StackSync: Architecturing the Personal Cloud to Be in
Sync

Pedro Garcia Lépez, Marc Sanchez Artigas, Cristian Cotes, Guillermo Guerrero,
Adrian Moreno, and Sergi Toda

Universitat Rovira i Virgili,
Tarragona, Spain
{pedro.garcia, marc.sanchez, cristian.cotes, guillermo.guerrero,
adrian.moreno, sergi.toda}@urv.cat

Abstract. In the last few years, we have experienced a rush of online storage
services with a complete set of tools for file syncing, sharing and collaboration.
Unfortunately, commercial Personal Cloud solutions, e.g. Dropbox, Box, Sky-
Drive and the likes, are closed and proprietary, which supposes a serious impedi-
ment to progress research, also forcing people to be stranded into locked systems.
In this context, we argue about the necessity for an open-source Personal Cloud
framework that provides scalable file synchronization and sharing, and that al-
lows anyone to easily implement and evaluate new ideas. This framework, called
StackSync, is modular and extensible, and contains all the software pieces to
run a basic Personal Cloud, namely support for metadata management, efficient
notification, deduplication, and data storage, among others. Our reference im-
plementation in Java is a push-based architecture built around an asynchronous
high-performance message broker (RabbitMQ). We demonstrate the feasibility
of our approach using our standard benchmarking test suite.

Keywords: Personal Cloud, synchronization, storage, messaging middleware

1 Introduction

In the last few years, we have witnessed a clear shift from Personal Computers and local
storage to multi-device access and cloud storage services. The Personal Computer (PC)
paradigm is slowly waning as traditional PCs are being outnumbered by other devices
like smartphones and tablets. This means that in the next years users will access their
digital lives in the cloud from a variety of heterogeneous devices and platforms. This is
clearly reflected by the massive adoption of services like Dropbox, U1, Google Drive or
SkyDrive, among others. The term “Personal Cloud” has been coined in the last years to
reflect this trend and many analysts forecast a bright future for these solutions [11][1].
To clarify the term we propose here the so-called 3S Personal Cloud Definition:

The Personal Cloud is a unified digital locker for our personal data offering three
key services: Storage, Synchronization and Sharing. On the one hand, it must provide
redundant and trustworthy cloud data storage for our information flows irrespective of
their type. On the other hand, it must provide syncing and file exploring capabilities

2 P. Garcia Lopez et al.

in different heterogeneous platforms and devices. And finally, it must offer fine-grained
information sharing to third-parties (users and applications).

Despite the much trumpeted success of the so-called cloud storage revolution, exem-
plified by Dropbox and the likes, little is known about the architecture of these commer-
cial solutions, and existing open source alternatives (e.g., ownCloud', SparkleShare?)
fall short of addressing all the requirements of the Personal Cloud, mainly in terms of
scalability and extensibility. In this sense, architecturing a Personal Cloud is not trivial,
as this model is still in early stages, and no reference architecture exists.

Architectural complexity is well captured by file synchronization, as the success of
Personal Cloud services lies in great measure in the scalability of their sync services. In
this cloud paradigm, a desktop client software typically keeps all the files in a specified
folder in sync with the servers, automatically synchronizing changes across the devices
of the same user. Since files can be shared with other users, changes in shared folders
must be also synced with every account that has been given access to the shared folders.

Making this process scalable is not straightforward, as it involves the intricate inter-
action of many components. For instance, to improve scalability, Personal Clouds use
numerous techniques to only transfer those parts of the files that have been modified
since the last synchronization. To achieve this, these systems internally do not use the
concept of files, but split every file into chunks, each treated as an independent object.
If a chunk is already stored in the storage servers, it is not transferred, saving traffic and
storage. However, working at the chunk level requires the sync process to manage more
metadata than operating at the file level, making it more critical the way metadata is
internally processed. Further, as the amount of metadata is directly proportional to the
number of chunks, the efficiency of the chunking algorithm impacts the performance of
file syncing.

Analogously, to efficiently maintain the consistency of files, any change performed
elsewhere must be advertised as soon as they occur to reduce conflicts [9], in particular,
when a file is susceptible to be modified by more than one client at the same time. This
requires the sync process to operate quickly to commit changes along with an efficient
notification service to inform clients about file modifications.

Therefore, a practical implementation of an open Personal Cloud requires making a
big effort. In this context, the CloudSpaces project (http://cloudspaces.eu/),
which has been initiated in the frame of European Commission’s FP7-ICT programme,
is attempting to fill this gap. Concretely, as far as we know, we are the first to propose an
open architecture for Personal Clouds. It is worth noting here that although at the time
of this writing, our reference implementation includes the software necessary to run a
basic Personal Cloud, in this work we put more emphasis on the sync protocol, which
is the core service of any Personal Cloud. Since a serious impediment to progress in
cloud storage research is the lack of a standard framework, we hope to provide a useful
framework for developing and testing new ideas in a relatively easy manner.

In summary, we contribute the following:

1. Extensible framework with a plugin-based architecture for storage back-ends, metadata-
back-ends, communication middleware, and chunking algorithms.

"http://owncloud.org/
http://sparkleshare.org/

StackSync: Architecturing the Personal Cloud to Be in Sync 3

2. Reference open source implementation called StackSync, which is based on a high-
performance messaging middleware for asynchronously dispatching incoming and
outgoing push notifications.

3. Benchmarking and validation framework for Personal Clouds, which provides trace
generators and test scripts.

The rest of the article is structured as follows. We review related work in Section 2.
We give an overview of the main technical ingredients of a Personal Cloud in Section 3.
We introduce our open architecture in Section 4. In Section 5, we evaluate our reference
implementation and conclude in Section 6.

2 Related Work

2.1 A Brief History of the Personal Cloud Term

In the past years there have been divergent views of the “Personal Cloud” concept. For
example, in [13] authors propose an architecture and design for accessing and sharing
computational resources in virtual machines. For them, a Personal Cloud is a collection
of Virtual Machines running on unused computers at the edge. Another different view
focuses on collaborative work [6], where a web infrastructure is defined to provide
a unified environment for handling activities and collaborations. Finally, a recent trend
[26] goes further and defines the Personal Cloud as a cloud Operating System that offers
a core set of services around identity, trust, data access and even programming models.

