
TDS02
Training Digital Signal Processing

Lab Work Handbook

Version 2.2b

J.W. Peltenburg

J.Z.M. Broeders

TDS02

Version History

Date Version Description Author

27-08-20191 2.2b2 Updated for Code Composer Studio version 9.
Corrected some errors.

BroJZ

16-10-2018 2.1a Changed sample frequency for IIR filter from
48 kHz to 8 kHz.

BroJZ

15-05-2018 2.0 Adapted to CC3220 LAUNCHXL and
CC3200AUDBOOST development boards.

BroJZ

17-11-2016 1.5 Removed bonus assignments. BroJZ

26-08-2016 1.4 Added appendix about fixed point arithmetic. BroJZ

25-09-2016 1.3 Fixed issues #6, #7, #8 and #9. BroJZ

25-09-2016 1.2 Clarified some assignments. BroJZ EijTJ

12-09-2016 1.1a Fixed issues #1, #2, #3 and #5. BroJZ

26-08-2016 1.1 Corrected some errors.
Removed paragraph about Amplitude
Modulation.

BroJZ

22-06-2015 1.0 First LATEX version.

• Converted to Code Composer Studio version 6.

• Adapted to C5505 eZdsp development board.

• Added a new assignment to explore
architectural features of a DSP and some bonus
assignments.

• Replaced Von Hann window with Hamming
window.

BroJZ

13-11-2013 0.7 Converted to Code Composer Studio version 5.
Assuming tools are pre-installed.

PelJH

13-03-2012 0.6 Made union code multiple lines with indenting.
Response of von Hann window image scale made
consistent.

PelJH

15-06-2011 0.5 Some additions and clarifications to IIR text. PelJH

01-06-2011 0.4 Minor corrections on student feedback.
Added IIR filter structures and final assignment.
Added bonus assignments.

PelJH

25-05-2011 0.3 Minor corrections on student feedback.
Added IIR BLT Theory.

PelJH

18-05-2011 0.2 Added FIR Assignment. PelJH

Continued on next page.

Rotterdam University of Applied Sciences iii

mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
https://bitbucket.org/HR_ELEKTRO/tds02/issues/6/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/7/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/8/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/9/
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:EijTJ@hr.nl
https://bitbucket.org/HR_ELEKTRO/tds02/issues/1/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/2/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/3/
https://bitbucket.org/HR_ELEKTRO/tds02/issues/5/
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl
mailto:BroJZ@hr.nl

TDS02

Date Version Description Author

01-01-2011 0.1 Initial Version of the new Lab Handbook, large
portions from old handbook by E.H.W. van de
Logt.

• All new assignments instead of the assignments
from the old TDS book by Chassaing.

• Some corrections and contributions by J.F.
Theinert.

PelJH

Lab Work Handbook Training Digital Signal Processing from Rotterdam University of Applied
Sciences is licensed by a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Netherlands license.

1 Dates are formated in the Gregorian way (dd-mm-y y y y).
2 Explanation version coding A.Bc: A = major change, B = minor change, c = linguistic or mathematical

corrections.

iv Training Digital Signal Processing

https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/nl/deed.en

Contents TDS02

Contents

1 Introduction 1
1.1 Purpose and Prerequisites . 3
1.2 Course Planning . 3
1.3 Document Organization . 3

2 Preliminary Assignments 5
2.1 Assignment 0: Introduction to the CC3220 LAUNCHXL and CC3200AUD-

BOOST Boards . 5
2.1.1 TLV320AIC3254 Codec . 6
2.1.2 CC3220S SoC . 8
2.1.3 Electrostatic Discharge . 10

2.2 Assignment 1: Working with Code Composer Studio 11
2.2.1 Installing Software and Configure Hardware 11
2.2.2 Running the Demo Program . 12

2.3 Assignment 2: Generating Output . 12
2.3.1 Polling-based Output . 12
2.3.2 Interrupt-based Output . 16

2.4 Assignment 3: Receiving Input . 19
2.4.1 Interrupt-based Input . 19
2.4.2 Audio Input . 20

2.5 Assignment 4: Delays . 20

3 FIR Filters 23
3.1 Determination of the Coefficients . 23
3.2 Example . 26
3.3 Windowing . 27
3.4 MATLAB Filter Designer . 30
3.5 Assignment 5: Finite Impulse Response Filter . 33

4 IIR Filters 37
4.1 Determination of the Coefficients . 37
4.2 Example of a Simple Recursive Low-Pass Filter 38
4.3 MATLAB’s Filter Designer . 45
4.4 Filter Structures . 45
4.5 Assignment 6: Infinite Impulse Response Filter 48

5 Optimizing Your Filter 49

Rotterdam University of Applied Sciences v

TDS02 Contents

5.1 How to Optimize C Code for the Cortex-M4 . 49
5.2 Assignment 7: Profile and Optimize your Filter 49

Bibliography 51

A Fixed-point Arithmetic 53
A.1 Add and Subtract . 53
A.2 Multiply and Divide . 54

vi Training Digital Signal Processing

TDS02

1

Introduction

Digital Signal Processing (DSP) is an important aspect in the field of Embedded Systems
Engineering. For many years the huge interests and developments in the industry signify
the importance of DSP techniques. Important applications of DSP can be found in consumer
electronics, e.g. media boxes, hearing aids, synthesizers, sound-cards and especially mobile
phones. In the industrial and research sector, DSP techniques are extensively used in motor
and motion control, and in complex systems such as large sensor networks, machine vision
systems, telecommunication systems, control plants and satellite arrays for astronomical
purposes (such as the LOFAR3 in 2012).

The course is meant for final year students of the minor Embedded Systems. In this course, a
short introduction (or refreshment) to DSP theory will be given. If you want more background
information or detailed information we recommend the books Digital Signal Processing
Using the ARM® Cortex®-M4 [12] and Real-Time Digital Signal Processing: Fundamentals,
Implementations and Applications [10].

Electrical signals can be directly processed by analog components such as operational am-
plifier. It is not possible to directly use DSP in an analog environment. To enable DSP, the
analog electrical input signals must first be sampled and digitalized by an Analog to Digital
Converter (ADC). After processing the digital output signal can be transfered back to the
analog domain by using a Digital to Analog Converter (DAC). A typical digital processing
system, used in an analog environment, is shown in Figure 1.1. In which x(t) is the analog
input signal which is a function of the time t, y(t) is the analog output signal, x[n] is the
digital, discrete input signal indexed by the sample number n, and y[n] is the digital, discrete
output signal.

x(t) ADC DSP DAC y(t)
x[n] y[n]

Figure 1.1: Digital signal processing in an analog environment.

The advantages of DSP compared to analog signal processing are [10]:

3 http://www.lofar.org/.

Rotterdam University of Applied Sciences 1

http://www.lofar.org/

TDS02 Chapter 1. Introduction

• Flexibility. The behavior of a DSP system is mainly determined by its software. The
behavior of analog systems, on the other hand, is entirely determined by its hardware.
This makes digital systems much easier to adapt to changing functional requirements
or to enhance their performance.

• Reliability. The characteristics of analog components change when the environment
(e.g. the temperature) changes and also deteriorate with age. Therefore, the perfor-
mance of analog signal processing systems will drift with changing environmental
conditions and over time. The performance of DSP systems will not drift.

• Reproducibility. Due to the tolerances of analog components two identically produced
analog signal processing units will not have completely the same characteristics. There-
fore analog units often need fine-tuning before being taken into use. Two identically
produced and programmed DSP units will always have exactly the same characteristics
so fine-tuning is not needed.

• Complexity. Using digital processing, complex applications which are not possible
with analog techniques are feasible. For example: face and speech recognition, data
compression, MRI scanners, and radar tracking.

• Costs. Because many DSP systems can share the same hardware (the behavior is
implemented in software), a DSP system almost always costs less than its analog
counterpart.

The disadvantages of DSP compared to analog signal processing are:

• Bandwidth. DSP systems have a limited bandwidth determined by the sample rate.
The bandwidth is limited to half of the sample frequency. This limit is called the
Nyquist frequency or folding frequency. Analog signal processing systems have, in
theory, unlimited bandwidth.

• Precision. DSP systems have a limited precision determined by the number of bits used
for the ADC and DAC. Analog signal processing systems have, in theory, unlimited
precision.

An example of a simple algorithm that can be implemented in the DSP block shown in
Figure 1.1 is a so called Finite Impulse Response (FIR) filter. The equation for a Finite
Impulse Response (FIR) filter is:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

In which y[n] represents the output sample with index n and x[n− k] stands for the input
sample with index n− k. The constant N is the so called order of the filter. The constants, so
called coefficients of the filter, bk determine the characteristics of the filter.

As can be seen in Equation (1.1) the calculation of y[n] uses N + 1 multiplications and N
additions. The accumulation of the results of multiplications is a frequently used operation
in many DSP algorithms. Also note that the calculation of y[n] consist of a small loop. Small
loops frequently occur in DSP algorithms. We will explore FIR filters and their implementation
further in Chapter 3 on Page 23.

2 Training Digital Signal Processing

1.1. Purpose and Prerequisites TDS02

There are two types of DSP applications: non-real-time and real-time. For real-time systems
the value of output sample y[n] must be calculated before a certain deadline. In most
real-time DSP systems, the output samples must be produced at the same rate as the input
signal is sampled. Tools which run on a PC like MATLAB can be used for non-real-time DSP.
For real-time DSP we can use specific hardware (e.g. a digital signal processor). For relatively
slow sample rates (e.g. audio applications) we can also use a modern generic processor.
For example, in this course we will use an ARM® Cortex®-M4 MCU to implement our DSP
(audio) algorithms. As we will discover in Section 3.4, MATLAB can also be used to design
real-time DSP algorithms that will be executed on an embedded processor.

This course will consist mainly of working on practical assignments within the field of DSP.
A DSP application development board is available for the lab. The goals of this course are
mainly to teach the students to apply DSP algorithms in practice and to learn to work with
the specialized hardware (i.e. a codec) that is available on the market today. The codec
(coder-decoder) will be introduced in Section 2.1.1.

1.1 Purpose and Prerequisites

The purpose of this course is to teach you to:

• work with several important components of a DSP system,

• write simple C programs to implement a filter using an ARM processor and a codec,

• design filters in MATLAB and use them with your own C code,

• design, implement and test a FIR and IIR filter, and

• optimize your C code and exploit the specific features of a modern codec.

The prerequisites of this course are:

• know how to program, and

• know how to program microcontrollers.

1.2 Course Planning

The module Training Digital Signal Processing (TDS02) is awarded with 3 ECTS-credits.
Passing this module will take about 80 working hours which consist of:

• 8 lab sessions of about 2.5 hours each = 20 hours total.

• about 60 hours of homework (prepare, write code, use MATLAB, write reports) (about
5.5 hours per week).

1.3 Document Organization

This document consists of several parts:

• Chapter 2 is an introduction to working with the course specific development boards.

Rotterdam University of Applied Sciences 3

TDS02 Chapter 1. Introduction

• Chapter 3 will refresh your knowledge about FIR filters and windowing and introduce
you to the MATLAB filter toolbox. It also contains the first of the assignment that
counts for your grade.

• Chapter 4 will refresh your knowledge about IIR filter. It introduces several IIR filter
structures that can be programmed. This chapter also contains the second assignment
that counts for your grade.

• Chapter 5 will teach you how to profile your code and how to take advantage of the
specific features provided by a modern codec to speed up your code. This chapter also
contains the third, and last, assignment that counts for your grade.

• Appendix A introduces fixed-point arithmetic.

4 Training Digital Signal Processing

TDS02

2

Preliminary Assignments

This chapter provides an introduction to working with the course specific DSP development
boards and software development environment. It contains:

• An introduction to the most important components of the DSP development boards:
ARM® Cortex®-M4 MCU processor and the coder-decoder (codec).

