISM6JCIwKD4+bHJuRiopISM7LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSIzNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQkVMT1dHLSUlVEVYVEc2JzckJCIweDxTKSoqKipcbSEjPCQiMFUhUjBEKTM6JCEjOi0lKV9UWVBFU0VURzYjLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1LUkjbXNHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2I1EiNDYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTE2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii0lJUZPTlRHNiQlKkhFTFZFVElDQUciIzYlK0FMSUdOUklHSFRHJStBTElHTkJFTE9XRy0lJVRFWFRHNic3JCQhMHkjXDV1JlElRyEjOiQiMENfIlIiZmwiKiohIzstJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjU2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05BQk9WRUctJSVURVhURzYnNyQkIjBEeHkoR0tyZSEjOyQhMExpbDpINT8lISM6LSUpX1RZUEVTRVRHNiMtSSVtcm93RzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjUtSSNtc0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjYjUSI2NiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQUJPVkVHLSUlVEVYVEc2JzckJCEwRjwxYjZoKyUhIzokITBEJXBhI2U3PyghIzstJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIzEwNiIvJSdmYW1pbHlHUSpIZWx2ZXRpY2E2Ii8lJXNpemVHUSMxMTYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSZmYWxzZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ25vcm1hbDYiLSUlRk9OVEc2JCUqSEVMVkVUSUNBRyIjNiUrQUxJR05SSUdIVEclK0FMSUdOQUJPVkVHLSUlVEVYVEc2JzckJCIvJW96P2BmNSUhIzkkITAkKlEzKWZ5NHYhIzstJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjc2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05CRUxPV0ctJSVURVhURzYnNyQkIi1GeVRgNj4hIzckIjB3KlxMJSk0OlEhIzotJSlfVFlQRVNFVEc2Iy1JJW1yb3dHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2NS1JI21zRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNiNRIjg2Ii8lJ2ZhbWlseUdRKkhlbHZldGljYTYiLyUlc2l6ZUdRIzExNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJmZhbHNlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1Enbm9ybWFsNiItJSVGT05URzYkJSpIRUxWRVRJQ0FHIiM2JStBTElHTlJJR0hURyUrQUxJR05BQk9WRUctJSVURVhURzYnNyQkIS87cik+JzQpeiMhIzkkIjBfTTxpQGorJCEjOi0lKV9UWVBFU0VURzYjLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1LUkjbXNHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHNiI2I1EiOTYiLyUnZmFtaWx5R1EqSGVsdmV0aWNhNiIvJSVzaXplR1EjMTE2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EmZmFsc2U2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdub3JtYWw2Ii0lJUZPTlRHNiQlKkhFTFZFVElDQUciIzYlK0FMSUdOUklHSFRHJStBTElHTkJFTE9XRy0mJSZfQVhJU0c2IyIiIjYnLSUrX0dSSURMSU5FU0c2Jy0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIhLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0lKV9WSVNJQkxFRzYjIiIhLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSYlJl9BWElTRzYjIiIjNictJStfR1JJRExJTkVTRzYnLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiEtJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSUpX1ZJU0lCTEVHNiMiIiEtJSZDT0xPUkc2JiUkUkdCRyQiIiEhIiIkIiIhISIiJCIiISEiIi0lKkxJTkVTVFlMRUc2IyIiIS0lKlRISUNLTkVTU0c2IyIiIS0lLVRSQU5TUEFSRU5DWUc2IyQiIiEhIiItJSpBWEVTU1RZTEVHNiMlJU5PTkVHLSUoU0NBTElOR0c2IyUsQ09OU1RSQUlORURHLSUpX1ZJU0lCTEVHNiMiIiItJSVST09URzYnLSUpQk9VTkRTX1hHNiMkIiNdISIiLSUpQk9VTkRTX1lHNiMkIiNdISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlK1IhIiItJS5CT1VORFNfSEVJR0hURzYjJCIlK1IhIiItJSlDSElMRFJFTkc2Ii0lK0FOTk9UQVRJT05HNictJSlCT1VORFNfWEc2IyQiIiEhIiItJSlCT1VORFNfWUc2IyQiIiEhIiItJS1CT1VORFNfV0lEVEhHNiMkIiUrUyEiIi0lLkJPVU5EU19IRUlHSFRHNiMkIiUrUyEiIi0lKUNISUxEUkVORzYiRzYi