In this paper, we focus on Personal Cloud Storage platforms that take care of data
sync and sharing from heterogeneous devices. In fact, the term “Personal Cloud” have
received a lot of attention with the recent research reports from Forrester [11] and Gart-
ner [1]. Like us, these reports associate the term Personal Cloud with online cloud
storage services such as Dropbox, Box, or Google Drive among others.

2.2 Personal Cloud Systems

In the last few years, we have seen how the market of cloud storage is growing rapidly.
Despite the rush to simplify our digital lives, many of the commercial Personal Clouds
in operation today like Dropbox are proprietary, and rely on algorithms that are invisible
to the research community, and what is even worse, existing open source alternatives
fall short of addressing all the requirements of the Personal Cloud. Next we discuss the
existing open source solutions for the Personal Cloud, namely SparkleShare, ownCloud
and Syncany.

SparkleShare? is built on top of Git, using it as both its storage and syncing back-
end. SparkleShare clients use push notification to receive changes, and maintain a direct
connection with the server over SSH to exchange file data. When a client is started, it
connects to a notification server. The notification server tells the other clients subscribed
to that folder that they can pull new changes from the repository after a user change.

3http://sparkleshare.org/

4 P. Garcia Lopez et al.

Using Git as the storage back-end is a double-edged sword. While Git implements
an efficient request method to download changes from the server (git pull command),
avoiding massive metadata exchanges between server and clients, it is not prepared to
process large binary files. Also, this architecture tied to the Git protocol is also difficult
to scale and deploy in cloud environments.

ownCloud* is the most famous open source Personal Cloud and they have an active
community. We refer here to the Community Edition of ownCloud, since their enter-
prise edition is not available to the public. In ownCloud, clients communicate with
the server following a pull strategy, i.e. clients ask periodically to the server for new
changes. There are two types of data traffic: data and metadata. For data exchange,
ownCloud uses a REST API; however, metadata traffic is transferred using the Web-
DAV protocol. Because both types of traffic are processed by the same server, data and
metadata traffic are completely coupled.

Unfortunately, ownCloud is not an extensible and modular framework like StackSync.
In this line, their developer community is mainly working around the web front-end. Al-
though we will devote a subsection to ownCloud in the validation, we can advance that
their inefficient pull strategy with massive control overheads is not scalable. Further-
more, their sync flows and data flows are tightly coupled, and they do not even provide
basic chunking or deduplication mechanisms.

Syncany ° is an open source Personal Cloud developed by Philip Heckel in Java. It
is a client-side Java application that can synchronise against a variety of storage back-
ends thanks to their extensible plugin model. They also provide extensible mechanisms
for chunking and their architecture is elegant, clean and modular.

Although we give much credit to Syncany, proof of that is that the StackSync client
is a branch project that evolved from Syncany, it presents a number of drawbacks that
made us evolve towards the current StackSync architecture. The major shortcoming is
the lack of scalability of Syncany due to its heavy pull strategy with metadata and data
flows heavily coupled. To support versioning and resolve conflicts, Syncany relies on a
metadata file that contains the complete history of each individual file, and that is stored
in the storage back-end as a regular file. To determine the most recent version of a file,
the Syncany client needs first to download this metadata file, which grows with each
new file modification, severely limiting scalability.

2.3 Synchronization Algorithms

At the core of personal cloud is file sync. Although a rush of online file sync services
have been entering the market during the last years, evidenced by the explosion in popu-
larity of Dropbox and competitors, little is known about the design and implementation
of commercial sync protocols. According to a recent characterization of Dropbox [9],
file synchronization is built upon third-party libraries such as librsync, but the role of
this library is uncertain because of the very nature of the rsync algorithm [25]. Other
popular tools like unison [21] that use the same basic algorithm suffer from the same
deficiencies.

4http://owncloud.org/
>http://syncany.org/

StackSync: Architecturing the Personal Cloud to Be in Sync 5

rsync is symmetric, and provides pairwise synchronization between two devices,
where the rsync utility running on each computer must have local access to the entire
file. This requirement poses the first practical limitation to the adoption of rsync because
working at the file level prevents efficient data deduplication. To save storage space and
money, services like Dropbox split files into chunks and store them at multiple nodes on
the server side. A straightforward adaptation of rsync to this context would be piecing
together the chunks and reconstructing whole file at a chosen server and then operate
on it. This, unfortunately, would waste massive intra-cluster bandwidth, deteriorating
significantly deduplication efficiency. It is worth noting here that, although rsync finds
chunks of data that occur both in the old file and the new file, it requires the side acting
as a server to compute hashes for all possible alignments in its file in order to find a
match. For this, it needs the whole file.

In addition, if a single character is modified in each chunk of the old file, then no
match will be found by the server and rsync will be completely useless [17]. To ad-
dress this limitation, a number of single-round and multi-round protocols have been
proposed in the last ten years. Multi-round protocols allow communicating fewer bits
in total by using additional communication rounds; see [17] and [22]. However, the fact
of taking multiple passes over files presents evident disadvantages in terms of protocol
complexity, computing and I/O overheads, and communication latency. Recent single-
round protocols [16][12] bypass this difficulty by using variable-length content-based
chunking [19]. However, since these protocols only synchronize files between two dif-
ferent machines at a time, they are not directly applicable to Personal Clouds, where
file changes occurring elsewhere are automatically notified to any other device sharing
that file.

There is a large body of work by the OS community that attempts to detect re-
dundancies in order to reduce storage or transmissions costs, like LFBS [19] and Pas-
tiche [8], among others, which have inspired in one way or another many of today’s on-
line cloud storage services. These systems operate at block level by relying on variable-
length content-based chunking, rather than at file level. Compared with personal cloud
applications, distributed file systems pursue a different objective and can skip imple-
menting some basic functionality in personal clouds like file version management or
the scalable notification of updates as soon as they occur. In fact, LBFS uses leases in
which the server’s obligation to inform a client of changes expires after one minute. The
result is that the client will be out of sync once a lease on a file has expired. In Drop-
box, however, any change on the central storage is advertised as soon as it is made [9].
For this purpose, the Dropbox client keeps continuously opened a TCP connection to a
notification server, used for receiving information about changes performed elsewhere.

Overall, providing an efficient and scalable sync protocol poses a grand challenge
for engineers in charge of building Personal Cloud storage services, due to the intricate
relationships between deduplication, notification and metadata management.