• A tutorial about working with the software development environment: Code Composer
Studio.

• An assignment to generate an output signal with the DSP development boards.

• An assignment to capture an input signal with the DSP development boards.

• An assignment to recall some DSP basics and teach you how to create a time delay by
using a buffer.

2.1 Assignment 0: Introduction to the CC3220 LAUNCH-

XL and CC3200AUDBOOST Boards

This lab work handbook uses the CC3200AUDBOOST Audio BoosterPack4 [3], shown in
Figure 2.1, in combination with the CC3220S LaunchPad development board5 [5], shown in
Figure 2.2.

The two most important components on these boards are the CC3220S SimpleLink™ Wi-Fi®

Wireless Microcontroller Unit and the TLV320AIC3254 Codec (coder-decoder). The CC3220S
System-on-Chip (SoC) [4, 6] is a single-chip with two separate execution environments:
an user application dedicated ARM® Cortex®-M4 MCU and a network processor MCU. The
TLV320AIC3254 [14, 15] is a 20-bit stereo audio codec with embedded miniDSP which can
operate with a sample rate of up to 192 ksps.

4 See: http://www.ti.com/tool/CC3200AUDBOOST.
5 See: http://www.ti.com/tool/cc3220s-launchxl.

Rotterdam University of Applied Sciences 5

http://www.ti.com/tool/CC3200AUDBOOST
http://www.ti.com/tool/cc3220s-launchxl

TDS02 Chapter 2. Preliminary Assignments

Figure 2.1: The CC3200AUDBOOST Audio BoosterPack.

Figure 2.2: The CC3220 LAUNCHXL SimpleLink™ Wi-Fi® LaunchPad™ Development Kit.

2.1.1 TLV320AIC3254 Codec

The two most important components within a codec are the Analog to Digital Converter
(ADC) and the Digital to Analog Converters (DAC). As can be seen in Figure 2.3 the TLV320-
AIC3254 stereo codec includes not only two ADCs and two DACs but also includes several
amplifiers and signal processing blocks.

As can be seen in the schematics of the CC3200AUDBOOST [2, Page 1] the stereo LINE IN
input of the board are connected to the IN1L and IN1R inputs of the codec, and the HPL
(HeadPhone Left) and HPR outputs of the codec are connected to the stereo LINE OUT
output of the board.

6 Training Digital Signal Processing

http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf#page=1

Assignment 0: Introduction to the Boards TDS02

Figure 2.3: Simplified block diagram of the codec [14, Page 3].

The codec is connected to the CC3220 Launchpad through two serial buses: an I2C bus6 and
an I2S bus7. The I2C bus is used to configure and control the codec and the I2S bus is used
to transfer the audio samples.

The codec contains an analog programmable gain amplifier before the ADC and a digital
volume control after the DAC. Despite its name, this digital volume control is implemented
as an analog amplifier with programmable gain. The amplification factors are specified in
decibels (dB), as can be seen in Figure 2.3. This is a logarithmic unit which is frequently
used in electrical engineering. The gain in dB (GdB) of an amplifier can be calculated as
follows:

GdB = 20 · log10
Vout

Vin
(2.1)

In which Vin and Vout are the input respectively the output voltages of the amplifier.

Using a logarithmic scale for the amplification of audio signals makes sense because the
sensitivity of the human ear to sound pressure works on a logarithmic scale too.

6 I2C stands for Inter-Integrated Circuit, more information can be found at: https://en.wikipedia.org/
wiki/I%C2%B2C.

7 I2S stands for Inter-IC Sound, more information can be found at: https://en.wikipedia.org/wiki/I%C2%
B2S.

Rotterdam University of Applied Sciences 7

http://www.ti.com/lit/an/slaa408a/slaa408a.pdf#page=3
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/I%C2%B2S
https://en.wikipedia.org/wiki/I%C2%B2S

TDS02 Chapter 2. Preliminary Assignments

Besides the ADCs, DACs, and amplifiers the codec also contains:

• Two miniDSP cores. The first miniDSP core is tightly coupled to the ADC, the second
miniDSP core is tightly coupled to the DAC. They support application-specific algorithms
in the record and playback paths of the device. The miniDSP cores are fully software
controlled. Target algorithms, like active noise cancellation, acoustic echo cancellation
or advanced DSP filtering can be loaded into the device after power-up.

• ADC and DAC signal-processing blocks for filtering and effects. These processing blocks
support different types of digital filtering.

• Automatic Gain Control (AGC). AGC can be used to maintain a nominally-constant
output level.

• Dynamic Range Compression (DRC). DRC automatically adjusts the gain of the DAC
to prevent hard clipping of peak signals.

• Beep generator. This generator can generate a sine wave signal.

• Digital Auto Mute. This feature switches of the output signal when the input is constant.
This eliminates high-frequency noise during silent periods of music or speech.

• Headset Detection. The codec can determine which type of headset is plugged in.

The codec is a complicated digital signal processing component on its own and it’s documen-
tation [14, 15] can be quite overwhelming at first.

2.1.2 CC3220S SoC

The functional block diagram of the CC3220S SimpleLink™ Wi-Fi® Wireless and Internet-of-
Things Solution, a Single-Chip Wireless MCU, is shown in Figure 2.4.

Figure 2.4: Functional block diagram of the CC3220S SoC [6, Page 4].

8 Training Digital Signal Processing

http://www.ti.com/lit/ds/symlink/cc3220.pdf#page=4

Assignment 0: Introduction to the Boards TDS02

The CC3220S System-on-Chip (SoC) is a single-chip with two separate execution environ-
ments: an user application dedicated ARM® Cortex®-M4 MCU and a network processor
MCU.

The ARM Cortex-M4 has no hardware support for floating-point calculations. Therefore, fixed-
point calculations will be used to implement the DSP algorithms discussed in this Lab Work
Handbook. Floating-point numbers use a constant number of significant bits (the significant)
which are scaled by an exponent. The decimal number 1234.56789 can be encoded in
decimal floating-point notation as 1.23456789× 103 and also as 123456789× 10−5. As you
can see the position of the decimal point can “float” within the number by adjusting the value
of the exponent. In computing systems the IEEE754 standard [9] to represent real numbers
is almost always used. This standard defines several formats for example single precision
(which is used to implement the type float in the C programming language) and double
precision (which is used to implement the type double in C). Double precision numbers in
the IEEE754 standard are 64 bits wide. One bit is used to determine the sign, 52 bits are used
for the significant and 11 bits are used for the exponent8. The floating-point representation
makes it possible to cover a wide, dynamic range of values with a constant number of
significant bits. A double precision number has 52 significant bits which corresponds to
about 16 significant decimal digits.

Fixed-point numbers use a fixed number of digits after and before the radix point. For
example 12 bits before and 4 bits after the binary point. The format of a fixed-point binary
number can be specified by using the Qn.m notation. In which n is the number of bits before
the binary point (without the sign bit) and m is the number of bits after the binary point.
For example, a number in Q0.15 format has one sign bit, zero bits before the binary point (a
zero is implied) and 15 bits after the binary point. If the number of bits before the binary
point is zero the Q format is sometimes abbreviated by omitting the n. For example Q0.15
can be abbreviated as Q15. Fixed-point numbers can be used to represent a limited range of
values with a constant resolution. There is no direct support (build-in types) for fixed-point
numbers in the C programming language. MATLAB, on the other hand, does support fixed
point numbers. In Appendix A a small introduction into fixed-point arithmetic is given.

The disadvantage of using floating-point numbers is that a significant amount of hardware is
needed to perform fast floating-point calculations. This hardware uses a significant amount
of power. Fixed-point calculations, on the other hand, only need about the same amount of
hardware as integer calculations do. Therefore, in embedded systems where price and or
power usage must be minimized, fixed-point numbers are often preferred over floating-point
numbers.

The ARM Cortex-M4 CPU has several specific features which enables it to execute digital
signal algorithms fast [13]:

• As mentioned in the introduction, DSP algorithms frequently use multiply-addition
combinations. For example, in a FIR filter implementation input samples are multi-
plied by coefficients and added together. The Cortex-M4 has specific MAC (Multiply
ACcumulate) instructions. For example, it is capable of a 16-bit x 16-bit multiplication
and a 32-bit add in a single cycle.

8 See: https://en.wikipedia.org/wiki/Double-precision_floating-point_format.

Rotterdam University of Applied Sciences 9

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

TDS02 Chapter 2. Preliminary Assignments

• The Cortex-M4 also has a 16-bit SIMD vector processing unit. With this SIMD (Single
Instruction Multiple Data) unit the Cortex-M4 can execute four 8-bit or two 16-bit
calculations with only one instruction.

• In a general purpose CPU an overflow occurs when the result of an arithmetic operation
on two signed numbers overflows the sign bit. For example, when the largest possible
16-bit signed value (215 − 1 = 32767 = 0x7FFF)9 is incremented by one the result
is 0x8000 = −32768 = −215. In a general purpose CPU this overflow is signaled by
a flag in some status register, but it is the responsibility of the programmer to take
appropriate actions. The Cortex-M4 has instructions which will signal an overflow but
it also has an alternative set of instructions which are called saturating instructions.
When these instructions are used, the output of a calculation is clipped to its maximum
or minimum value when the sign bit overflows. For example, when the largest possible
16-bit signed value (32767= 0x7FFF) is incremented by one in a saturating addition
instruction the result is 0x7FFF = 32767. In many DSP algorithms saturation is the
proper thing to do when the sign bit threatens to overflow. When this is the case the
programmer can use the saturating instructions and does not has to check for overflows
any more.

Besides these DSP specific features the Cortex-M4 also has features which will speed up the
execution of generic algorithms such as pipelining and branch prediction [7].

To execute DSP algorithms even more efficiently Texas Instruments also provides proces-
sors which are specialized for this task; so called DSP’s (Digital Signal Processors). The
C5000 family10 of DSPs is optimized for fixed-point calculations and is very energy effi-
cient. They also offers a family of DSPs which are optimized for floating-point calculations:
the C6000 family11. Other companies which produce DSPs are: Analog Devices12, NXP
Semiconductors13, and others14.

2.1.3 Electrostatic Discharge

Before we continue there is one very important thing to know: The CC3220 LAUNCHXL
and CC3200AUDBOOST development boards are sensitive to electrostatic discharge
(ESD)!

Before you actually touch the board, observe the following precautions:

• Ground yourself by using a wrist-strap.

• Always use a shielded bag if you need to transport the board.

If you fail to comply with these precautions you can damage the board beyond repair.

9 The prefix 0x is used to denote hexadecimal notation.
10 http://www.ti.com/processors/dsp/c5000-dsp/overview.html
11 http://www.ti.com/processors/dsp/c6000-dsp/overview.html
12 http://www.analog.com/en/products/processors-dsp/dsp.html
13 https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-

mcus/digital-signal-processors:Digital-Signal-Processors
14 https://en.wikipedia.org/wiki/Digital_signal_processor#Modern_DSPs

10 Training Digital Signal Processing

http://www.ti.com/processors/dsp/c5000-dsp/overview.html
http://www.ti.com/processors/dsp/c6000-dsp/overview.html
http://www.analog.com/en/products/processors-dsp/dsp.html
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://www.nxp.com/products/processors-and-microcontrollers/additional-processors-and-mcus/digital-signal-processors:Digital-Signal-Processors
https://en.wikipedia.org/wiki/Digital_signal_processor#Modern_DSPs

2.2. Assignment 1: Working with Code Composer Studio TDS02

Figure 2.5: The CC3220 LAUNCHXL and CC3200AUDBOOST are sensitive to ESD.

