QyRBUS1IeXBlckludC5tcGw2IiEiIg== HyperInt, version 1.0, Copyright (C) 2014 Erik Panzer Please report any errors or suggestions to panzer@mathematik.hu-berlin.de Loading periods from /home/erikpanzer/HyperInt/Maple/periodLookups.m
<Text-field style="Heading 1" layout="Heading 1">Perlenketten rational</Text-field> QyY+SS9idWJibGVSYXRpb25hbEc2ImYqNiNJIm5HRiU2JkkkcmVzR0YlSSV2YXJzR0YlSSJTR0YlSSJwR0YlRiVGJUMnPjglPCMtSSRzZXFHJSpwcm90ZWN0ZWRHNiQmSSJ4R0YlNiNJImlHRiUvRjk7IiIiOSQ+OCctSSRtdWxHRjQ2JEY3LUkjaW5HRjQ2JEY3RjA+OCQ3IzckKiYpISIiLCZGPUY8RjxGPEY8Rj9GTDciPyY4Ji0mSSljb21iaW5hdEdGJTYjSSlwb3dlcnNldEdGJTYjRjBJJXRydWVHRjRDJEAkNS9GUDwiL0ZQRjBcPkZHNyQtSSNvcEdGNDYjRkctSSVldmFsR0Y0NiQ3JCooKUZMLUklbm9wc0dGNDYjRlBGPEY/RkxJInpHRiVGTDcjNyMsJkZMRjxGZ29GTC9GZ28qJi1JJGFkZEdGNDYkRjctRkQ2JEY3LUkmbWludXNHRjQ2JEYwRlBGPC1GXnA2JEY3LUZENiRGN0ZQRkxGR0YlRiVGJUZMPkkzdGVzdEJ1YmJsZVJhdGlvbmFsR0YlZipGJ0YlRiVGJS1JJmV2YWxiR0Y0NiMvLUkvZmlicmF0aW9uQmFzaXNHRiU2Iy1JKWh5cGVySW50R0YlNiQtRl9vNiQtRiQ2I0Y9LyZGNzYjRjxGPDcjLUYzNiRGNi9GOTsiIiNGPS1JKmZhY3RvcmlhbEdGNEZpcUYlRiVGJUZM QyQ/KEkibkc2IiIiIyIiIiIiJ0kldHJ1ZUclKnByb3RlY3RlZEdAJC1JJG5vdEdGKjYjLUkzdGVzdEJ1YmJsZVJhdGlvbmFsR0YlNiNGJFk2JFFAVGVzdH5mYWlsZWQ6fnJhdGlvbmFsfmJ1YmJsZX4lMUYlRiQhIiI= Integrating variable x[2] from 0 to infinity, integrand has 3 terms checking divergences after integration of x[2] finished integration of variable x[2] in .62e-1 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 7 terms checking divergences after integration of x[2] finished integration of variable x[2] in .68e-1 seconds, produced 8 terms Integrating variable x[3] from 0 to infinity, integrand has 8 terms checking divergences after integration of x[3] finished integration of variable x[3] in .43e-1 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 15 terms checking divergences after integration of x[2] finished integration of variable x[2] in .172 seconds, produced 24 terms Integrating variable x[3] from 0 to infinity, integrand has 24 terms checking divergences after integration of x[3] finished integration of variable x[3] in .138 seconds, produced 23 terms Integrating variable x[4] from 0 to infinity, integrand has 23 terms checking divergences after integration of x[4] finished integration of variable x[4] in .116 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 31 terms checking divergences after integration of x[2] finished integration of variable x[2] in .649 seconds, produced 56 terms Integrating variable x[3] from 0 to infinity, integrand has 56 terms checking divergences after integration of x[3] finished integration of variable x[3] in .887 seconds, produced 89 terms Integrating variable x[4] from 0 to infinity, integrand has 89 terms checking divergences after integration of x[4] finished integration of variable x[4] in .828 seconds, produced 55 terms Integrating variable x[5] from 0 to infinity, integrand has 55 terms checking divergences after integration of x[5] finished integration of variable