3 Understanding Personal Clouds

Personal Clouds are complex infrastructures involving a variety of distributed compo-
nents. Even for setting up and running a basic service, engineers in charge of building it

6 P. Garcia Lopez et al.

need to implement many processes. The lack of a reference open source implementation
complicates even more the design of these systems.

To put in perspective, we describe next the typical interactions among the different
blocks of a Personal Cloud architecture. Among the three key services, here we will
focus only on the synchronization service. The sharing service can be considered as a
particular case of file synchronization where users set sharing controls at the account
level to grant access of shared folders and links to other users. On the other hand, the
storage service must offer a clean and simple file-system interface for archiving, backup,
and even primary storage of files, abstracting away the complexities of direct hardware
management. At the same time, the storage service must guarantee the availability of
data files stored by users, which is achieved by adding redundancy to multiple servers.
As the implementation of the storage service is more related to hardware issues like
redundancy management, and it is in general not architecturally relevant, discussion on
the storage service has been skipped due to space constraints.

It must be noted that Personal Clouds usually treat differently desktop clients in PCs
and laptops from mobile and Web clients. Whereas the former maintain a copy of the
information and check for changes, mobile clients use to retrieve the information on
demand. We will focus only on the desktop scenario.

3.1 Basic Blocks and Interactions

Personal Clouds usually provide desktop clients that integrate with the OS file explorer
capabilities. These clients include a Wat cher component that monitors file changes in
a specified synced folder. We will call this working folder the Workspace.

When the Wat cher is notified of any change in the Workspace by the OS, it then
informs the Indexer component on the new changes. The Indexer maintains a local
database with information about the contents of the Workspace including files, folders,
hashes, and even versions. Internally, Personal Clouds typically do not use the concept
of file, but rather operate on a lower level by splitting files into chunks, each treated as
independent object and identified by a fingerprint (like SHA-256 hash [9]). In that case,
the local database maps the fingerprints to the corresponding files. The reason to work
at the sub-file level is to transfer to the Storage back-end (Dropbox uses Amazon
S3 as storage back-end) only those parts of files that have been modified since the last
synchronization, saving traffic and storage costs.

The component responsible for partitioning files and calculating the hash values is
the Chunker. The system could either use fixed-sized chunks or variable-sized chunks
[19]. Either way, when a new file is added into the Workspace, all the new chunks will
be indexed in the local database. If an existing file is updated, only the affected chunks
will be indexed. Once the new chunks are indexed, the Indexer will then apply the
appropriate source-based deduplication policy to transfer only the unique chunks to
the Storage back—end. If deduplication is on a per user-basis, it suffices for the
Indexer to compare the hashes of the new chunks with the ones in the local database.
If some of the chunks already exist, only the new ones will be uploaded to the St orage
back—-end. If deduplication is cross-user, then the Indexer will have to ask first the
synchronization service, SyncService for short, by sending to it the hash signatures
of chunks. The SyncService will use the hash signatures to check for the existence

StackSync: Architecturing the Personal Cloud to Be in Sync 7

Device 1 I | Indexer I | Chunker Il Device 2 I | Device 3 I |Svn(52rw(e| |Me(ana(aﬁa[k—enﬂIlSmrageEa(k—enﬂI

index(changes)

get_chunks(changes)
new_chunks’

new_chunks
uploadinew_chunks)
mmmmm it(changes)

try_commit(changes)
ok

on_commitichanges)

update_index(changes)

on_commi ittchanges)
on_commit(changes)

hunks)

chunks’

downloadichunks)

chunks’

Fig. 1. Interaction between the components of sync engine for a Personal Cloud.

of chunks and then notify the Indexer to upload the missing chunks to the Storage
back-end. Here we find the first functional dependency between components, as the
efficiency of the Chunker determines the amount of data to transfer to the Storage
back-end. Ideally, only those parts of the file that have been modified should be sent
over the network, for which the choice of the chunk size is critical. Clearly, the best
choice depends on both the number and granularity of changes. If a single character is
changed in a file, a large-sized chunk will require transferring a lot of duplicate data,
while a smaller chunk will offer a greater saving in network bandwidth. The downside
of using small chunks is that it will increase the amount of metadata to be managed by
the SyncService, directly impacting on the system’s scalability. It is partly for this
reason that an open architecture with a modular design like StackSync can facilitate the
study of these issues and promote further advances in the future.

Once the unique chunks are successfully submitted to the Storage back-end,
the Indexer will communicate with the SyncService to commit the changes to the
Metadata back-end, which is the component responsible for keeping versioning
information. The Metadata back-end may be a relational database like MySQL
or a non-relational data store like Cassandra® or Riak’, now frequently called NoSQL
databases. Irrespective of the chosen database technology, the SyncService needs
to provide a consistent view of the synced files. Allowing new commit requests to see
uncommitted changes may result in unwanted conflicts. As soon as more than one user
works with the same file, there is a good chance that they accidentally update their local
working copies at the same time. It is therefore critical that metadata is consistent at all
times to establish not only the most recent version of each individual file but to record its
(entire) version history. Although relational databases process data slower than NoSQL
databases, NoSQL databases do not natively support ACID transactions, which could
compromise consistency, unless additional complex programming is performed. Since
the nature of the metadata back-end strongly determines both the scalability and
complexity of the synchronization logic, an open modular architecture like StackSync
can reduce the cost of innovation, adding a great flexibility to meet changing needs.

Finally, when the SyncService finishes the commit operation, it will then notify
of the last changes to all out-of-sync devices. The device that originally modified the

®http://cassandra.apache.org/
"http://basho.com/riak/

8 P. Garcia Lopez et al.

local working copy of the file will just update the Indexer upon the arrival of the
confirmation from the SyncService. The other devices will both update their local
databases and download the new chunks from the Storage back-end. Here we are
assuming that an efficient communication middleware mediates between devices and
the SyncService. This middleware should support efficient marshaling and message
compression to reduce traffic overhead. Very importantly, it should support scalable
change notification to a high number of entities, using either pull or push strategies. To
deduplicate files and offer continuous reconciliation [7], recall that the local database at
the Indexer must be in sync with the Metadata back—-end, for which notification
must be performed fast.

Fig. 1 illustrates the interaction between all the components of a file sync engine.
Observe that not all the different components described in this section are present in the
architecture of a Personal Cloud. In some architectures, our overall model could be sim-
plified and one component could be responsible for many tasks. Some architectures can
even lack some components. For example, ownCloud does not provide deduplication
and chunking.