2.2 Assignment 1: Working with Code Composer Stu-

dio

In this assignment you will run and test a demo program on your CC3220 LAUNCHXL and
CC3200AUDBOOST development boards. You need a source to produce an audio signal
(preferable a signal generator) and a way to inspect the output (preferable an oscilloscope).
Alternatively you can use your smartphone and a headset to test the demo program.

2.2.1 Installing Software and Configure Hardware

The website http://tds02.bitbucket.io/ explains how to:

• install the software needed for this course:

◦ Tera Term. A terminal emulator is needed because a lot of TI’s demo programs
use a (virtual) terminal connection to report statuses and errors. Tera Term was
chosen because it recognizes which (virtual) serial ports are available.

◦ UniFlash. This program is used to program the flash memory on the CC3220
LAUNCHXL board.

◦ Soundcard Oscilloscope. In the lab you can use a normal oscilloscope but at home
you can use this program to generate and measure signals. You can also use this
this program to generate frequency response graphs.

◦ Code Composer Studio (CCS). This Integrated Development Environment (IDE)
will be used to develop software for the CC3220S. This IDE is provided for free
by Texas Instruments and is based on the Eclipse open source IDE which is widely
used.

◦ SimpleLink Software Development Kit (SDK). This SDK contains software libraries
which make software development for the CC3220S more easy. It is also contains
many example projects.

• reconfigure the CC3220 LAUNCHXL to not start a Wi-Fi access point when the board is
powered up.

Rotterdam University of Applied Sciences 11

http://tds02.bitbucket.io/

TDS02 Chapter 2. Preliminary Assignments

• recompile the driverlib (a part of the SimpleLink SDK). To properly debug programs
which use the driverlib, it must be recompiled.

• connect the CC3200AUDBOOST Audio BoosterPack to the CC3220 LAUNCHXL board.

2.2.2 Running the Demo Program

Follow the description given at: http://tds02.bitbucket.io/ to run the demo program
on your CC3220 LAUNCHXL and CC3200AUDBOOST boards.

Code Composer Studio is an Eclipse-based IDE. All Eclipse-base IDEs work from a certain
workspace. In this tutorial the workspace directory C:\workspace_v9\CC3220S is used.

Please note that after completing an assignment or at the end of the lab, you have to
move your complete workspace from the local C:\ drive to your private network drive
so that you will not lose your work when other students use the computer!

Be sure to move, and not copy, your workspace to prevent others from using your work
without your consent. Whenever you start with the lab again, you can just copy back your
workspace to C:\. You may also place your workspace on your private network drive H:\

and let CCS work from there, but this might slow down the compilation process.

It is recommended to play a little bit with the demo program in the debug perspective. Try
to add breakpoints and variables watches. If you think everything is working fine, call your
instructor.

Signature instructor for assignment 1:

2.3 Assignment 2: Generating Output

For this assignment you need an oscilloscope to view the signal that is generated by the
CC3200AUDBOOST board. If you do not have a oscilloscope available then you can use your
PC using the program which can be found here: https://www.zeitnitz.eu/scms/scope_
en.

2.3.1 Polling-based Output

The most straightforward method for sending samples to the codec is to use polling which is
explained in this section.

Open Code Composer Studio and copy the demo project line_in_2_line_out to a new
project called audioSine1kHz. Replace the code in the file main_nortos.c with the code
from audioSine1kHz/main_nortos.c shown in Listing 2.1.

12 Training Digital Signal Processing

http://tds02.bitbucket.io/
https://www.zeitnitz.eu/scms/scope_en
https://www.zeitnitz.eu/scms/scope_en
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/audioSine1kHz/main_nortos.c

2.3. Assignment 2: Generating Output TDS02

6 #include <stdint.h>

7 #include <stddef.h>

8 #include <stdio.h>

9 #include <NoRTOS.h>

10

11 #include <ti/devices/cc32xx/inc/hw_memmap.h>

12 #include <ti/devices/cc32xx/inc/hw_types.h>

13 #include <ti/devices/cc32xx/driverlib/prcm.h>

14 #include <ti/devices/cc32xx/driverlib/i2s.h>

15 #include <ti/drivers/I2C.h>

16

17 #include "Board.h"

18 #include "config.h"

19

20 // You can select the sample rate here

21 #define SAMPLINGFREQUENCY 48000

22 #if SAMPLINGFREQUENCY < 8000 || SAMPLINGFREQUENCY > 48000 || ←-
,→ SAMPLINGFREQUENCY % 4000 != 0

23 #error Sampling Frequency must be between 8 kHz and 48 kHz ←-
,→ (included) and must be a multiple of 4 kHz.

24 #endif

25

26 int main(void)

27 {

28 // Init CC3220S LAUNCHXL board.

29 Board_initGeneral ();

30 // Prepare to use TI drivers without operating system

31 NoRTOS_start ();

32

33 printf("1 kHz sine wave ==> Left HP LINE OUT.\n");

34

35 // Configure an I2C connection which is used to configure the ←-
,→ audio codec.

36 I2C_Handle i2cHandle = ConfigureI2C(Board_I2C0 , I2C_400kHz);

37 // Configure the audio codec.

38 ConfigureAudioCodec(i2cHandle , SAMPLINGFREQUENCY);

39

40 // Configure an I2S connection which is use to send/receive ←-
,→ samples to/from the codec.

41 ConfigureI2S(PRCM_I2S , I2S_BASE , SAMPLINGFREQUENCY);

42

43 /* Pre -generated sine wave data , 16-bit signed fixed point ←-
,→ samples Q0.15 */

44 int16_t sinetable [48] = {

45 0x0000 , 0x10b4 , 0x2120 , 0x30fb , 0x3fff , 0x4dea ,

46 0x5a81 , 0x658b , 0x6ed8 , 0x763f , 0x7ba1 , 0x7ee5 ,

47 0x7ffd , 0x7ee5 , 0x7ba1 , 0x76ef , 0x6ed8 , 0x658b ,

48 0x5a81 , 0x4dea , 0x3fff , 0x30fb , 0x2120 , 0x10b4 ,

49 0x0000 , 0xef4c , 0xdee0 , 0xcf06 , 0xc002 , 0xb216 ,

Rotterdam University of Applied Sciences 13

TDS02 Chapter 2. Preliminary Assignments

50 0xa57f , 0x9a75 , 0x9128 , 0x89c1 , 0x845f , 0x811b ,

51 0x8002 , 0x811b , 0x845f , 0x89c1 , 0x9128 , 0x9a76 ,

52 0xa57f , 0xb216 , 0xc002 , 0xcf06 , 0xdee0 , 0xef4c

53 };

54

55 int16_t sec , msec , sampleNum;

56 int16_t dataLeft;

57 size_t n = 0;

58

59 for (sec = 0; sec < 5 * 60; sec++) {

60 for (msec = 0; msec < 1000; msec ++) {

61 for (sampleNum = 0; sampleNum < ←-
,→ SAMPLINGFREQUENCY /1000; sampleNum ++) {

62 dataLeft = sinetable[n];

63 I2SDataPut(I2S_BASE , I2S_DATA_LINE_0 , (unsigned ←-
,→ long)dataLeft);

64 I2SDataPut(I2S_BASE , I2S_DATA_LINE_0 , 0);

65 n++;

66 if (n == 48) {

67 n = 0;

68 }

69 }

70 }

71 }

72

73 printf("\n*** Progam ended ***\n");

74

75 return 0;

76 }

Listing 2.1: Program to generate a 1 kHz sine wave on the left audio output channel.

Connect the LINE OUT output of the CC3200AUDBOOST board to the oscilloscope, compile
and run the program, and view the output signals on the scope.

The signal is quite noisy. You should select “HF Rejection” in the trigger menu to properly
trigger and measure the signal. First press the “Autoset” button on the scope, then press
the “MENU” button in the “TRIGGER” section of the scope. First select “Slope/Coupling”
and then press “Rejection Off” twice to select “Rejection HF”. With this setting the scope
will reject the high frequency noise in the signal when triggering. Your scope should display
something similar to Figure 2.6. The colors are inverted in this figure to save some ink.

Samples are transfered from the CC3220S chip to the TLV320AIC3254 codec by using the
I2S bus15.

Every time the function I2SDataPut [4, Page 382] is called, it will stay in some loop that
waits for the codec to be ready to accept new data. The codec expects two new samples
every sample time Ts. One sample for the left audio channel and one sample for the right

15 More information about the I2S bus can be found at https://en.wikipedia.org/wiki/I%C2%B2S

14 Training Digital Signal Processing

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=382
https://en.wikipedia.org/wiki/I%C2%B2S

2.3. Assignment 2: Generating Output TDS02

Figure 2.6: 1 kHz sine wave.

audio channel. In this case the sample frequency fs is 48 kHz so the sample time Ts = 1/ fs is
20.833µs. So the function I2SDataPut must be called every 10.417µs. If there is any spare
time between two calls to the function I2SDataPut, it keeps waiting until a new sample
must be sent. When the codec is ready to receive a new sample the function I2SDataPut

will actually send the sample. When the function I2SDataPut is called too late, a so called
underflow error is generated by the I2S hardware and the communication with the codec
comes to a halt.

The program in Listing 2.1 repeatedly waits (inside the function I2SDataPut) until a new
sample can be written to the codec. The implementation of the I2SDataPut can be found
in the driverlib16. The function repeatedly checks the XDATA bit in the XSTAT register [4,
Page 423] to check is the I2S controller is ready to send data. This repeatedly checking is
called “polling”. If our program has nothing else to do, polling is fine. But if we want our
program to perform some other actions we must be very careful to provide the samples on
time because when we do not provide a new sample on time the signal communication with
the codec will come to a halt. Before we look into a different method to output samples,
change the program to generate a square wave of 1 kHz on the right audio channel while
keeping the 1 kHZ sine on the left audio channel. The top-top amplitude of the square wave
should be equal to the top-top amplitude of the sine wave.

Change the sampling frequency to 8 kHz and explain to your instructor what happens.

Signature instructor for assignment 2a:

16 C:\ti\simplelink_cc32xx_sdk_3_20_00_06\source\ti\devices\cc32xx\driverlib\i2s.h

Rotterdam University of Applied Sciences 15

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=423

TDS02 Chapter 2. Preliminary Assignments

2.3.2 Interrupt-based Output

Another way to output (and input) samples is interrupt-based. This way, our processor will
(instead of constantly waiting for the codec to demand a sample) jump to a dedicated piece
of code called an interrupt routine, whenever the codec indicates that it wants a new sample.
This has advantages over polling.

Here is a nice analogy. Suppose that you’re following a lecture on DSP and, between every
sentence, your lecturer will ask you and all of your class-mates: “Do you have a question?”
Your lecturer is now working polling-based, spending a lot of time and effort in “polling” the
students.

Instead of doing this, an agreement can be made that if the students have a question, they
raise their hand so they can “interrupt” the lecturer to ask a question (after the lecturer
finishes the current sentence). Then, the lecturer only has to answer when a question arises.
Now, the lecturer is working interrupt-based, which is obviously much more efficient, since
now the lecturer can keep talking when there are no questions.

This is somewhat the same for the processor and the codec. When the codec has a question
“Can I get a new sample?”, the processor finishes its current instruction, and then only has
to give some sample to the codec in a brief moment. Then the processor can go back to its
original task at hand.

To facilitate interrupt handling, we’ll make use of the driverlib [4, Page 383]. In Listing 2.2
a simple interrupt-based program is given. This program can be downloaded from audio-

Interrupt/main_nortos.c.