Integrate all steps at once without intermediate results: QyQtSSloeXBlckludEc2IjYkKiRJIlBHRiUhIiM3KyZJInhHRiU2IyIiIiZGLDYjIiIjJkYsNiMiIicmRiw2IyIiKCZGLDYjIiM1JkYsNiMiIiQmRiw2IyIiKSZGLDYjIiIqJkYsNiMiIiVGLg== Integrating variable x[1] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[1] in .56e-1 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 1 terms Warning, not checking divergences finished integration of variable x[2] in .273 seconds, produced 2 terms Integrating variable x[6] from 0 to infinity, integrand has 2 terms Warning, not checking divergences finished integration of variable x[6] in .163 seconds, produced 4 terms Integrating variable x[7] from 0 to infinity, integrand has 4 terms Warning, not checking divergences finished integration of variable x[7] in .53e-1 seconds, produced 10 terms Integrating variable x[10] from 0 to infinity, integrand has 10 terms Warning, not checking divergences finished integration of variable x[10] in .106 seconds, produced 37 terms Integrating variable x[3] from 0 to infinity, integrand has 37 terms Warning, not checking divergences finished integration of variable x[3] in .562 seconds, produced 86 terms Integrating variable x[8] from 0 to infinity, integrand has 86 terms Warning, not checking divergences finished integration of variable x[8] in .850 seconds, produced 289 terms Integrating variable x[9] from 0 to infinity, integrand has 289 terms Warning, not checking divergences finished integration of variable x[9] in 18.904 seconds, produced 348 terms Integrating variable x[4] from 0 to infinity, integrand has 348 terms Warning, not checking divergences finished integration of variable x[4] in 5.469 seconds, produced 12 terms Ny43JCwkKiYmSSJ4RzYiNiMiIiYhIiImSSV6ZXRhR0YoNiMiIiNGLyMiIigiIzU3IzclIiIhRjUsJEYmRis3JCwkKiZGJkYrJkYtRikiIiIhIz83IzckRjVGNjckLCQqJEYmRishIiU3JDclRjZGNkY2NyZGNUY1RjVGNjckKiZGJkYrRixGOzckNyRGNkY2RjQ3JCwkRkEhIiM3IzcpRjVGNUY2RjVGNUY1RjY3JCwkRkFGPDckNyNGNjcoRjVGNUY1RjVGNUY2NyQsJEZHRkI3JEZSRkU3JCwkRkFGMjckRkk3J0Y1RjVGNUY1RjY3JCwkRkEiI043IzcpRjVGNUY1RjVGNUY1RjY3JCwkRkdGMjcjRlo3JCwkRkFGLzcjNylGNUY1RjVGNkY1RjVGNjckRkE3JEY0NyZGNkY2RjZGNg== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVEvZmlicmF0aW9uQmFzaXNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2JS1GLDYlUSVldmFsRidGL0YyLUY2NiQtRiM2Ki1GLDYlUSIlRidGL0YyLUkjbW9HRiQ2LVEiLEYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZMLyUqc3ltbWV0cmljR0ZMLyUobGFyZ2VvcEdGTC8lLm1vdmFibGVsaW1pdHNHRkwvJSdhY2NlbnRHRkwvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GRTYtUSJ+RidGSEZKL0ZORkxGT0ZRRlNGVUZXRlkvRmduRmVuLUYsNiVRInhGJ0YvRjItRjY2Ji1GIzYkLUkjbW5HRiQ2JFEiNUYnRkhGSEZILyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUZFNi1RIj1GJ0ZIRkpGXG9GT0ZRRlNGVUZXL0ZaUSwwLjI3Nzc3NzhlbUYnL0ZnbkZjcC1GZm82JFEiMUYnRkhGSEZIRkhGSC1GRTYtUSI7RidGSEZKRk1GT0ZRRlNGVUZXRllGZHAvJStleGVjdXRhYmxlR0ZMRkg= LCQmSSV6ZXRhRzYiNiMiIigiI3E=