4 StackSync Reference Architecture

Personal Cloud storage services have become commonplace but currently, commercial
existing offerings are proprietary, and open source alternatives are not mature enough.
Researchers and practitioners interested in pursuing Personal Cloud questions have few
tools with which to work. Clearly, the lack of research tools is unfortunate given that
most fundamental questions are still unanswered: What is the appropriate distributed
architecture for a Personal Cloud? How do we manage versions so that versioning is
flexible, correct and scalable? What types of service level agreements should a Personal
Cloud service provide? This is the basic reason why we have developed StackSync, an
open source software framework that implements the basic components of what is com-
monly referred to as a Personal Cloud. All source code and data traces are available in
https://github.com/cloudspaces/stacksync. Both the server and client
code has been developed in Java: The client is a branch from the Syncany [15] project
and the server is using our novel communication middleware called ObjectMQ [4] that
will be presented in brief. The implementation currently has approximately 33, 000
lines of code, distributed in the following way: 1. ObjectMQ middleware — 2,100
lines; 2. StackSync client — 24,400 lines; and 3. SyncService — 5,800 lines.

Indeed, an important design decision of our reference implementation was to rely
on a messaging middleware for communication. Since Personal Cloud storage services
exhibit significant read-write ratios [2], we decided that the sync engine should support
persistent client connections, push-based notifications, and asynchronous and stateless
interactions. A message-oriented middleware fits well with these requirements, because
of its support to loosely coupled communication among distributed components thanks
to asynchronous message-passing.

StackSync is currently using RabbitMQ as its message broker and PostgreSQL as
its default Metadata back-end. By default, we use OpenStack Swift as Storage
back-end, though others are also possible. Indeed, the StackSync framework presents

StackSync: Architecturing the Personal Cloud to Be in Sync 9

Metadata DB

| |

. Storage backend
Sync service

FTP/SFTP ﬁ
l T WebDAV .\'-‘-l
openstack
Middleware (ObjectMQ) amazon

Pushl T l T / Webservices"

Desktop client REST API i

Indexer o} l T :
I

Chunker (0 Mobile/web |
Storage plugin client !

Fig. 2. StackSync architecture

extension hooks that enable others to replace the Storage back-end,the Metadata
back—-end, the message broker, the synchronization protocol or even the chunking and
deduplication strategies.

An overview of our architecture with the main components is shown in Fig. 2. The
StackSync client and the SyncService interact through the ObjectMQ middleware
layer abstracting the RabbitMQ message broker. The SyncService interacts with the
Metadata back-end. The StackSync client directly interacts with the Storage
back-end to upload and download chunks. Finally, the REST API is used for access-
ing storage and sharing services from mobile and web clients. Security components like
the authentication and authorization services are not included here.

4.1 StackSync Synchronization Protocol

Since file synchronization lies at the heart of any Personal Cloud service, we present a
reference synchronization protocol that is available in the StackSync framework, whose
main novelty is that it is based on a message-oriented middleware (MOM). In particular,
MOM is ideally suited here for:

1. Scalable change notification: The high read-write ratio of Personal Cloud services
makes it more appropriate to employ one-to-many push communication for quickly
notification. Server-based protocols like this are required when replicas need a high
degree of consistency [23].

2. Asynchronous message dispatching: Synchronization operations require significant
server processing time for ensuring consistency. Decoupling message dispatching
from message processing in these scenarios [18] is important for scalability reasons.

3. Implicit load balancing: When many consumers read from a queue, messages are

distributed among them. This way, we can start multipe instances of the SyncService

10 P. Garcia Lopez et al.

to alleviate the load of the incoming request queue, allowing to scale up and down
very easily as computing needs change.

Let us describe the overall synchronization protocol:

Communication middleware Our reference architecture relies on a high-performance
message broker compatible with the Advanced Message Queueing Protocol (AMQP) [20]
standard. In order to simplify the interaction with this messaging middleware, we have
built the ObjectMQ communication middleware.

ObjectMQ is a lightweight remote object layer constructed on top of a messaging
middleware compatible with AMQP [20]. We are combining RPC and MOM models
to devise four MOM-RPC invocation abstractions: two one-to-one calls (synchronous,
asynchronous) and two one-to-many calls (multi, event).

In general, objects receive method calls as messages in incoming queues, and then
reply the results to clients in response queues. One-to-many calls are distributed using
the appropriate AMQP Exchanges (broker message dispatchers). Recall that Exchanges
determine message delivery and provide different delivery schemes, like direct (deliver
this message to a particular queue) and publish-subscribe (deliver this message to all
queues subscribed to a certain topic). Let us define the four calls:

— @async: This is an asynchronous non-blocking one-way invocation where the client
publishes a message in the target object request Queue (Q request)- By default, the
client expects to receive no response and it is even not notified if the message was
handled correctly.

— @sync: This is a synchronous blocking remote call where the client publishes a
message in the target object request Queue (Q) request), blocking until a response is
received in its own client response queue (&) response)- This call can be configured
with a timeout and a number of retries to trigger the exception if the result does not
arrive.

— @event: This is an asynchronous non-blocking one-to-many notification triggered
by a server. The server triggers an @event by publishing the message in the Event
fan-out Exchange (F'gyent). Any client subscribing to this event in the server must
bind their incoming Event Queue (Q gyent) to the server Exchange (Egyent)-

— @multi: This is an asynchronous non-blocking one-to-many invocation from one
client to many servers. The clients invokes the method in all servers by publishing
an event in the Multi fan-out Exchange (Eps,¢;). All servers bind their incoming
Request Queue (Q request) to the Multi Exchange (Earyits)-

The ObjectMQ communication middleware supports different compression and trans-
port protocols (Kryo [3], Java Serialization, JSON). It also handles transparently all the
error management and communication services on top of the MOM broker. We outline
that the initial code of the StackSync client has been reduced in around 3, 000 lines of
code after introducing our ObjectMQ communication library.

Finally, it is worth mentioning that our communication middleware could be easily
replaced by a “traditional” RPC layer using a pull approach for change notification.
Although our reference implementation is based on messaging and the push model, the
StackSync framework is also open in the communication layer.

StackSync: Architecturing the Personal Cloud to Be in Sync 11

. N
R Message broker N
1
1 :
: commit_request
)
1
1 1 .
' Client 1
Sync service 1]
|
commitﬁevent: § Client 2
1
|
' .
\ Client 3
‘\ ’

Fig. 3. Message broker communication flow

SyncService and metadata back-end The SyncService is a server-side component
implemented as a remote object using the ObjectMQ communication middleware. This
service directly benefits from the invocation abstractions offered by ObjectMQ.

In our current design (see Fig. 3), ObjectMQ is using a global request queue for
the SyncService, a response queue for each device (SyncService Proxy), and a
fan-out Exchange for each workspace. Each device will bind its request queue to the
appropriate workspace Exchange to receive notification changes in this workspace. In
any case, queue message programming is abstracted thanks to ObjectMQ, so that the
protocol will be defined in terms of RPCs or method calls.

@Remotelnterface
public interface SyncService extends Remote {

@SyncMethod(retry = 5, timeout = 1500)
public List<ObjectMetadata> getChanges(Workspace workspace);

@SyncMethod(retry = 5, timeout = 1500)
public List<Workspace> getWorkspaces();

@AsyncMethod
public void commitRequest(Workspace workspace, List<ObjectMetadata> objectsChanged);

}

@event
public interface CommitEvent extends Event {

public List<ObjectMetadata> objectsChanged getChanges();
}

Fig. 4. SyncService interface

In Fig. 4 we can see the interface definition of the SyncService. Clients can
request the list of Workspaces they have access to with the getWorkspaces operation.
Once the client obtains the list of Workspaces, it can then perform two main operations:
getChanges and commitRequest. Furthermore, the client will be notified of changes by
means of the event CommitEvent.

getChanges is a synchronous operation (@sync) that StackSync clients perform
on startup. This is a costly operation for the SyncService as it returns the current
state of a Workspace. Once the client receives this information, it registers its interest

12 P. Garcia Lopez et al.

in receiving committed updates, i.e., CommitEvents (@event) for this Workspace. From
that point on, any change occurring on this Workspace will be notified to the client in a
push style.

commitRequest is an asynchronous operation (@async) that clients employ to
inform the SyncService about detected file changes in their Workspaces. This is a
costly operation since it must guarantee the consistency of data after the new changes.

CommitEvent is triggered by the SyncService in an asynchronous one-to-
many operation (@event) to all out-of-sync devices in the specified Workspace. This
operation is only launched by the SyncService once the changes has been correctly
stored in the Metadata back-end.

Algorithm 1 Pseudocode of the commitRequest function in the SyncService

1: function COMMITREQUEST(workspace, List < Object Metadata > objects_changed)

2 commit_event <— new instance of CommitEvent

3 for new_object in objects_changed do

4 server_object «— metadata_-backend.get_current_version(new_object.id)
5: if not exists server_object then > To commit the first version of the new object
6.
7
8

metadata_backend.store_new_object(new_object)
commit_event.add(new_object, confirmed = True)
else if server_object.version precedes new_object.version then

9: > No conflict, committing the new version
10: metadata_backend.store_new_version(new_-object)
11: commit_event.add(new_object, confirmed = True)
12: else
13: > Conflict detected, the current object metadata is returned
14: commit_event.add(new_object, confirmed = False, server_object)
15: end if
16: end for
17: trigger_event(workspace, commit_event)

18: end function

Algorithm 1 reports the pseudocode of the commitRequest operation. When a
commitRequest message is received in the global request queue, the ObjectMQ mid-
dleware will invoke the appropriate commitRequest method in the SyncService.
This method then receives a proposed list of change operations in a concrete Workspace.
For every change operation, it will then check if the current version of the object in the
Metadata back-end precedes the change proposed by the client. In this case, the
changes are (transactionally) stored in the Metadata-back-end and confirmed in
the CommitEvent. If there is a conflict with versions, the commitRequest is set as
failed and information about the current object version is added to the CommitEvent.
The reason for adding the current object version to the CommitEvent is to piggyback
the information about the “differences” between the two versions, such that the “losing”
client can identify the missing chunks and reconstruct the object to the current version.
As usual, in StackSync, a conflict occurs when two users change a file at the same time.
This implies that the two clients will propose a list of changes over the same version of

StackSync: Architecturing the Personal Cloud to Be in Sync 13

the file. The first commitRequest to be processed will increase the version number
by one, but the second commitRequest will inevitably propose a list of changes over
a preceding version, resulting in a conflict.

To resolve the conflict, the SyncService adopts the simplest policy in this case,
which is to consider as the “winner” the client whose commitRequest was processed
first. This way, the SyncService avoids rolling back any update to the Metadata
back-end, saving time and increasing scalability. At the client, the conflict is resolved
by renaming the “losing” version of the file to ... (conflicted copy, ..)”.

Finally, the CommitEvent will be triggered to the Workspace AMQP Exchange,
and it will be received by all interested devices in their incoming event queues.

As just elaborated above, note that the CommitRequest is an important operation
in the sync service since it has to provide scalable request processing, consistency,
and scalable change notification. Scalable request processing is achieved because the
method is asynchronous and stateless. Multiple SyncService instances can listen
from the global request queue and the message broker will transparently balance their
load. Consistency is achieved using the transactional ACID model of the underlying
Metadata back-end. Finally, scalable change notification to the interested parties
is achieved using one-to-many push notifications (@event).

The SyncService interacts with the Metadata back-end using an extensi-
ble Data Access Object. Our reference implementation is based on a relational database
although the system is modular and may be replaced easily.

StackSync Client and Storage back-ends The StackSync client is a local Java li-
brary that monitors the local folder and synchronizes it with a remote repository. As
described before, the StackSync client now interacts with two main remote services:
the SyncService through the ObjectMQ middleware, and with different Storage
back-ends to upload and download chunks.

This decoupling of sync control flows from data flows implies that the client must
authenticate with both entities. But it also enables a user-centric design where the client
directly controls its digital locker or storage container. The synchronization protocol
have been designed to put the load in the client side, whereas the SyncService just
checks if the change is consistent, and then apply all changes proposed by clients.

Every client has a local database and a Wat cher thread that monitors the state of
the sync folders. On startup, the client must ask the server for its list of workspaces and
its current state. From that point on, the Indexer will be notified by the Wat cher of
changes in the local folder and it will periodically send them using the commitRequest
operation. Besides that, the client can receive commit events (commitChanges) from
the server that will be immediately applied to the local workspace. Regarding potential
conflicts due to offline operations, we provide similar policies than Dropbox, so that we
create a copy of the conflicted document and let the user decide about this.