6 #include <stdint.h>

7 #include <stddef.h>

8 #include <stdio.h>

9 #include <NoRTOS.h>

10

11 #include <ti/devices/cc32xx/inc/hw_memmap.h>

12 #include <ti/devices/cc32xx/inc/hw_types.h>

13 #include <ti/devices/cc32xx/driverlib/prcm.h>

14 #include <ti/devices/cc32xx/driverlib/i2s.h>

15 #include <ti/drivers/I2C.h>

16

17 #include "Board.h"

18 #include "config.h"

19

20 // Only define MAXOUTPUT when signal is viewed on a scope (to ←-
,→ protect your ears).

21 //#define MAXOUTPUT

22

23 // You can select the sample rate here

24 #define SAMPLINGFREQUENCY 48000

25 #if SAMPLINGFREQUENCY < 8000 || SAMPLINGFREQUENCY > 48000 || ←-
,→ SAMPLINGFREQUENCY % 4000 != 0

16 Training Digital Signal Processing

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=383
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/audioInterrupt/main_nortos.c
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/audioInterrupt/main_nortos.c

2.3. Assignment 2: Generating Output TDS02

26 #error Sampling Frequency must be between 8 kHz and 48 kHz ←-
,→ (included) and must be a multiple of 4 kHz.

27 #endif

28

29 // ISR that will be called when I2S is ready to send a sample to ←-
,→ the codec.

30

31 void I2S_ISR(void)

32 {

33 static int n = 0;

34 #ifdef MAXOUTPUT

35 static unsigned long data = INT16_MAX;

36 #else

37 static unsigned long data = 100;

38 #endif

39 if (n % 2 == 0)

40 {

41 // write left channel

42 I2SDataPutNonBlocking(I2S_BASE , I2S_DATA_LINE_0 , data >> 1);

43 }

44 else

45 {

46 // write right channel

47 I2SDataPutNonBlocking(I2S_BASE , I2S_DATA_LINE_0 , -data);

48 }

49 n++;

50 if (n == 48) {

51 data = -data;

52 n = 0;

53 }

54 I2SIntClear(I2S_BASE , I2S_INT_XDATA);

55 }

56

57 int main(void)

58 {

59 // Init CC3220S LAUNCHXL board.

60 Board_initGeneral ();

61 // Prepare to use TI drivers without operating system

62 NoRTOS_start ();

63

64 printf("1 kHz sinewave ==> Left HP LINE OUT.\n");

65

66 // Configure an I2C connection which is used to configure the ←-
,→ audio codec.

67 I2C_Handle i2cHandle = ConfigureI2C(Board_I2C0 , I2C_400kHz);

68 // Configure the audio codec.

69 ConfigureAudioCodec(i2cHandle , SAMPLINGFREQUENCY);

70

Rotterdam University of Applied Sciences 17

TDS02 Chapter 2. Preliminary Assignments

71 // Configure an I2S connection which is use to send/receive ←-
,→ samples to/from the codec.

72 ConfigureI2S(PRCM_I2S , I2S_BASE , SAMPLINGFREQUENCY);

73

74 // Register I2S_ISR

75 I2SIntRegister(I2S_BASE , I2S_ISR);

76 // Enable interrupt to I2S_ISR when I2S is ready to send a ←-
,→ sample to the codec

77 I2SIntEnable(I2S_BASE , I2S_INT_XDATA);

78

79 while (1);

80

81 return 0;

82 }

Listing 2.2: A simple interrupt-based program.

As you can see on line 79 the main function of this program simply burns clock cycles in a
while (1)-loop after initializing the codec and the interrupt. In this case, it is not useful to
use an interrupt but in a real world application the main function can perform other tasks
without worrying about the “feeding” of the codec. Normally, within this while loop there will
be function calls to do all kinds of things the application has to do (for example communicate
with some network device, or read data from storage). However, calculating and sending a
new output sample now happens in the interrupt service routine (ISR) called I2S_ISR().
Whenever the codec needs a sample, it will interrupt the processor. The processor will
jump into the ISR, send data to the codec, calculate a new sample, and continue with the
normal program. Keep in mind that interrupt service routines should be as small and quick
as possible and should not contain any polling themselves, hence it might defeat the whole
purpose of an interrupt.

The variables n and data which are defined inside the ISR, see Listing 2.2 line 33 to 38, are
declared by using the static keyword. If we hadn’t done this, these variables would have
been freshly created each time the ISR is called. By declaring these variables as static local
variables17 their lifetime is extended to the time the program ends. Although, their scope is
still local to the function in which they are declared.

On line 14 of Listing 2.2 the file i2s.h is included. This file declares the functions we can
use to initialize the interrupt vector table and to enable the interrupts. The call to the
function I2SIntRegister [4, Page 383] on line 75 defines the function to be called when
the I2S interrupt occurs. The call to I2SIntEnable on line 77 enables the I2S_INT_XDATA

I2S interrupt source.

Now, first predict the output on the left and right LINE OUT channels and then verify your
predictions with the oscilloscope. Explain the output signals to your instructor.

17 For more information about static local variables see: https://en.wikipedia.org/wiki/Static_variable.

18 Training Digital Signal Processing

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=383
https://en.wikipedia.org/wiki/Static_variable

2.4. Assignment 3: Receiving Input TDS02

Signature instructor for assignment 2b:

The code shown in Listing 2.2 can be used as a base program for all the other interrupt-based
programs you will write during this course.

Write and test an interrupt-based program that outputs a sine on the left channel and a
cosine on the right channel. Use the XY function of the oscilloscope to display a circle.

Make use of a the sine look-up table used in Listing 2.1. Note that you do not need a separate
cosine look-up table. The sine and cosine should have a frequency of 1 kHz and the sample
rate should be 48 kHz. The amplitudes should be as high as possible.

Show the result to your instructor.

Signature instructor for assignment 2c:

2.4 Assignment 3: Receiving Input

In Section 2.2.2 on Page 12 you already tested the demo project called line_in_2_line_out

which simply copies the signal from the LINE IN input to the LINE OUT output. This demo
program uses polling-based input.

2.4.1 Interrupt-based Input

Copy the project line_in_2_line_out to a new project called line_in_2_line_out_inter-

rupt and modify the program to work interrupt-based. Use a sampling rate of 48 kHz.

You can find the names of the individual I2S interrupt sources in Table 12-1 of the CC3220
SimpleLink™ Wi-Fi® and Internet of Things Technical Reference Manual [4, Page 385].

When your program is working, use a signal generator to apply a 1 kHz saw-tooth shaped
signal with an amplitude of 1 Vpp to the left channel of the LINE IN input and verify that the
signal on the LINE OUT output is similar. What is the delay between the input and output
signals?

Show your program and the result to your instructor.

Rotterdam University of Applied Sciences 19

http://www.ti.com/lit/ug/swru465/swru465.pdf#page=385

TDS02 Chapter 2. Preliminary Assignments

Signature instructor for assignment 3:

2.4.2 Audio Input

Connect an audio output (e.g. your smartphone) to the LINE IN input. Verify that you hear
the audio signal from the input on the output by connecting headphones to the LINE OUT
output.

2.5 Assignment 4: Delays

When making filters, we will need a buffer. Recall the formulas of the preliminary assignment.

One nice application of a buffer is an echo effect. For this assignment we will create this effect
on the CC3220 LAUNCHXL and CC3200AUDBOOST boards. You should bring a headset to
test it.

Suppose we have some circular buffer with N entries buffer[N]. A circular buffer is a buffer
that, if we want to fill the buffer at some time n, we fill it at index buffer[n mod N]. This is
a formal way of saying that we just let some variable count up with 1 for every sample which
indicates the buffer location, and when the variable reaches the end of the buffer, we just
reset that variable to 0 so it “circulates” around the buffer from the end back to the start.

start

n = 0
fill buf fer with zeros

input sample

output sample =
input sample +
buf fer[n] × c

output sample

buf fer[n] =
output sample

n = (n+ 1) mod N

Figure 2.7: Flow diagram to create a simple echo effect.

20 Training Digital Signal Processing

2.5. Assignment 4: Delays TDS02

We can use this to create a nice echo effect, see Figure 2.7 At time n we want to output the
buffer value buffer[n] multiplied by some constant c, plus our current input sample. After
we output this sample, we put the sample in buffer location buffer[n]. Now if c == 1,
there will be an infinite echo which will make the signal louder and louder (don’t try this,
your ears will get hurt). If we make c smaller than 1, say, 0.75, then every time the buffer
index passes that entry again, that original sample will become smaller (exponentially over
time), and every time a new sample is added to it (which in turn becomes smaller every time
after that as well).

Write and test a program that applies an echo effect on the audio input. Use a sample
frequency of 48 kHz and choose N so that the first echo will appear after 0.5 s. Choose c to
be 0.5 to start with. Also set c to 0.75 and observe the difference. The echo effect is best
observed by using an audio fragment of spoken text.

Show the result to your instructor.

Signature instructor for assignment 4:

Rotterdam University of Applied Sciences 21

TDS02

3

FIR Filters

In this chapter we will focus on designing and implementing a Finite Impulse Response (FIR)
filter. The formula for a FIR filter is:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Where y[n] are the output samples, bk are the filter coefficients, x[n] are the input samples,
and N is the order of our filter.

3.1 Determination of the Coefficients

Usually we want to filter signals in the time domain, because signals are a function of time in
the real world and not of frequency. However, when we speak about filters we often define
their response in the frequency domain. We can use some math to transform our filter back
to the time domain.

We will now show how this is done. This is a summary of what you may have learned in the
DSP01 course (see [11, Chapter 5]).

The Inverse Discrete-Time Fourier Transform (IDTFT) is given by:

x[n] = Ts

∫
1

2Ts

−1
2Ts

X (f) · e j2πnf Ts d f (3.1)

Where X (f) is the spectrum of our signal, f is the frequency, and Ts is the period of our
discrete-time steps which is 1

fs
, where fs is the sample frequency.

This is an integral transformation which transforms a signal in the frequency domain (X (f))
to the continuous-valued discrete-time domain (x[n]).

Since the Discrete-Time Fourier Transform (DTFT) is a linear transformation, we may say
convoluting two signals in the time domain is the same as multiplying their spectra in the
frequency domain. Therefore we can easily design the frequency response in the frequency

Rotterdam University of Applied Sciences 23

TDS02 Chapter 3. FIR Filters

domain and then transform it back to the time domain so we can implement it in, for example,
a microcontroller.

Let’s look at the frequency response magnitudes of a low-pass filter:

�

�Hl p(f)
�

�=







1
− fs

a
≤ f ≤

fs

a
, a ≤ 2

0 otherwise
(3.2)

Note that a must be smaller than 2 because half the sample rate equals the Nyquist-Frequency.
The function is shown in Figure 3.1.

 | |
 -fs/2 -fs/a 0 fs/a fs/2 f 

|H
(f

)|
 

 1

Figure 3.1: Low-pass filter frequency response.

Also recall that the function is symmetric around the origin of the graph due to the complex
conjugate properties of the Fourier Transform of some function. We could also have drawn
this figure from 0 to fs

2 , but this would make the integral we have to solve, for the inverse
transform, a bit more cumbersome.

We can transform the above function of frequency H(f) back to a function of time using the
IDTFT. Note that fc is the cut-off frequency of the filter, a = fs

fc
. So for example, if we have a

sample rate of 8000 Hz and we want our cut-off frequency to be 1000 Hz, we take a = 8.