x[5] in .366 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 63 terms checking divergences after integration of x[2] finished integration of variable x[2] in 6.608 seconds, produced 120 terms Integrating variable x[3] from 0 to infinity, integrand has 120 terms checking divergences after integration of x[3] finished integration of variable x[3] in 93.333 seconds, produced 221 terms Integrating variable x[4] from 0 to infinity, integrand has 221 terms checking divergences after integration of x[4] finished integration of variable x[4] in 3.057 seconds, produced 249 terms Integrating variable x[5] from 0 to infinity, integrand has 249 terms checking divergences after integration of x[5] finished integration of variable x[5] in 3.076 seconds, produced 127 terms Integrating variable x[6] from 0 to infinity, integrand has 127 terms checking divergences after integration of x[6] finished integration of variable x[6] in 1.938 seconds, produced 1 terms
<Text-field style="Heading 1" layout="Heading 1">Perlenketten irrational</Text-field> QyY+STFidWJibGVJcnJhdGlvbmFsRzYiZio2JEkibkdGJUkibUdGJTYuSSRyZXNHRiVJInBHRiVJI1hYR0YlSSNZWUdGJUkiWEdGJUkiWUdGJUkjWGNHRiVJI1ljR0YlSSZ4dmFyc0dGJUkmeXZhcnNHRiVJI3hzR0YlSSN5c0dGJUYlRiVDKj44LDwjLUkkc2VxRyUqcHJvdGVjdGVkRzYkJkkieEdGJTYjSSJpR0YlL0ZCOyIiIjkkPjgtPCMtRjw2JCZJInlHRiVGQS9GQjtGRTklPjgmLUkkYWRkR0Y9NiRGQC1JI2luR0Y9NiRGQEY5PjgnLUZUNiRGTS1GVzYkRk1GSD44JS1JJG11bEdGPTYkRkAtRlc2JEZALUkmdW5pb25HRj02JEY5Rkg+OCQ3IzckKiYpISIiLChGRkZFRlBGRUZFRkVGRUZqbkZpbzciPyY4Li0mSSljb21iaW5hdEc2JEY9SShfc3lzbGliR0YlNiNJKXBvd2Vyc2V0R0YlNiNGOUkldHJ1ZUdGPT8mOC8tRl9wNiNGSEZmcEMqQCQ1Ly1GYW82JEZdcEZocDwiL0ZfcUZgb1w+OCgtRlQ2JEZALUZXNiRGQEZdcD44KiwmRlJGRUZlcUZpbz44KS1GVDYkRk0tRlc2JEZNRmhwPjgrLCZGWkZFRl5yRmlvQCQ0L0ZdcEY5PkZkbzckLUkjb3BHRj02I0ZkbzckKiopRmlvLCYtSSVub3BzR0Y9NiNGXXBGRS1GY3M2I0ZocEZFRkUsJkZlcUZFRl5yRkVGRUZqbkZpb0ZbckZpbzcjNyMsJCooLCZGUkZFRl5yRkVGRSwmRltyRkVGZHJGRUZFLCYqJkZbckZFRmRyRkVGRSomRmdzRkVGXXRGRUZFRmlvRmlvQCQ0L0ZocEZIPkZkbzckRltzNyQqKkZgc0ZFRmdzRkVGam5GaW9GZHJGaW83IzcjLCQqKCwmRmVxRkVGWkZFRkVGXXRGRUZedEZpb0Zpb0AkNDVGaHJGY3Q+RmRvNyRGW3M3JComRmBzRkVGam5GaW83IzcjLCQqLEZcdEZFRl10RkVGXHVGRUZedEZpbywmRlJGRUZaRkVGaW9GaW9GZG9GJUYlRiVGaW8+STV0ZXN0QnViYmxlSXJyYXRpb25hbEdGJWYqNiVGKEYpSSlzaG91bGRiZUdGJTYkSSV2YXJzR0YlRi9GJUYlQyg+RmpuLUYkNiRGRkZQQCUyIiIhRkY+RmRvNyQtRlxzNiM3Iy1GPDYkRj8vRkI7IiIjRkYtRlxzNiM3I0ZKPkZkbzcjLUY8NiRGTC9GQjtGYHdGUD5Gam4tSSloeXBlckludEdGJTYkRmpuRmRvQCVGZXY+RmpuLUklZXZhbEdGPTYkRmpuLyZGQDYjRkVGRT5Gam4tRmF4NiRGam4vJkZNRmV4RkUtSSlzaW1wbGlmeUdGYXA2Iy1JL2ZpYnJhdGlvbkJhc2lzR0YlNiNGam5AJDBJIiVHRiU5Jlk2J1Fjb1Rlc3R+ZmFpbGVkOn5pcnJhdGlvbmFsfkJ1YmJsZX4oJTEsJTIpfmdhdmV+JTN+aW5zdGVhZH5vZn50aGV+Y29ycmVjdH4lNEYlRkZGUEZjeUZkeUYlRiVGJUZpbw== QzQtSTV0ZXN0QnViYmxlSXJyYXRpb25hbEc2IjYlIiIjIiIhRiciIiItRiQ2JSIiJkYoIiQ/IkYpLUYkNiVGKUYpRidGKS1GJDYlRilGJywmIiInRikmSSV6ZXRhR0YlNiMiIiQhIiVGKS1GJDYlRikiIiUsKEYtRilGNCEjWyZGNTYjRixGPUYpLUYkNiVGJ0Y3LChGLUYpRjQhI3NGPkY9RiktRiQ2JUYpRiwsKCIkPyhGKUY+ISRTI0Y0RkhGKS1GJDYlRidGOywqKiRGNEYnIiMnKkY0ISQlUUY+ISQpR0ZHRilGKS1GJDYlRjdGNywqRkwiJFciRjQhJEslRj5GT0ZHRilGKQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2JS1GLDYlUTV0ZXN0QnViYmxlSXJyYXRpb25hbEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYoLUkjbW5HRiQ2JFEiNUYnL0Y4USdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0ZDLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y2LyUpc3RyZXRjaHlHRksvJSpzeW1tZXRyaWNHRksvJShsYXJnZW9wR0ZLLyUubW92YWJsZWxpbWl0c0dGSy8lJ2FjY2VudEdGSy8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZANiRRIjBGJ0ZDRkUtRkA2JFEkMTIwRidGQ0ZDRkNGQ0YrLyUrZXhlY3V0YWJsZUdGS0ZD LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2JS1GLDYlUTV0ZXN0QnViYmxlSXJyYXRpb25hbEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYoLUkjbW5HRiQ2JFEiMUYnL0Y4USdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0ZDLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y2LyUpc3RyZXRjaHlHRksvJSpzeW1tZXRyaWNHRksvJShsYXJnZW9wR0ZLLyUubW92YWJsZWxpbWl0c0dGSy8lJ2FjY2VudEdGSy8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnRj9GRS1GQDYkUSIyRidGQ0ZDRkNGQ0YrLyUrZXhlY3V0YWJsZUdGS0ZD LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2I1EhRictRiM2JS1GLDYlUTV0ZXN0QnViYmxlSXJyYXRpb25hbEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JC1GIzYuLUkjbW5HRiQ2JFEiMUYnL0Y4USdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0ZDLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y2LyUpc3RyZXRjaHlHRksvJSpzeW1tZXRyaWNHRksvJShsYXJnZW9wR0ZLLyUubW92YWJsZWxpbWl0c0dGSy8lJ2FjY2VudEdGSy8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUZANiRRIjJGJ0ZDRkUtRkY2LVEifkYnRkNGSS9GTUZLRk5GUEZSRlRGVkZYL0ZmbkZaLUZANiRRIjZGJ0ZDLUZGNi1RKCZtaW51cztGJ0ZDRklGXm9GTkZQRlJGVEZWL0ZZUSwwLjIyMjIyMjJlbUYnL0ZmbkZnby1GQDYkUSI0RidGQy1GRjYtUScmc2RvdDtGJ0ZDRklGXm9GTkZQRlJGVEZWRlhGX28tRiw2JVElemV0YUYnL0Y1RktGQy1GOzYmLUYjNiQtRkA2JFEiM0YnRkNGQ0ZDLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRkNGQ0ZDRisvJStleGVjdXRhYmxlR0ZLRkM= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVE1dGVzdEJ1YmJsZUlycmF0aW9uYWxGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Mi1JI21uR0YkNiRRIjFGJy9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSIsRidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYkUSI0RidGPkZALUY7NiRRJDEyMEYnRj4tRkE2LVEoJm1pbnVzO0YnRj5GRC9GSEZGRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0Zeby1GOzYkUSM0OEYnRj4tRkE2LVEnJnNkb3Q7RidGPkZERlxvRklGS0ZNRk9GUUZTL0ZXRlUtRiw2JVElemV0YUYnL0YwRkZGPi1GNjYmLUYjNiQtRjs2JFEiM0YnRj5GPkY+LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmluRmBvRmNvRmdvLUY2NiYtRiM2JC1GOzYkUSI1RidGPkY+Rj5GYnBGZXBGPkY+LUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGRkY+ LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVE1dGVzdEJ1YmJsZUlycmF0aW9uYWxGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Mi1JI21uR0YkNiRRIjJGJy9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSIsRidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYkUSIzRidGPkZALUY7NiRRJDEyMEYnRj4tRkE2LVEoJm1pbnVzO0YnRj5GRC9GSEZGRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0Zeby1GOzYkUSM3MkYnRj4tRkE2LVEnJnNkb3Q7RidGPkZERlxvRklGS0ZNRk9GUUZTL0ZXRlUtRiw2JVElemV0YUYnL0YwRkZGPi1GNjYmLUYjNiRGWUY+Rj4vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGaW4tRjs2JFEjNDhGJ0Y+RmNvRmdvLUY2NiYtRiM2JC1GOzYkUSI1RidGPkY+Rj5GX3BGYnBGPkY+LUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGRkY+ LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVE1dGVzdEJ1YmJsZUlycmF0aW9uYWxGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Mi1JI21uR0YkNiRRIjFGJy9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSIsRidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYkUSI1RidGPkZALUY7NiRRJDcyMEYnRj4tRkE2LVEoJm1pbnVzO0YnRj5GRC9GSEZGRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0Zeby1GOzYkUSQyNDBGJ0Y+LUZBNi1RJyZzZG90O0YnRj5GREZcb0ZJRktGTUZPRlFGUy9GV0ZVLUYsNiVRJXpldGFGJy9GMEZGRj4tRjY2Ji1GIzYkRllGPkY+LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmluRmBvRmNvRmdvLUY2NiYtRiM2JC1GOzYkUSIzRidGPkY+Rj5GX3BGYnBGPkY+LUYsNiNRIUYnLyUrZXhlY3V0YWJsZUdGRkY+ LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVE1dGVzdEJ1YmJsZUlycmF0aW9uYWxGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2NC1JI21uR0YkNiRRIjJGJy9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSIsRidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GOzYkUSI0RidGPkZALUY7NiRRJDcyMEYnRj4tRkE2LVEoJm1pbnVzO0YnRj5GRC9GSEZGRklGS0ZNRk9GUS9GVFEsMC4yMjIyMjIyZW1GJy9GV0Zeby1GOzYkUSQzODRGJ0Y+LUZBNi1RJyZzZG90O0YnRj5GREZcb0ZJRktGTUZPRlFGUy9GV0ZVLUklbXN1YkdGJDYlLUYsNiVRJXpldGFGJy9GMEZGRj4tRiM2Ji1GOzYkUSIzRidGPi8lK2V4ZWN1dGFibGVHRkYvJTBmb250X3N0eWxlX25hbWVHUSgyRH5NYXRoRidGPi8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRmluLUY7NiRRJDI4OEYnRj5GY28tRmhvNiVGam8tRiM2Ji1GOzYkUSI1RidGPkZjcEZlcEY+RmhwLUZBNi1RIitGJ0Y+RkRGXG9GSUZLRk1GT0ZRRl1vRl9vLUY7NiRRIzk2RidGPkZjby1JKG1zdWJzdXBHRiQ2J0Zqb0ZecEY6LyUxc3VwZXJzY3JpcHRzaGlmdEdGanBGaHBGPkY+LUYsNiNRIUYnRmNwRj4= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2JVE1dGVzdEJ1YmJsZUlycmF0aW9uYWxGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSShtZmVuY2VkR0YkNiQtRiM2Ny1JI21uR0YkNiRRIjNGJy9GM1Enbm9ybWFsRictSSNtb0dGJDYtUSIsRidGPi8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0ZGLyUqc3ltbWV0cmljR0ZGLyUobGFyZ2VvcEdGRi8lLm1vdmFibGVsaW1pdHNHRkYvJSdhY2NlbnRHRkYvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJ0Y6RkAtRjs2JFEkNzIwRidGPi1GQTYtUSgmbWludXM7RidGPkZEL0ZIRkZGSUZLRk1GT0ZRL0ZUUSwwLjIyMjIyMjJlbUYnL0ZXRltvLUY7NiRRJDQzMkYnRj4tRkE2LVEnJnNkb3Q7RidGPkZERmluRklGS0ZNRk9GUUZTL0ZXRlUtRiw2JVElemV0YUYnL0YwRkZGPi1GNjYmLUYjNiRGOkY+Rj4vJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGZm4tRjs2JFEkMjg4RidGPkZgb0Zkby1GNjYmLUYjNiQtRjs2JFEiNUYnRj5GPkY+RlxwRl9wLUZBNi1RIitGJ0Y+RkRGaW5GSUZLRk1GT0ZRRmpuRlxvLUY7NiRRJDE0NEYnRj5GYG9GZG8tSSVtc3VwR0YkNiVGaG8tRiM2JS1GOzYkUSIyRidGPkYvRjIvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRj5GPi1GLDYjUSFGJy8lK2V4ZWN1dGFibGVHRkZGPg== Integrating variable x[2] from 0 to infinity, integrand has 3 