To save storage space and bandwidth, the Indexer uses source-based deduplica-
tion at the block level to store and transmit only a single copy of each duplicate block
to the server. In our reference implementation, deduplication is applied on a per-user
basis, as cross-user deduplication has been proven to be insecure [14]. This means that
deduplication is carried out separately for each user, and therefore, data blocks of other

14 P. Garcia Lopez et al.

users are not utilized to detect if an identical copy of the block is already at the server.
Specifically, the client software maintains a chunk database to identify and locate dupli-
cate data chunks. The database indexes each chunk by its fingerprint, which by default
is the 20 bytes of its SHA-1 hash, though weaker fingerprints like the 32-bit Adler32
checksum may be used to reduce the index size. The database maintains the information
of the chunks that form each file, so that whenever a file is modified, the client avoids
transferring duplicate blocks to the server. Thanks to our message- oriented sync proto-
col, keeping such a database in sync with the server is inexpensive, as any changes on
the central storage are advertised by means of asynchronous CommitEvents as soon as
they are performed.

StackSync’s Chunker currently supports both fixed-sized and content-based chunk-
ing. Fixed-size chunking partitions a file into fixed-size blocks. Although fixed-size
chunking does not perform well due to the boundary-shifting problem [10], it is use-
ful to keep it as it incurs significantly lower computational costs that their content-based
counterparts. For content-based chunking, StackSync supports Rabin-based chunking [19]
and the Two-Threshold Two-Divisor (TTTD) chunking algorithm [10]. TTTD produces
variable-sized chunks with smaller size variation than other chunking algorithms, lead-
ing to superior deduplication. In any case, the chunks are compressed before transmis-
sion using Gzip or Bzip2, albeit other compression algorithms can be easily plugged
into the architecture.

Finally, and based on the original Syncany architecture, we provide an extensible
plugin-based architecture for connecting to third-party Storage back-ends. We
now provide plugins for Amazon S3, OpenStack Swift, Dropbox, WebDAV, SMB and
FTP. It is straightforward to provide new plugins and we aim to leverage the open source
community of Syncany for adding additional plugins to our platform.

S Validation

In the evaluation of the reference implementation of StackSync framework, we set out
to answer three basic questions: 1) How much metadata overhead does the system need
to support? 2) How much time is needed to have multiple devices in sync?; and 3) How
does the system internally scale?

5.1 Setup

To evaluate the reference implementation of StackSync, and further advances to come,
we developed a tool written in Java to generate synthetic datasets. This tool can be
downloaded from https://github.com/cloudspaces/stacksync, together
with the generated datasets used in our evaluation, in order to make our experiments
reproducible by others. Very succinctly, this tool generates an initial file system with
subfolders and files (TreeFSGenerator. java), and then creates a trace with ac-
tions to change the initial file system over time (DatasetGenerator. java). These
changes include the creation, modification, and removal of files in any subfolder of
the initial file system. Alternatively, the tool enables the generation of the trace from
a real file system. Either way, the chosen file system became the starting Workspace

StackSync: Architecturing the Personal Cloud to Be in Sync 15

of StackSync clients in all experiments. The resulting trace was input into the class
DatasetExec. java, which was in charge of performing the changes in both space
and time in the local Workspace of clients.

The tool is highly configurable to enable the setting of several parameters such
as the file system depth, file system total size, interarrival time between changes, etc.
Precisely, the fact that interarrival time between actions is configurable is what makes
it possible the evaluation of the scalability of any component at the server side, in our
particular case, the synchronization service. To wit, by fixing an interarrival time of
0, 01 seconds, a researcher can evaluate the scalability of the system when the number
of requests per seconds is 100.

In our experiments, the size for each file was drawn uniformly at random from the
range [512KB, 4MB], which is the most common file size in many OS file systems [5].
The total size file system was set to 750 MB with a folder depth of 3 and 2 subfolders per
level. Over this structure, we run a trace with 1000 changes to let the initial file system
evolve over time. The trace altered a 5% of the whole file system, approximately 37.5
MB of file data.

To decide how to change the files, we followed the same philosophy as in the dataset
generator for deduplication evaluation introduced in [24], which currently supports
three modification types: B — the file is modified in the beginning by prepending some
bytes; I — the file is modified at the end; and M — the file is modified somewhere in
the middle. As in [24], we also supported combinations of these patterns, namely BE,
BM, EM. Indeed, we used the same the change pattern of the Homes dataset (weekly
snapshots of students’ home directories), which is the dataset that represents better user
behavior in Personal Cloud services. Very succinctly, the probability for a B change
was of 38%; for a E change was of 8%, and for was M change is of 3%. The rest of the
probability mass was given to combination of these changes.

Finally, the testbed scenario included a server deployment with one front-end and
several Desktop PCs acting as StackSync clients. The front-end was an OpenStack
Swift deployment with one proxy node and three storage nodes. The proxy node also
contained RabbitMQ, SyncService, and the PostgreSQL database acting as the
Metada back-end. Let us review the node specs:

— Proxy node: Ubuntu 12.04.2 LTS(64 bits); Intel(R) Xeon(R) CPU E5-2407 @
2.20GHz 4 cores/8 threads ; Memory: 12 GB.

— Storage nodes: Ubuntu 12.04.2 LTS(64 bits); Intel(R) Xeon(R) CPU E5-2403 @
1.80GHz 4 cores/4threads; Memory: 8GB.

— Desktop PCs: Ubuntu 12.04.2 LTS(64 bits); Intel(R) Xeon(R) CPU E5-2403 @
1.80GHz 4 cores/4threads; Memory:8GB.

5.2 ownCloud Vs StackSync

In this first experiment we want to compare the metadata overhead produced by own-
Cloud and StackSync. As stated in the related work, ownCloud is using a pull-based
approach based on the WEBDAYV protocol. The ownCloud client discover changes by
continuously pulling the server with WEBDAV PROPFIND requests for the root user

16 P. Garcia Lopez et al.

ownCloud uploader
800 ownCloud downloader Uploader I | Downloader | ownCloud serverl
StackSync uploader
g 700 StackSync downloader
5
£ oo (WLl PROPFINDQ
g 500 XML _state’
@ ROPPATCH(change)
X 400 OK’
s
2 200 ROPFIND(
g XML_state
200
PROPFIND()
100 : XML_state
a GET(new._file)
10 20 30 40 50 60 70 80 fil
Time (minutes) U new file
(a) ownCloud vs StackSync metadata over- (b) ownCloud sync protocol
head

Fig. 5. ownCloud vs StackSync

folder every 30 seconds approximately. Each of these requests returns a XML file with
a full list of the files and their associated metadata.