The IDTFT of a low-pass filter now becomes (substituting Ts =
1
fs

and changing the integral
limits to confirm with the frequency response of the low-pass filter, since only at that interval
our function H(f) = 1 and it is 0 anywhere else):

hl p[n] =
1
fs

∫

fs
a

− fs
a

e j2πn f
fs d f (3.3)

Then by solving the integral we find:

hl p[n] =
1

fs j2πn 1
fs

�

e j2πn f
fs

�

fs
a

− fs
a

(3.4)

Substituting the limits gives:

hl p[n] =
1

j2πn

�

e
j2πn

a − e
− j2πn

a

�

(3.5)

24 Training Digital Signal Processing

3.1. Determination of the Coefficients TDS02

By using Euler’s Formula eα j = cos(α) + j sin(α) we find:

hl p[n] =
1

j2πn

�

cos
�

2πn
a

�

+ j sin
�

2πn
a

�

− cos
�

−2πn
a

�

− j sin
�

−2πn
a

��

(3.6)

Which simplifies to:

hl p[n] =
1

j2πn
2 j sin

�

2πn
a

�

(3.7)

Further simplification gives:

hl p[n] =
sin
�

2
aπn

�

πn
=

2
a

sinc
�

2n
a

�

(3.8)

The function sinc(n) =
sin(nπ)

nπ
is called the normalized cardinal sine function and is widely

used in DSP techniques.

We can now determine any hl p[n] with this formula, except for the non-trivial case of n = 0,
because dividing by zero is not possible. We can determine the value of hl p[0] by calculating
the limit of hl p[n] for n → 0. Because the limit of n → 0 for both the nominator and
denominator are zero, L’Hôpital’s rule can be applied:

hl p[0] = lim
n→0

sin
�

2
aπn

�

πn
= lim

n→0

d
�

sin
�

2
aπn

��

dn
d (πn)

dn

= lim
n→0

2
aπ · cos

�

2
aπn

�

π
=

2
a

(3.9)

In a similar way we can derive the responses of high-pass, band-pass and band-stop filters as
well:

High-pass:

hhp[n] =
− sin

�

2
aπn

�

πn
(3.10)

with Hhp(f) = 1 for | f | ≥ fs
a , 0 otherwise.

Band-pass:

hbp[n] =
sin
�

2
bπn

�

− sin
�

2
aπn

�

πn
(3.11)

with Hbp(f) = 1 for fs
a ≤ | f | ≤

fs
b , 0 otherwise.

Band-stop:

hbs[n] =
sin
�

2
aπn

�

− sin
�

2
bπn

�

πn
(3.12)

Rotterdam University of Applied Sciences 25

TDS02 Chapter 3. FIR Filters

with Hbs(f) = 0 for fs
a ≤ | f | ≤

fs
b , 1 otherwise.

3.2 Example

For example, in some digital system with a sample frequency of 8 kHz, we might want to
make a low-pass filter with pass-band 0 to 1000 Hz and stop-band 1000 Hz to Fs/2 Hz.

For our cut-off frequency of 1000 Hz, first we calculate a, which is:

a =
fs

fc
=

8000
1000

= 8 (3.13)

Now we can calculate our first coefficient:

hl p[0] =
2
a
=

1
4
= 0.25 (3.14)

Now for n 6= 0:

hl p[n] =
sin
�

πn
4

�

πn
(3.15)

The first 10 coefficients on both sides of n = 0 of this filter are shown in Table 3.1 and
Figure 3.2.

Table 3.1: Coefficients.

n h[n]

0 0.250

1, -1 0.225

2, -2 0.159

3, -3 0.075

4, -4 0.000

5, -5 -0.045

6, -6 -0.053

7, -7 -0.032

8, -8 0,000

9, -9 0.025

10, -10 0.032

-0.100

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

h[n]

Figure 3.2: Discrete-time transfer function of a low-pass filter.

Note that we should fill in any integer for n, not just -10 to 10. If the number of coefficients
gets very large, the delay will be very long. Even so, if we wish to fully replicate the ideal
filter response we’ve used in the previous example, we need to let n go from −∞ to +∞.

26 Training Digital Signal Processing

3.3. Windowing TDS02

This would give an infinite delay, so our ideally filtered signal will never appear on the output
while the universe lasts, not to mention that we need infinite memory in our DSP system.

3.3 Windowing

Because we cannot allow a real filter to have an infinite number of coefficients, we will need
to limit the response of our filter. In the above case, where we cut off all |n| ≥ 11, we can
see what result this has on the frequency response of our filter if we transform it back to
the frequency domain (using the DTFT). Because this is a lot of work, we will do this in
MATLAB. We can use the freqz() function in MATLAB to calculate the frequency response,
see lpfvbfreqresp.m. The result is shown in Figure 3.3.

Frequency (Hz)
0 500 1000 1500 2000 2500 3000 3500 4000

M
ag

ni
tu

de
 (

dB
)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Figure 3.3: Frequency response of an abruptly ended transfer function.

We can now see that our frequency response is not ideal anymore and that so-called side-lobes
are introduced where the desired frequency response should be 0. Also the steepness of the
filter is not as good as in the ideal case since we have a limited number of coefficients. This
is mainly due to the abrupt ending of the desired discrete-time representation of our transfer
function h[n].

As you must recall from the DSP01 course we can let the coefficients slowly but more steadily
approach to zero near the edges of our “window” (the part of the filter we’re interested in),
by somehow scaling the coefficients a bit using a method called windowing. This way, the
abrupt ending of coefficients (which results in the occurrence of, among other things, the
side-lobes) will be somewhat compensated for. This is at the cost of our filter to be less like
the ideal filter.

Rotterdam University of Applied Sciences 27

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfvbfreqresp.m

TDS02 Chapter 3. FIR Filters

Recall the formula for the output of a non-recursive filter:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Note that since our transfer function h[n] (and the window functions which we will discuss
later) are non-causal (they depend on values of the future), when implementing the filters,
we shift the transfer function h[n] backward in time so that each coefficient bk = h

�

k− N
2

�

(assuming that N is even). For more information, see [11, page 151].

We can expand this formula by taking the windowing function into account:

y[n] =
N
∑

k=0

wk · bk · x[n− k] (3.16)

Where wk are the coefficients of our window.

For example, we can take a simple window called the Hamming window (recall DSP01).
The formula for a Hamming window is:

w[n] = 0.54+ 0.46 cos
�

2πn
N − 1

�

(3.17)

Where N is the order of the filter.

The Hamming window is one of the most commonly used windows [10]. The window itself
is shown in Figure 3.4.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

w[n]

Figure 3.4: The Hamming window.

When we apply this window to our desired, but abruptly ended discrete-time transfer function
we get the discrete-time transfer function shown in Figure 3.5.

Compare Figure 3.5 to Figure 3.2. Note that the coefficients and the edge of the function
slowly decrease to 0, therefore avoiding the abrupt ending of our transfer function, and thus

28 Training Digital Signal Processing

3.3. Windowing TDS02

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

0.300

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

h[n]·w[n]

Figure 3.5: Discrete-time transfer function adjusted by the Hamming window.

reducing unwanted effects such as side-lobes, etc. For comparison, see Figure 3.6 which
shows the frequency response of the filter with and without the application of the Hamming
window. The frequency response graph shown in red is that of our original filter with the
abrupt ending of coefficients (also called a rectangular window), and the graph shown in
blue is that of our filter with the Hamming window applied.

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (

dB
)

Rectangular window applied
Hamming window applied

Figure 3.6: The effect of the application of the Hamming window on the frequency response

(blue) compared to applying a rectangular window (red).

Rotterdam University of Applied Sciences 29

TDS02 Chapter 3. FIR Filters

Although the steepness of the filter is decreased, the side-lobes of our Hamming windowed
filter are smaller (note that the first side-lobe for the Hamming windowed filter has a
maximum magnitude of -50 dB, and for the rectangular window this maximum magnitude
is -20 dB).

There are many other window types, and the Hamming window is certainly not one of the
best windows. For your assignment you may use any other window type as long as you give
arguments for choosing a certain type and discuss its properties in your report.

3.4 MATLAB Filter Designer

We have already shown that it takes a lot of work to derive the coefficients, not to mention
to analyse what happens with different windows. We can use a special tool in MATLAB to do
this easier and faster. We will give an example of the same filter we specified above.

Start MATLAB and type in filterDesigner (previously known as FDA Tool). The window
shown in Figure 3.7 will open.

Figure 3.7: The Filter Designer main window.

In MATLAB’s Filter Designer we can design filters more easily than when we have to calculate
all the values by hand. We will give a short overview on the different sections of this window.

• Current Filter Information:
Here we can see what type of filter implementation we’re aiming for (we will discuss
these types later). Also the order of the filter can be seen. We can see whether the filter

30 Training Digital Signal Processing

3.4. MATLAB Filter Designer TDS02

we’ve designed is stable (always stable for FIR filters) as well. For IIR filters, if you
want to change the structure, you can right click on this section to change this option.

• Response Type:
Here we can select the different response types. We will only use low-pass, high-pass,
band-pass and band-stop. Also the design method can be selected. For now we will
use the FIR method with windowing, but note there are many other ways to design a
filter. In Section 4.5 we will design an IIR filter.

• Filter Order:
Here we can specify the order, or we can specify to let MATLAB determine the minimum
needed order of our filter based on the other specifications.

• Options:
Here we can select different options and specify parameters for different filter types,
windows types, etc.

• Frequency Specifications:
Here we can specify the frequency properties of our filter, like the sample rate, pass
frequencies and stop frequencies.

• Magnitude Specifications:
Here we can select the magnitude properties of our filter, like the magnitudes in the
pass- and stop-band.

• Filter Specifications:
This section gives a graphical overview of the selected filter and the designed filter.
Basically this gives us the frequency response, but we can also show the phase response
if we want.

Now use the tool to design a FIR low-pass filter of order 20, using a rectangular window.
The cut-off frequency should be 1 kHz and the sample rate should be 8 kHz. Make sure
to deselect the “Scale Passband” option in the Options section after you’ve selected the
windowed method. When you push the “Design Filter” you should see the same result as
shown in Figure 3.8.

Now we are interested in the coefficients of the filter. In the menu, click “Analysis” and then
“Filter Coefficients”. Verify that they are the same as the coefficients we presented earlier in
Table 3.1. We can see the benefit of using a tool like MATLAB’s Filter Designer now, since we
won’t have to calculate all the values by hand.

We can even export the coefficients to a C header that we can use in our programs. In the
menu, select “Targets”, “Generate C header. . . ”. Now a new dialog is shown, see Figure 3.9.

The numerator is the name your coefficients will get later on; the numerator length is a
variable which represents the order of your filter + 1. Because we use a Cortex-M4 without
floating-point support to implement the filter, we export the coefficients as signed 16-bit
integers.

If we open the exported file, we can see the filter coefficients at the bottom, and the variable
representing the order + 1 of our filter. Note that the order + 1 is the number of coefficients,
and thus the size of our buffer which we will have to use to store delayed samples later on.

Rotterdam University of Applied Sciences 31

TDS02 Chapter 3. FIR Filters

Figure 3.8: 1 kHz low-pass filter in MATLAB’s Filter Designer.

Figure 3.9: Generate C header dialog.

The lines that are actually useful are the last 6 ones, which define the variable named
BL which is initialized with the number of coefficients18 and the array named B which is
initialized with the values of the coefficients. Since we will not make use of the header file
tmwtypes.h from MATLAB, remove everything except those last lines and modify the code
so the file fdacoefs.h looks like the one shown in Listing 3.1. The variable BL is replaced
by a define so we can use this identifier to declare the size of the array B. We have used the

18 Note that the number of coefficients is one more than the order of the filter.

32 Training Digital Signal Processing

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/fdacoefs.h

3.5. Assignment 5: Finite Impulse Response Filter TDS02

type int16_t to define the array B. The type int16_t is defined in the standard C include
file stdint.h19.

#define BL 21

const int16_t B[BL] = {

1043, 819, 0, -1054, -1738, -1475, 0, 2458,

5215, 7375, 8192, 7375, 5215, 2458, 0, -1475,

-1738, -1054, 0, 819, 1043

};

Listing 3.1: 16-bit signed integer coefficients generated by MATLAB.