terms checking divergences after integration of x[2] finished integration of variable x[2] in .31e-1 seconds, produced 1 terms Integrating variable x[2] from 0 to infinity, integrand has 31 terms checking divergences after integration of x[2] finished integration of variable x[2] in .519 seconds, produced 58 terms Integrating variable x[3] from 0 to infinity, integrand has 58 terms checking divergences after integration of x[3] finished integration of variable x[3] in .814 seconds, produced 101 terms Integrating variable x[4] from 0 to infinity, integrand has 101 terms checking divergences after integration of x[4] finished integration of variable x[4] in 1.310 seconds, produced 99 terms Integrating variable x[5] from 0 to infinity, integrand has 99 terms checking divergences after integration of x[5] finished integration of variable x[5] in .556 seconds, produced 1 terms Integrating variable y[1] from 0 to infinity, integrand has 3 terms checking divergences after integration of y[1] finished integration of variable y[1] in .31e-1 seconds, produced 1 terms Integrating variable y[1] from 0 to infinity, integrand has 11 terms checking divergences after integration of y[1] finished integration of variable y[1] in .101 seconds, produced 11 terms Integrating variable y[2] from 0 to infinity, integrand has 11 terms checking divergences after integration of y[2] finished integration of variable y[2] in .78e-1 seconds, produced 6 terms Integrating variable y[1] from 0 to infinity, integrand has 59 terms checking divergences after integration of y[1] finished integration of variable y[1] in .651 seconds, produced 71 terms Integrating variable y[2] from 0 to infinity, integrand has 71 terms checking divergences after integration of y[2] finished integration of variable y[2] in 1.485 seconds, produced 169 terms Integrating variable y[3] from 0 to infinity, integrand has 169 terms checking divergences after integration of y[3] finished integration of variable y[3] in 2.320 seconds, produced 176 terms Integrating variable y[4] from 0 to infinity, integrand has 176 terms checking divergences after integration of y[4] finished integration of variable y[4] in 3.566 seconds, produced 44 terms Integrating variable x[2] from 0 to infinity, integrand has 71 terms checking divergences after integration of x[2] finished integration of variable x[2] in 1.287 seconds, produced 74 terms Integrating variable y[1] from 0 to infinity, integrand has 74 terms checking divergences after integration of y[1] finished integration of variable y[1] in 1.208 seconds, produced 215 terms Integrating variable y[2] from 0 to infinity, integrand has 215 terms checking divergences after integration of y[2] finished integration of variable y[2] in 3.652 seconds, produced 282 terms Integrating variable y[3] from 0 to infinity, integrand has 282 terms checking divergences after integration of y[3] finished integration of variable y[3] in 4.699 seconds, produced 