Since the PROPFIND request only returns the metadata of the files in the same
level, it will not contain change information of files or folders in the levels below. This
implies that a change in a subfolder will trigger recursive PROPFIND requests in all the
levels of the path. When the change is located in the subfolder, the client then performs
a GET request to retrieve the file and stay synced with the rest of the clients.

Due to obvious reasons, this behaviour can be highly inefficient since the amount of
metadata exchanged between the server and the client to stay synced could be important
(i.e. discover a new file stored in a five-level depth folder produces five PROPFIND
requests). It is also important to take into account that each PROPFIND request over a
folder involves to get the metadata of all the files inside this folder.

In Fig. 5 we can see the metadata overhead for ownCloud and StackSync when one
node modifies files (uploader) and other must synchronise these changes (downloader).
As we can observe in the figure, ownCloud’s uploader node is producing for our ex-
periment around 600-800 KBytes/minutes of metadata traffic, and the downloader is
producing around 100-300 KBytes/minute of medatada traffic. This massive traffic is a
direct consequence of the inefficient ownCloud pull protocol.

In Fig. 5 we can see the sequence diagram of ownCloud sync protocol. The node
committing new changes (uploader) first obtains the current state (PROPFIND), then
uploads the file (PUT), then requests the new change (PROPPATCH), and then rechecks
with PROPFIND that the change was correctly applied. The rest of nodes (downloaders)
will just ask for changes (PROPFIND) and then retrieve (GET) the entire file.

Note that PROPFIND and PROPPATCH are synchronous calls that are blocking the
client and the server. Note also that if the change is not located in the root folder, it will
require recursive PROPFIND requests for the entire path to the change for all clients.
This is not an optimized protocol but a simple pull interface to WEBDAV. As we can see
in Fig. 5, StackSync is producing an order of magnitude less overhead than ownCloud
for the same experiment (around 10KBytes/Minute for both uploader and downloader
nodes).

StackSync: Architecturing the Personal Cloud to Be in Sync 17

3300 3200

3100

I
3200 I : 3100
I
| 3000

2900

2800

Time (ms)
voN W
® © o
S S o
S s S

Time (ms)

N
3
=)
=)

T
2700 | 2600

2600 2500

2500

ADD UPDATE REMOVE 0.5-11-1.51.5-22-2.52.5-33-3.53.5-4
File size (MB)

(a) Boxplots of synchronization time (b) synchronization time against file size

Fig. 6. Time to synchronize six clients.

Besides the inefficient metadata processing based on WebDAV pulling, data traffic
is coupled to the same metadata server. Furthermore, ownCloud lacks any chunking,
deduplication or even caching mechanisms. It just uploads or downloads the entire file
if anything has changed.

ownCloud has devoted most efforts in developing the web document manager and
web applications. They are providing a very simple and minimalist WEBDAV front-end
to their web server. This could work for a single user (home repository) but the amount
of useless traffic make it clearly infeasible for a large deployment.

5.3 Synchronization Time

Another interesting question to be examined is what is the delay experienced by users
to have their devices in sync. To answer this question, we measured the time to syn-
chronize six clients, measuring synchronization time for each type of Workspace mod-
ification, that is, the creation of a new file (ADD), and the modification (UPDATE) and
removal of an existing file (REMOVE). The synchronization time was measured as the
time elapsed after the modification was detected by the Wat cher of the client that
performed it until the local working copies of the other five clients were in sync. In the
case of file creation and modification, this time included the delay incurred to upload
and download the unique chunks from the Storage back-end, hosted in a local
cluster running OpenStack Swift.

The results are depicted in Fig. 6(a). As can be seen in the figure, all the operations
take only a few seconds to have all the clients in sync, even in the case of the ADD
operation where an appreciable amount of time is taken up to access the Storage
back—-end. Because the REMOVE operation does not trigger any data flow to and
from the Storage back-end, the synchronization time becomes a good estimator
of the processing time incurred by the tandem ObjectMQ-SyncService. As shown
in the figure, the time to reconcile a file removal in five clients is less than 2.6 sec-
onds, which is quite good, taking into account that the Metada back-end is a re-
lational database. As a boxplot enables to assess the dispersion of a given distribution,
we gain important qualitative insights from Fig. 6(a). One important observation is that
the distribution of the synchronization time for the UPDATE operation is right skewed,

18 P. Garcia Lopez et al.

exhibiting synchronization times significantly greater than the median value of 2.75
seconds. This is especially noticeable by the significant number of UPDATE opera-
tions exceeding the upper whisker. This skewness is explained by the use of fixed-size
blocks. A major problem with static chunking is that inserting even a single byte at the
beginning of a file will shift all chunk boundaries [10], requiring the retransmission of
the whole file to the Storage back—end. This defect can be simply corrected by
applying any of the content-based chunking algorithms supported by StackSync like
TTTD [10].

Since the time taken up by the ADD operation is affected by the file size, one in-
teresting question is to assess how file size affects the synchronization time. Fig. 6(b)
shows the synchronization time as a function of file size. As can be seen in the figure,
the larger the file size, the longer the synchronization time. However, what is most in-
teresting is the fact that the increase in time is only linear when file size is larger than
2.5 MBs, which indicates that for small files the time to transfer chunks from and to
the Storage back-end is not significant compared with the time incurred by the
tandem ObjectMQ-SyncService. Clearly, this poses the need for further research in
file synchronization, since faster synchronization for small files can only be achieved
by improvements in the SyncService. This emphasizes the value of. 6(a) a tool like
StackSync, which fills an important unexplored niche in the cloud computing design
space.

5.4 Scalability and load-balancing

Finally, we performed an initial experiment to assess the scalability and load-balancing
of the StackSync platform. To this end, we performed stress tests generating 100, 200,
and 400 commit requests per second from different clients. We wanted to measure how
our service handles a high number of operations per second, and how the load can be
balanced among different SyncService instances.