The const keyword actually means that we cannot change the values stored in the array B

during run-time.

Note that our coefficients have been scaled now from floating-point numbers in MATLAB, to
signed two’s complement fixed-point integers. The 16-bit numbers generated by MATLAB
have 15 fractional bits and one sign bit. This fixed-point format is often referred to as Q0.15.

For example, the center coefficient B[10] is equal to 8192. This value is obtained by
multiplying the floating point value 0.25 by the largest signed 16-bit value + 1 which is 215.

To make the filter causal, the coefficients have been moved by order/2 samples to the right,
since we cannot grab samples in the future. Now the delay is a bit longer but the filter output
over a longer time will be the same. As before we define the coefficients bk = h

�

k− N
2

�

(assuming that N is even) for k = 0 . . . N . So now coefficient b0 (or B[0] in the C code) is
equal to h[−10]. The center coefficient h[0] is now referred to as B[10] in the C code.

Now we know how we can calculate the coefficients, a next assignment is given.

3.5 Assignment 5: Finite Impulse Response Filter

In Figure 3.10 we can see the flow diagram to implement the calculation of a new FIR filter
output sample. What is done, basically, is a buffer of size BL is filled with a new sample,
where BL is the number of coefficients and the size of our buffer (so the order of the filter N
is BL-1). Now, the new sample is calculated by using the formula for a FIR filter:

y[n] =
N
∑

k=0

bk · x[n− k] (1.1)

Note that N is the order of the filter here. Suppose we have a filter of order N = 2, then our
current output y[n] is:

y[n] = b0 · x[n] + b1 · x[n− 1] + b2 · x[n− 2] (3.18)

We change this so that the current sample x[n] is always stored in buffer[0], and mirroring
time because we will implement this in C, and we cannot use negative offsets in arrays to

19 stdint.h is a header file in the C standard library introduced in the C99 standard library to allow program-
mers to write more portable code by providing a set of typedefs that specify exact-width integer types. See:
http://en.cppreference.com/w/c/types/integer.

Rotterdam University of Applied Sciences 33

http://en.cppreference.com/w/c/types/integer

TDS02 Chapter 3. FIR Filters

start

sample

buf fer[0] = sample

output = 0
k = 0

output = output +
B[k] × buf fer[k]

increase k

k ≤ N ?

i = N

buf fer[i] =
buf fer[i − 1]

decrease i

i ≥ 1 ?

output

end

no

yes

no

yes

Figure 3.10: Flow diagram for the calculation of a new FIR filter output sample.

store previous values. So a delayed sample in the buffer of time n − 5, will be stored in
buffer[5] instead of buffer[-5]. So to calculate the current output y[n], called output in
the C code, we may now write:

output = B[0]* buffer [0] + B[1]* buffer [1] + B[2]* buffer [2];

This is what is done in Figure 3.10 as well. Note that buffer[k] in the C code corresponds to
x[n− k] in Equation (1.1) and that B[k] corresponds to the coefficient bk in Equation (1.1).

After we’ve calculated the new output sample, we shift all the entries in the buffer to create
the delay on each sample. This is also shown in Figure 3.10. When we’re done, we can send
the output sample to the codec.

Here is your assignment: Implement a C program that executes a 1 kHz LP FIR Filter with a
sample rate of 8 kHz. Use the coefficients from Listing 3.1.

34 Training Digital Signal Processing

3.5. Assignment 5: Finite Impulse Response Filter TDS02

After the implementation is complete, put different frequencies on the input and verify
the output to correspond with the designed filter in MATLAB using an oscilloscope. You
are advised to use the Soundcard Oscilloscope program20 on a PC to generate a frequency
response graph. The best result is obtained by using a frequency sweep input signal generated
by a signal generator.

Show the result to your instructor.

Signature instructor for assignment 5a:

In the last loop of the flowchart shown in Figure 3.10 each sample in the buffer is moved
one place towards the end of the buffer. By using a circular buffer we can make the filter
implementation somewhat faster. If we use a circular buffer we just keep track of the position
of the oldest sample in the buffer and override this value with the new input sample at the
start of the flowchart. Now, change your program to use a circular buffer21 and show the
result to your instructor. Note that you also have to change the code in the first loop shown
in Figure 3.10 because the most recent sample is no longer located at index 0 in the buffer.

Signature instructor for assignment 5b:

When your code works, you will get a new filter specification from your instructor. Create new
coefficients using MATLAB’s Filter Designer yourself and write a report about this assignment.
The guidelines for the report can be found in the course wiki.

When your new filter is implemented and has the proper characteristics, show the result to
your instructor.

20 https://www.zeitnitz.eu/scms/scope_en
21 More information about circular buffers can be found at https://en.wikipedia.org/wiki/Circular_

buffer.

Rotterdam University of Applied Sciences 35

https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02.pdf
https://www.zeitnitz.eu/scms/scope_en
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

TDS02 Chapter 3. FIR Filters

Signature instructor for assignment 5c:

36 Training Digital Signal Processing

TDS02

4

IIR Filters

In this chapter we will focus on designing and implementing an Infinite Impulse Response
(IIR) filter. These filters are also called recursive filters. A FIR filter, which was introduced in
Chapter 3, uses a certain number of preceding input samples to calculate the current output
sample. An IIR filter not only uses preceding input samples, but it also uses a certain number
of previous output samples. Thus, the formula for an IIR filter is:

y[n] =
N
∑

k=0

bk · x[n− k]−
M
∑

i=1

ai·y[n− i] (4.1)

Or:

y[n] = −a1 · y[n− 1]− a2 · y[n− 2]− · · · − aM · y[n−M]+

b0 · x[n] + b1 · x[n− 1] + · · · + bN · x[n− N] (4.2)

The output of an IIR filter depends not only on the current and past inputs, but also on the
previous outputs (hence it is recursive).

4.1 Determination of the Coefficients

Digital recursive filters (which we often specify in the z-domain) are relatively young com-
pared to analogue recursive filters (which we often specify in the s-domain). Formulas for
analogue filters are well known to designers. These formulas often form the basis for digital
recursive filter design as well, since there are methods to transform a formula in the s-domain
into a formula in the z-domain. Using such a method, the properties of the filter in the
time-domain and frequency-domain are, approximately, preserved. One popular method is
called the Bilinear Transform (BLT). We will give a short recap on the BLT (as seen in DSP01)
and show a simple example.

Rotterdam University of Applied Sciences 37

TDS02 Chapter 4. IIR Filters

The BLT is:

s ≈
2
Ts
·

z − 1
z + 1

(4.3)

Where Ts is the sample period which is 1
fs

where fs is the sample frequency.

Also, recall that the frequency response of a continuous-time filter can be determined by
evaluating the transfer function H(s) at:

s = jωc (4.4)

Likewise, the frequency response of a discrete-time filter can be determined by evaluating
the transfer function H(z) at:

z = e jωd (4.5)

Where ωc are the continuous-time domain frequencies and ωd are the discrete-time domain
frequencies.

Since the s-domain analyses a system for t →∞, but the z-domain only concerns periodic
signals, it is interesting to see the relation between ωc and ωd .

We can find this by using the BLT:

jωc ≈
2
Ts
·

e jωd − 1
e jωd + 1

(4.6)

This simplifies to:

ωc ≈
2
Ts

tan
�

ωd Ts

2

�

(4.7)

See [11, page 203] or https://en.wikipedia.org/wiki/Bilinear_transform#Frequency_
warping.

Note that this is not a linear relation. If you design a filter in the s-domain and convert it to
a filter in the z-domain, especially at the edges of the spectrum of the discrete-time filter, the
response will be “warped”. This is due to the tan function defined in the relation. This effect
is called frequency warping. Before you apply the Z-transform, any frequencies used in the
s-domain transfer functions should therefore first be “pre-warped”.

Now we have all the tools needed to transform a function of s into a function of z.

4.2 Example of a Simple Recursive Low-Pass Filter

Suppose we want to make an IIR filter with sample rate of 8000 Hz similar to a low-pass RC
filter with a cut-off frequency of 1000 Hz. Recall the transfer function of a simple low-pass

38 Training Digital Signal Processing

https://en.wikipedia.org/wiki/Bilinear_transform#Frequency_warping
https://en.wikipedia.org/wiki/Bilinear_transform#Frequency_warping

4.2. Example of a Simple Recursive Low-Pass Filter TDS02

RC filter:

H(s) =
1

1+
s
ωc

=
ωc

ωc + s
=

ωc

s+ωc
(4.8)

We can create this filter in MATLAB using: hs = tf(1000*2*pi, [1 1000*2*pi]) were
tf stands for transfer function. We can plot its frequency and phase response using the
bodeplot command as has been done in the program lpfbodelog.m. The result of this
program is shown in Figure 4.1.

M
ag

ni
tu

de
 (

dB
)

-40

-35

-30

-25

-20

-15

-10

-5

0

101 102 103 104 105

P
ha

se
 (

de
g)

-90

-60

-30

0

Frequency (Hz)

System: hs
Frequency (Hz): 1e+03
Phase (deg): -45

System: hs
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

Figure 4.1: Bode plot of a low-pass filter with a cut-off frequency of 1000 Hz drawn with a loga-

rithmic frequency scale.

The filter shown in Figure 4.1 is clearly a low-pass filter with a cut-off frequency of 1000 Hz.
As you may know22 the amplification at the cut-off frequency should be 20 log(1/

p
2) ≈

−3.01 dB and the phase at the cut-off frequency should be −45°. Both facts can be verified
in Figure 4.1.

Note that the frequency is plotted with a logarithmic scale as is custom for Bode plots. Also
note that the frequency magnitude response of this filter will go to minus infinity as the
frequency goes to infinity.

Because we are interested in the frequencies from 0 to 8000 Hz the Bode plot is drawn again
in Figure 4.1 for this frequency range with the program lpfbodelin.m. This time a linear
frequency scale is used.

22 See: https://en.wikipedia.org/wiki/Low-pass_filter

Rotterdam University of Applied Sciences 39

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfbodelog.m
https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfbodelin.m
https://en.wikipedia.org/wiki/Low-pass_filter

TDS02 Chapter 4. IIR Filters

M
ag

ni
tu

de
 (

dB
)

-20

-15

-10

-5

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hs
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

System: hs
Frequency (Hz): 1e+03
Phase (deg): -45

Figure 4.2: Bode plot of a low-pass filter with a cut-off frequency of 1000 Hz drawn with a linear

frequency scale.

Now we can apply the BLT to the analog version of the transfer function to make it discrete.

Again:

H(s) =
ωc

s+ωc
(4.8)

Applying the BLT:

H(z)≈
ωc

2
Ts
·

z − 1
z + 1

+ωc

=
ωc Ts(z + 1)

2(z − 1) +ωc Ts(z + 1)
=

ωc Tsz +ωc Ts

2z − 2+ωc Tsz +ωc Ts

=
ωc Tsz +ωc Ts

(ωc Ts + 2) z +ωc Ts − 2
=

ωc Ts

ωc Ts + 2
· z +

ωc Ts

ωc Ts + 2

z +
ωc Ts − 2
ωc Ts + 2

(4.9)

By taking ωc = 1000 · 2π and Ts =
1

8000
we find:

H(z)≈
0.2820 z + 0.2820

z − 0.4361
(4.10)

We can also do this in MATLAB quickly:

40 Training Digital Signal Processing

4.2. Example of a Simple Recursive Low-Pass Filter TDS02

>> hs = tf (1000*2*pi, [1 1000*2* pi])

hs =

6283

s + 6283

Continuous -time transfer function.