49 terms Integrating variable y[1] from 0 to infinity, integrand has 123 terms checking divergences after integration of y[1] finished integration of variable y[1] in 1.793 seconds, produced 151 terms Integrating variable y[2] from 0 to infinity, integrand has 151 terms checking divergences after integration of y[2] finished integration of variable y[2] in 5.516 seconds, produced 411 terms Integrating variable y[3] from 0 to infinity, integrand has 411 terms checking divergences after integration of y[3] finished integration of variable y[3] in 10.255 seconds, produced 748 terms Integrating variable y[4] from 0 to infinity, integrand has 748 terms checking divergences after integration of y[4] finished integration of variable y[4] in 29.169 seconds, produced 669 terms Integrating variable y[5] from 0 to infinity, integrand has 669 terms checking divergences after integration of y[5] finished integration of variable y[5] in 26.197 seconds, produced 64 terms Integrating variable x[2] from 0 to infinity, integrand has 151 terms checking divergences after integration of x[2] finished integration of variable x[2] in 2.109 seconds, produced 158 terms Integrating variable y[1] from 0 to infinity, integrand has 158 terms checking divergences after integration of y[1] finished integration of variable y[1] in 7.285 seconds, produced 516 terms Integrating variable y[2] from 0 to infinity, integrand has 516 terms checking divergences after integration of y[2] finished integration of variable y[2] in 16.275 seconds, produced 1251 terms Integrating variable y[3] from 0 to infinity, integrand has 1251 terms checking divergences after integration of y[3] finished integration of variable y[3] in 62.992 seconds, produced 1170 terms Integrating variable y[4] from 0 to infinity, integrand has 1170 terms checking divergences after integration of y[4] finished integration of variable y[4] in 50.358 seconds, produced 119 terms Integrating variable x[2] from 0 to infinity, integrand has 159 terms checking divergences after integration of x[2] finished integration of variable x[2] in 1.824 seconds, produced 190 terms Integrating variable x[3] from 0 to infinity, integrand has 190 terms checking divergences after integration of x[3] finished integration of variable x[3] in 4.732 seconds, produced 501 terms Integrating variable y[1] from 0 to infinity, integrand has 501 terms checking divergences after integration of y[1] finished integration of variable y[1] in 15.375 seconds, produced 1294 terms Integrating variable y[2] from 0 to infinity, integrand has 1294 terms checking divergences after integration of y[2] finished integration of variable y[2] in 71.789 seconds, produced 1479 terms Integrating variable y[3] from 0 to infinity, integrand has 1479 terms checking divergences after integration of y[3] finished integration of variable y[3] in 57.940 seconds, produced 115 terms LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=