In this experiment, we used several system setups: 10 Desktop PCs generating each
one 10 requests per second (100 commits/sec in the server), 20 Desktop PCs generating
each one 10 requests per second (200 commits/sec in the server), and 20 Desktop PCs
generating each one 20 requests per second (400 commits/sec in the server). The used
trace was the same of the prior experiments but injected from different clients. For each
system configuration, we executed the experiment using either one single-threaded or
four single-threaded SyncService instances.

For each commit request, we recorded the time since the client sent out the com-
mit request until the commit event confirming this changes was received in the client.
Note that this time captured the entire life-cycle of the protocol, including message dis-
patching, time to process the operation in the SyncService (including access to the
database), and finally the dispatching of the commit event to the requesting node.

In Fig. 7, we illustrate the time for 1 and 4 SyncServices under different loads:
100, 200, 400 commits/sec. Our service shows promising numbers in the processing of
concurrent requests since it is able to handle a commit in less than 0.1 seconds with
4 instances when receiving a bulk of 200 requests/sec. This clearly indicates that bal-
ancing the load among multiple instances produces a significant performance boost. If
we consider that all services are running in the same machine, our results show that the

StackSync: Architecturing the Personal Cloud to Be in Sync 19
x10*

1 instance
[4 instances

25

N

Time (ms)
- &

0.5

0

100 400

0
Request arrlzva(f rate (req/s)

Fig. 7. Scalability and load balancing

bottleneck is in the transactional database rather than in the communication layer, i.e.,
ObjectMQ. The performance gains observed here open the way to future optimizations
to fine tune the scalability of the overall service.

6 Conclusions

In this article, we have introduced StackSync, an open framework for Personal Cloud
systems. Its architecture is highly modular, with each module represented by a well-
defined API, allowing researchers to replace components for innovation in versioning,
deduplication, live synchronization or continuous reconciliation, among other relevant
topics. StackSync provides a reference implementation and useful tools for rapid pro-
totyping and evaluation. The reference implementation of the file synchronization en-
gine has been built on top of a lightweight MOM-RPC middleware, called ObjectMQ,
whose one-to-one and one-to-many abstractions has considerably simplified the design
of StackSync. This middleware is ideally suited to support push notification over per-
sistent connections, which is critical for live synchronization.

StackSync is now under active development in the context of the FP7 CloudSpaces
project with the collaboration of several partners. Further work includes adding privacy
measures and supporting adaptive storage in collaboration with EPFL. and EURECOM.
Since today most of these systems are proprietary, relying on infrastructures that are
invisible to the research community, we believe that StackSync will help to advance
state of the art in Personal Cloud systems.

7 Acknowledgements
This work has been partially funded by the EU in the context of the project CloudSpaces:
Open Service Platform for the Next Generation of Personal clouds (FP7-317555).

References

1. Gartner consumer research: Personal cloud. http://www.gartner.com/
technology/research/personal-cloud/#.

20

10.

11.

12.

13.

15.
16.

17.

18.

20.
21.
22.
23.
24.
25.

26.

P. Garcia Lopez et al.

. How we’ve scaled dropbox. http://www.youtube.com/watch?v=PE4gwstWhmc.
. Kryo: Fast, efficient java serialization and cloning. http://code.google.com/p/

kryo/.

. Objectmq mom-rpc middleware. https://github.com/cloudspaces/

objectmg.

. N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of file-system

metadata. Trans. Storage, 3(3), October 2007.

. L. Ardissono, A. Goy, G. Petrone, and M. Segnan. From service clouds to user-centric

personal clouds. In Proc. of IEEE CLOUD, pages 1-8, 2009.

. S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In Proc. of ACM/IEEE

MobiCom, pages 98-108, 1998.

. L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making backup cheap and easy. In Proc.

of OSDI, pages 285-298, 2002.

. L. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and A. Pras. Inside dropbox: Under-

standing personal cloud storage services. In Proc. of ACM IMC, pages 481-494, 2012.

K. Eshghi and H. K. Tang. A Framework for Analyzing and Improving Content-
Based Chunking Algorithms. http://www.hpl.hp.com/techreports/2005/
HPL-2005-30R1.pdf, 2005.

F. E. Gillett, C. Mines, T. Schadler, M. Yamnitsky, H. Shey, A. Martland, and R. Igbals. The
personal cloud: Transforming personal computing, mobile, and web markets. In Forrester
Research, BT Futures Report, 2011.

Y. Hao, U. Irmak, and T. Suel. Algorithms for low-latency remote file synchronization. In
Proc. of IEEE INFOCOM, pages 156-160, 2008.

A. Hari, R. Viswanathan, T.V. Lakshman, and Y.J. Chang. The personal cloud — design,
architecture and matchmaking algorithms for resource management. In Proc. of 2nd Usenix
Hot-ICE, pages 3-3, 2012.

. D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication

in cloud storage. IEEE Security & Privacy, 8(6):40-47, 2010.

P. Heckel. Syncany open source file synchronization. http://www.syncany.org/.
U. Irmak, S. Mihaylov, and T. Suel. Improved single-round protocols for remote file syn-
chronization. In Proc. of IEEE INFOCOM, pages 1665-1676, 2005.

J. Langford. Multiround rsync. www.cs.cmu.edu/~jcl/research/mrsync/
-mrsync.ps, 2001.

D. A Menasce. Mom vs. rpc: Communication models for distributed applications. /EEE
Internet Computing, 9(2):90-93, 2005.

. A. Muthitacharoen, B. Chen, and D. Mazicres. A low-bandwidth network file system.

SIGOPS Oper. Syst. Rev., 35(5):174-187, 2001.

OASIS. Amgp: Advanced message queueing protocol. http://www.amgp.org/.

B. C. Pierce. Unison File Synchronizer. http://www.cis.upenn.edu/"bcpierce/unison/.

T. Suel, P. Noel, and D. Trendafilov. Improved file synchronization techniques for maintain-
ing large replicated collections over slow networks. In Proc. of ICDE, pages 153—, 2004.

A. S. Tanenbaum and M. Van Steen. Distributed Systems: Principles and Paradigms. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and E. Zadok. Generating
realistic datasets for deduplication analysis. In Proc. of USENIX ATC, pages 24-24, 2012.
A. Tridgell and P. Mackerras. The rsync algorithm. Technical Report TR-CS-96-05, Aus-
tralian National University, Dept. of Computer Science, June 1996.

P. Windley. From personal computers to personal clouds. http://www.windley.com/
archives/2012/04/from_personal_computers_to_personal_clouds.
shtml, 2012.