>> hz = c2d(hs, 1/8000 , 'tustin ')

hz =

0.282 z + 0.282

z - 0.4361

Sample time: 0.000125 seconds

Discrete -time transfer function.

Now we can verify if the responses are the same using the program lpfzbodelin.m. The
result is shown in Figure 4.3. Note that the magnitude scale is extremely large (−400 dB
represents an attenuation of 1020).

M
ag

ni
tu

de
 (

dB
)

-400

-350

-300

-250

-200

-150

-100

-50

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.25

System: hz
Frequency (Hz): 1e+03
Phase (deg): -46.6

Figure 4.3: Bode plot of a discrete-time low-pass filter with a cut-off frequency of 1000 Hz and a

sample frequency of 8000 Hz.

We can see several interesting properties of the BLT transform in Figure 4.3. Due to the
frequency warping, the whole frequency response of the analogue filter, for which the

Rotterdam University of Applied Sciences 41

https://bitbucket.org/HR_ELEKTRO/tds02/raw/master/Lab Work Handbook/progs/lpfzbodelin.m

TDS02 Chapter 4. IIR Filters

frequency goes to infinity, is now “compressed” into the frequency response of the digital
filter for which the response only goes to fs/2. The non-linear characteristic of the tangent is
seen here. Also, due to this warping effect, the cut-off frequency has somewhat shifted. As
we can see, the amplification at the intended cut-off frequency is −3.25 dB but should be
−3.01 dB. The phase at the intended cut-off frequency is −46.6° but should be −45°. If we
want to correct this, we have to apply the pre-warping.

We know that:

ωc ≈
2
Ts

tan
�

ωd Ts

2

�

(4.7)

Now, if our desired cut-off frequency in the discrete-time version of our filter ωd = 2π ·1000,
considering our sample rate of 8000 Hz, then in the analogue domain, the pre-warped
frequency is:

ωcprewarped
≈

2
1

8000

tan







2π · 1000 ·
1

8000
2






= 16000 tan

�

π ·
1000
8000

�

≈ 6627 rad/s (4.11)

If we use this pre-warped frequency in our derived formula for the low-pass filter, we find:

H(z)≈

ωcprewarped
Ts

ωcprewarped
Ts + 2

· z +
ωcprewarped

Ts

ωcprewarped
Ts + 2

z +
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

≈
0.2929 · z + 0.2929

z − 0.4142
(4.12)

We can do this in MATLAB even quicker:

>> hs = tf (1000*2*pi, [1 1000*2* pi])

hs =

6283

s + 6283

Continuous -time transfer function.

>> hz = c2d(hs, 1/8000 , 'prewarp ', 1000*2* pi)

hz =

0.2929 z + 0.2929

z - 0.4142

Sample time: 0.000125 seconds

Discrete -time transfer function.

42 Training Digital Signal Processing

4.2. Example of a Simple Recursive Low-Pass Filter TDS02

Now if we look at the Bode plot, shown in Figure 4.4, we see that the new filter has the
correct amplitude and phase response at the cut-off frequency.

M
ag

ni
tu

de
 (

dB
)

-400

-350

-300

-250

-200

-150

-100

-50

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

System: hz
Frequency (Hz): 1e+03
Phase (deg): -45

Figure 4.4: Bode plot of a discrete-time low-pass filter with a cut-off frequency of 1000 Hz and a

sample frequency of 8000 Hz.

In Figure 4.5 the Bode plot of the analog (H(s)) and digital (H(z)) filters are shown.

Now that we have the right response, we can easily calculate the coefficients for the filter.
Since:

H(z) =
Y (z)
X (z)

≈

ωcprewarped
Ts

ωcprewarped
Ts + 2

· z +
ωcprewarped

Ts

ωcprewarped
Ts + 2

z +
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

(4.13)

We can now solve Y (z).

For readability we substitute u=
ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

and w=
ωcprewarped

Ts

ωcprewarped
Ts + 2

.

Y (z) · z + u · Y (z) = w · X (z) · z +w · X (z) (4.14)

Now we make the filter causal by multiplying both sides with z−1:

Y (z) + u · Y (z) · z−1 = w · X (z) +w · X (z) · z−1 (4.15)

Rotterdam University of Applied Sciences 43

TDS02 Chapter 4. IIR Filters

M
ag

ni
tu

de
 (

dB
)

-40

-35

-30

-25

-20

-15

-10

-5

0

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ha

se
 (

de
g)

-90

-45

0

hs

hz

Frequency (Hz)

System: hz
Frequency (Hz): 1e+03
Phase (deg): -45

System: hz
Frequency (Hz): 1e+03
Magnitude (dB): -3.01

Figure 4.5: Bode plots for H(s) and H(z).

Thus:

Y (z) = −u · Y (z) · z−1 +w · X (z) +w · X (z) · z−1 (4.16)

Now we can convert this to the time domain:

y[n] = −u · y[n− 1] +w · x[n] +w · x[n− 1] (4.17)

If we substitute back u and w:

y[n] =
−ωcprewarped

Ts − 2

ωcprewarped
Ts + 2

· y[n−1]+
ωcprewarped

Ts

ωcprewarped
Ts + 2

·x[n]+
ωcprewarped

Ts

ωcprewarped
Ts + 2

·x[n−1] (4.18)

We find the coefficients for an implementable version of the recursive filter.

The design method described so far comes in handy when we want to design a filter dynami-
cally in software. For example when we do not now the cut-off frequency which is required
beforehand. If we now the requirements of the filter beforehand it is much easier to use the
MATLAB Filter Design and Analysis tool.

44 Training Digital Signal Processing

4.3. MATLAB’s Filter Designer TDS02

4.3 MATLAB’s Filter Designer

Calculating the recursive filter coefficients by hand takes a long time. Therefore we will use
MATLAB’s Filter Designer to calculate the coefficients for our Infinite Impulse Response (IIR)
filters.

IIR filters can have many different implementations. Most implementations (or structures)
can be selected in the Filter Designer. Your assignment will be to implement one of these
structures.

4.4 Filter Structures

The simplest form is the Direct-Form I Single Sections structure. If you right click in the
“Current Filter Information” section of the Filter Designer design window, you can convert
the structure of the filter, as can be seen in Figure 4.6. By default, the structure for an IIR
filter is: “Direct-Form II, Second Order Sections”.

Figure 4.6: Options provided in the “Current Filter Information” section of the Filter Designer

design window.

The structures of the filter can be explored if you click Show Filter Structure. Now, create
a simple filter, convert its structure to “Direct-Form I”, and convert it to “Single Section”.
Select “Show Filter Structure” from the pop-up menu shown in Figure 4.6 and verify that the
structure which is shown, which is duplicated in Figure 4.7, directly implements the formula

Rotterdam University of Applied Sciences 45

TDS02 Chapter 4. IIR Filters

for a recursive filter:

y[n] =
N
∑

k=0

bk · x[n− k]−
M
∑

i=1

ai·y[n− i] (4.1)

Figure 4.7: Direct-form I single section filter structure.

Note that even though MATLAB will generate coefficient a1, this coefficient is often 1,
and signifies the total output gain of the filter. The direct-form I structure is the most
straightforward implementation. Also note that MATLAB begins the index of an array with 1,
and not with 0 as in C.

Another filter structure is the direct-form II structure shown in Figure 4.8.

For this structure, the recursive and non-recursive part of the filter is swapped. This has the
advantage that the delay elements can be combined. For more information see [8].

A disadvantage of these structures is that if there is only a small (e.g. rounding) error in any
of the coefficients the output value will be incorrect due to the recursive nature of these filters.
Every (e.g. rounding) error will be recursively applied to the newly calculated samples.

Usually the higher coefficients have a smaller value than the lower coefficients. If this is
all stored in, for example, a 16-bit fixed-point number, then the very small values have less
significant bits, a lower precision, and thus the round-off error is relatively big. Therefore,
with a limited amount of bits, the effective range of a coefficient value is low. Even with
floating point numbers this range will decrease exponentially (you might want to look up
how floating-point numbers are stored23).

A good solution to this is to cascade the filters in smaller, second-order (or sometimes called
biquadratic) sections. This can be applied to both the direct-form I and direct-form II
structures. Figure 4.9 shows an example of an IIR second-order cascaded structure.

Note that the input of the section that is shown here is the output of a previous section that
looks exactly the same (namely like a second order IIR filter), only with different coefficients.

23 https://en.wikipedia.org/wiki/Floating_point

46 Training Digital Signal Processing

https://en.wikipedia.org/wiki/Floating_point

4.4. Filter Structures TDS02

Figure 4.8: Direct-form II single section filter structure.

Figure 4.9: Direct-form II cascaded filter structure.

Again, the output of this section is the input for the next section until there are no more
sections for the sample to pass through. By cascading multiple second-order filters, each filter
coefficient will use most of the range of a digitally stored number, thus making round-off
errors less pronounced in the final output.

Now that we’ve seen how the coefficients are calculated and how we can structure IIR filters,
a new assignment is given.

Use MATLAB to calculate the filter coefficients. Don’t attempt to derive the coefficients with
the BLT yourself. This is outside the scope of the course, only mention the properties of the
original analog equivalent of your filter in your report.

Rotterdam University of Applied Sciences 47

TDS02 Chapter 4. IIR Filters

4.5 Assignment 6: Infinite Impulse Response Filter

Choose an IIR structure to implement. This can be:

• direct-form I, or

• direct-form II.

The first part of the assignment is to implement a simple second order low-pass filter to test
the code for your chosen structure. Design a simple low-pass IIR filter in MATLAB with a
cut-off frequency of 1000 Hz and a sample frequency of 8000 Hz. It is important that you
first test your code implementation before continuing with higher-order filters or cascaded
structures.

Hint: First draw a flow diagram like the one in the FIR filter assignment, see Figure 3.10,
before you write your code.

Developing an IIR filter using MATLAB’s Filter Designer proves to be more difficult than
expected. See these notes: http://tds02.bitbucket.io/IIRfilter.htm.

Show the result to your instructor.

Signature instructor for assignment 6a:

When your code works, you will get a new filter specification from your instructor.

You are free to choose between an implementation with a cascaded structure (of second
order sections) or a single section filter.

Show the result of your new filter to your instructor.

Signature instructor for assignment 6b:

Write a report about this assignment. The guidelines for the report can be found in the
course repository.

48 Training Digital Signal Processing

http://tds02.bitbucket.io/IIRfilter.htm
https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02.pdf

TDS02

5

Optimizing Your Filter

In this chapter you will learn how to measure the execution time of your code and how
to take advantage of the specific features provided by the Cortex-M4 and TLV320AIC3254
codec to speed up the implementation of your filter.

5.1 How to Optimize C Code for the Cortex-M4

In Section 2.1.2 on Page 8 several features which enable the Cortex-M4 to perform digital
signal algorithms faster are enumerated.

The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7 Processors [13] describes how you
can maximize the performance of your DSP code by using certain instructions, C code idioms
and intrinsics, and the CMSIS DSP Library24. You can also use the information provided
in chapter 3 of ARM Optimizing C/C++ Compiler v18.1.0.LTS User’s Guide [1, Page 55] to
optimize your code.

It is also possible to implement a filter in the TLV320AIC3254 codec itself. This is the most
effective and efficient way to implement a FIR or IIR filter. The Cortex-M4 is now only
used to initialize the codec. How to implement a filter in the codec is explained in the
TLV320AIC3254 Application Reference Guide [14].

5.2 Assignment 7: Profile and Optimize your Filter

Measure the number of clock cycles which are needed to calculate a new output sample for
your implementation of the FIR filter (assignment 5) or IIR filter (assignment 6). You can
use the Profile Clock which is provided in CCS25 to do this.

Use the techniques described in Section 5.1 to optimize your code and make it as fast as you
can.

You may also optimize your filter by implementing it inside the codec.

24 http://arm-software.github.io/CMSIS_5/DSP/html/index.html
25 See http://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#profile-clock.

Rotterdam University of Applied Sciences 49

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf#page=55
http://arm-software.github.io/CMSIS_5/DSP/html/index.html
http://software-dl.ti.com/ccs/esd/documents/ccs_counting_cycles.html#profile-clock

TDS02 Chapter 5. Optimizing Your Filter

Write a report about this assignment. The guidelines for the report can be found in the
course repository.

50 Training Digital Signal Processing

https://bitbucket.org/HR_ELEKTRO/tds02/wiki/Report%20Requirements/Report_Requirements_TDS02.pdf

Bibliography TDS02

Bibliography

[1] ARM Optimizing C/C++ Compiler v18.1.0.LTS User’s Guide. Texas Instruments. 2018.
URL: http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf (cit. on p. 49).

[2] CC3200AUDBOOST schematics. Texas Instruments Incorporated. 2014. URL: http:
//www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf (cit. on p. 6).

[3] CC3200AUDBOOST User’s Guide. Texas Instruments Incorporated. 2014. URL: http:
//www.ti.com/lit/ug/swru383a/swru383a.pdf (cit. on p. 5).

[4] CC3220 SimpleLink™ Wi-Fi® and Internet of Things Technical Reference Manual. Texas
Instruments Incorporated. 2017. URL: http://www.ti.com/lit/ug/swru465/

swru465.pdf (cit. on pp. 5, 14, 15, 16, 18, 19).

[5] CC3220 SimpleLink™ Wi-Fi® LaunchPad™ Development Kit Hardware User’s Guide.
Texas Instruments Incorporated. 2018. URL: http://www.ti.com/lit/ug/swru463b/
swru463b.pdf (cit. on p. 5).

[6] CC3220 SimpleLink™ Wi-Fi® Wireless and Internet-of-Things Solution, a Single-Chip
Wireless MCU. Texas Instruments Incorporated. 2017. URL: http://www.ti.com/lit/
ds/symlink/cc3220.pdf (cit. on pp. 5, 8).

[7] Cortex™-M4 Devices Generic User Guide. ARM. 2016. URL: https://static.docs.arm.
com/dui0553/b/DUI0553.pdf (cit. on p. 10).

[8] A.W.M. van den Enden and N.A.M. Verhoeckx. Digitale Signaalbewerking. MK Publish-
ing, 2002. ISBN: 978-90-6674-649-7 (cit. on p. 46).

[9] “IEEE Standard for Floating-Point Arithmetic.” In: IEEE Std 754-2008 (2008), pp. 1–70
(cit. on p. 9).

[10] Sen M. Kuo, Bob H. Lee, and Wenshun Tian. Real-Time Digital Signal Processing:
Fundamentals, Implementations and Applications. 3rd. MK Publishing, 2013. ISBN:
978-1-118-41432-3 (cit. on pp. 1, 28).

[11] Paul A. Lynn and W. Fuerst. Inleiding Digitale Signaalbewerking met Maple en Matlab.
Ed. by J.W.M. Andriessen. ThiemeMeulenhof, 2004. ISBN: 978-90-5574-448-0 (cit. on
pp. 23, 28, 38).

[12] Donald S. Reay. Digital Signal Processing Using the ARM® Cortex®-M4. 1st. John Wiley
& Sons, Inc., 2015. ISBN: 978-1-118-85904-9 (cit. on p. 1).

Rotterdam University of Applied Sciences 51

http://www.ti.com/lit/ug/spnu151r/spnu151r.pdf
http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf
http://www.tij.co.jp/jp/lit/df/tidra20/tidra20.pdf
http://www.ti.com/lit/ug/swru383a/swru383a.pdf
http://www.ti.com/lit/ug/swru383a/swru383a.pdf
http://www.ti.com/lit/ug/swru465/swru465.pdf
http://www.ti.com/lit/ug/swru465/swru465.pdf
http://www.ti.com/lit/ug/swru463b/swru463b.pdf
http://www.ti.com/lit/ug/swru463b/swru463b.pdf
http://www.ti.com/lit/ds/symlink/cc3220.pdf
http://www.ti.com/lit/ds/symlink/cc3220.pdf
https://static.docs.arm.com/dui0553/b/DUI0553.pdf
https://static.docs.arm.com/dui0553/b/DUI0553.pdf

TDS02 Bibliography

[13] The DSP capabilities of ARM® Cortex®-M4 and Cortex-M7 Processors. Thomas Lorenser.
2016. URL: https://community.arm.com/cfs-file/__key/communityserver-
blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-

2D00-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf (cit.
on pp. 9, 49).

[14] TLV320AIC3254 Application Reference Guide. Texas Instruments Incorporated. 2012.
URL: http://www.ti.com/lit/an/slaa408a/slaa408a.pdf (cit. on pp. 5, 7, 8, 49).

[15] TLV320AIC3254 Ultra Low Power Stereo Audio Codec with Embedded miniDSP. Texas
Instruments Incorporated. 2014. URL: http://www.ti.com/lit/ds/symlink/

tlv320aic3254.pdf (cit. on pp. 5, 8).

52 Training Digital Signal Processing

https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
http://www.ti.com/lit/an/slaa408a/slaa408a.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3254.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3254.pdf

TDS02

A

Fixed-point Arithmetic

This appendix gives a short introduction into fixed-point arithmetic. Floating-point and
fixed-point numbers were introduced in Section 2.1.2. The Qn.m notation for fixed-point
numbers was also explained in Section 2.1.2. In this appendix we will see how arithmetic
operations (add, subtract, multiply, and divide) with fixed-point numbers can be performed.
As already explained the processor which we use is optimized for 16-bit fixed-point numbers.
In this appendix we will use 8-bit fixed-point numbers instead. A Qn, m fixed-point value
will be stored in a 1+ n+m-bit two’s complement integer variable.

A.1 Add and Subtract

If we want to add or subtract two fixed-point numbers we have to align their radix points.
For example if a is a Q5.2 encoded fixed point number with value 00001101 (000011.012 =
3.2510) and b is a Q4.3 encoded fixed point number with value 00100101 (00100.1012 =
4.62510), then a+ b can not be calculated by simply adding their values. The radix points
must be aligned before the addition as shown in Figure A.1. As can be seen in Figure A.1,
the result is a Q5.3 fixed-point number with value 000111110 (000111.1112 = 7.87510).

000011.01 +
00100.101 =

000111.111

Figure A.1: Adding a Q4.3 to a Q5.2 fixed-point number.

In general, when we add a Qn1, m1 fixed-point number by a Qn2, m2 fixed-point number, the
result will be a Qmax(n1 + n2 + 1), max(m1 +m2) fixed-point number.

When programming the number of bits we use for variables is most of the times fixed (e.g.
to 8-bit). In this case we can convert a from Q5.2 to Q4.3 by shifting it one place to the left.
Care must be taken, not to generate an overflow by this operation. After the shift we can use
an integer addition because both numbers are Q4.3 and the result will also be Q4.3 (when
we assume that no overflow occurs when performing the integer addition). The C code is
given in Listing A.1.

Alternatively it is also possible to convert b from Q4.3 to Q5.2 by shifting it one place to the
right. This operation can not cause an overflow but some precision is lost. After the shift we

Rotterdam University of Applied Sciences 53

TDS02 Appendix A. Fixed-point Arithmetic

int8_t a = 0x0d; // Q5.2 with decimal value 3.25

int8_t b = 0x25; // Q4.3 with decimal value 4.625

int8_t sum = (a << 1) + b; // sum will be Q4.3 with decimal value ←-
,→ 7.875

Listing A.1: Adding a Q4.3 to a Q5.2 fixed-point number in C.

can use an integer addition because both numbers are Q5.2 and the result will also be Q5.2
(when we assume that no overflow occurs when performing the integer addition). The C
code is given in Listing A.2.

int8_t a = 0x0d; // Q5.2 with decimal value 3.25

int8_t b = 0x25; // Q4.3 with decimal value 4.625

int8_t sum = a + (b >> 1); // sum will be Q5.2 with decimal ←-
,→ value 7.75

Listing A.2: Adding a Q4.3 to a Q5.2 fixed-point number in C. Please note the sum is less precise

than the sum calculated in Listing A.1.

Fixed-point numbers can be subtracted in a similar way. For example we can calculate a− b
by converting a to Q4.3 and perform an integer subtraction. The result will be Q4.3 in two’s
complement notation (when we assume that no overflow occurs when performing the integer
subtraction). The operation is shown in Figure A.2. The result is 11110.101two’s complement =
−00001.0112 = −1.375, which is the correct answer.

00011.010 -
00100.101 =
11110.101

Figure A.2: Subtracting two Q4.3 fixed-point numbers.

A.2 Multiply and Divide

If we multiply two fixed-point numbers we can just multiply them by using integer multipli-
cation. The only thing left to do, is figuring out where the radix point must be placed in the
result. Figure A.3 shows how a · b can be calculated.

000011.01 *
00100.101 =
000.01101 +

0000.0000 +
00001.101 +

000000.00 +
0000000.0 +
00001101 +

00000000 +
00000000 =
0000001111.00001

Figure A.3: Multiplying a Q5.2 with a Q4.3 fixed-point number.

54 Training Digital Signal Processing

A.2. Multiply and Divide TDS02

As can be seen, the result is a Q9.5 fixed-point number with value 0000001111.00001
(0000001111.000012 = 15.0312510), which is the correct answer. The precision if the result
is higher than the precision of the multiplier and multiplicand. We can convert the result
to the same precision as the multiplier (Q4.3) by shifting it two places to the right and
truncating it to 8 bits. We obviously will lose some precision and before the truncation
we must check if the result can be represented in 8 bits. This will yield a Q4.3 fixed-point
number with value 01111000 (01111.0002 = 1510).

In general, when we multiply a Qn1, m1 fixed-point number by a Qn2, m2 fixed-point number,
the result will be a Qn1 + n2, m1 +m2 fixed-point number.

When we program in C it is important to prevent an overflow while calculating a product.
Most of the time the multiplier and the multiplicand must be casted to a bigger data type
before the multiplication is performed.

Divisions can be performed in a similar manner as multiplications. In general, when we
divide a Qn1, m1 fixed-point number by a Qn2, m2 fixed-point number, the result will be a
Qn1 +m2, m1 −m2 fixed-point number.

Rotterdam University of Applied Sciences 55

	Introduction
	Purpose and Prerequisites
	Course Planning
	Document Organization

	Preliminary Assignments
	Assignment 0: Introduction to the CC3220 LAUNCHXL and CC3200AUDBOOST Boards
	TLV320AIC3254 Codec
	CC3220S SoC
	Electrostatic Discharge

	Assignment 1: Working with Code Composer Studio
	Installing Software and Configure Hardware
	Running the Demo Program

	Assignment 2: Generating Output
	Polling-based Output
	Interrupt-based Output

	Assignment 3: Receiving Input
	Interrupt-based Input
	Audio Input

	Assignment 4: Delays

	FIR Filters
	Determination of the Coefficients
	Example
	Windowing
	MATLAB Filter Designer
	Assignment 5: Finite Impulse Response Filter

	IIR Filters
	Determination of the Coefficients
	Example of a Simple Recursive Low-Pass Filter
	MATLAB's Filter Designer
	Filter Structures
	Assignment 6: Infinite Impulse Response Filter

	Optimizing Your Filter
	How to Optimize C Code for the Cortex-M4
	Assignment 7: Profile and Optimize your Filter

	Bibliography
	Fixed-point Arithmetic
	Add and Subtract
	Multiply and Divide

