

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 1 of 24

The Systems Engineering Tool Box
Dr Stuart Burge

“Give us the tools and we will finish the job”

Winston Churchill

Functional Modelling (FM)

What is it and what does it do?

Functional Modelling is a tool that allows a team or an individual to produce a

behavioural/operational model of an existing or planned system. The resulting model

shows the system functionality and the logical interconnections between that

functionality. In essence, it describes how the system functionality has to cooperate

to deliver the Operational Requirements1 of the system. By constructing the model, it

is possible to:

• Deduce the necessary system functionality.

• Test out the basic operational concept.

• Determine potential (logical) system interfaces.

Functional Modelling uses three sub-tools to construct a model of the system of

interest:

• The Function Flow Diagram2 (FFD) is a network representation of the

system. It portrays the system in terms of its component functions and the

logical interdependencies or “flows” between the functions. One of the

beauties of the Functional Flow Diagram is its simple diagramming

conventions. This minimum set enables the team to concentrate on

discovering and understanding the system rather than the modelling

technique. The conventions are shown in Figure 1.

1 The Operational Requirement is defined as “the major purpose of a system (i.e. what it fundamentally does; its
capability) together with the key overarching constraints (that define the context of the system)”.
2 Software Engineers may have come across a similar modelling method called Data Flow Diagrams. These have
similar diagramming conventions and use a forth symbol to represent data stores. In general system modelling (as
opposed to software intensive system modelling) the use of a data store symbol is less useful and has been omitted.
In essence Functional Flow Diagrams are a generalisation of Data Flow Diagram.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders

Harry Broeders
In PEE30 we will use DFDs.

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 2 of 24

Figure 1: Function Flow Diagram Modelling Conventions

• The Flow Dictionary (FD) complements the Functional Flow Diagrams by

documenting the flows found on any of the diagrams. It is a set of definitions

which declare the component elements of each flow, and the relationships

that apply among them. The flows represent the logical interfaces of the

system some of which some will become real interfaces.

• The Function Specification (FS) specifies the component functions by

defining the transformation that converts inputs to outputs.

These sub-tools allow for the construction of a model which shows all the relevant

details, but are simple to follow and understand as indicated in Figure 2.

Figure 2: The three sub-tools build an unambiguous model

TERMINATOR

FUNCTION

FLOW

F
LO

W

• FUNCTION transforms input

flows into output flows that is

internal to the System of Interest

• TERMINATOR described as a

function or object that is a source

or destination of flows external to

the System of Interest

• FLOW an input or output

quantity (information, control,

material or energy)

FUNCTION

NAME

TERMINATOR

NAME

FLOW_NAME

The FUNCTION NAME

should be a Verb-Noun

Phrase

TERMINATOR NAME

can be either a verb

noun phrase

(FUNCTION) or a noun

phrase (thing)

The FLOW NAME is a

noun (thing)

F

FLOW

FUNCTION
SPECIFICATION

F

..............................

..............................

..............................

..............................

FUNCTION
SPECIFICATION

F

..............................

..............................

..............................

..............................

FLOW DICTIONARY

Flow
.............................
Flow
.............................

.............................

...............................

.............................

...............................

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders
We will use a plural noun.

Harry Broeders
We will use a plural noun.

Harry Broeders

Harry Broeders
We will call this the Data Dictionary DD.

Harry Broeders

Harry Broeders

Harry Broeders
We will call this a process.

Harry Broeders
We will call these the Process SPECification PSPEC.

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 3 of 24

Why do it?

Customer/stakeholder requirements are never complete, consistent, unambiguous or

even correct. Functional Modelling provides a way of logically exploring such

requirements in order to address their deficiencies and help to build a complete and

consistent set of measurable system design requirements. This exploration leads to

the generation of new requirements and the clarification of existing requirements.

The result is a model of the system requirements that emphasises the functional

operation of the system.

The benefits of Functional Modelling are:

• Diagrammatically building a logical model of how the system functionality is

related. It helps the modelling team logically work through the functionality of

the proposed or existing system and thereby discovering and generating

functionality (requirements) missing from the original customer requirements.

• It identifies the potential interfaces of a system and encourages their clear

definition.

• It encourages the team to consider not only the system of interest but also the

wider system. All systems operate in an environment; failure to pay attention

to that environment will lead to failure.

• It can help to gain more understanding about the system of interest and what

all the customers’ expect.

• Models that can help in showing the customer that you understand what they

are after.

• When used within a team context, it allows the whole team to share

information and agree at a common understanding.

Where and when to use it?

Functional Modelling is used to help understand and engineer a set of requirements.

It is particularly useful when we have:

• Limited information from the customer such as an operational requirement or

idea of a potential operational requirement. In this situation, we use Functional

Modelling to derive, organise and document requirements.

• The need to check for completeness and consistency of requirement. This is

frequently necessary for safety critical systems.

Functional Modelling can be used in three situations:

1. Analysis and modelling of an existing system.

2. Analysis of an existing system together with the development of modifications

to that system.

3. Analysis and modelling of an entirely new system.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 4 of 24

Who does it?

Functional Modelling can be used by the individual or a team. Whether it is team or

individually based depends on the problem being tackled and the phase of system

development. Team-based use is recommended during the early stages of system

development. This is because most of the requirements engineering takes place at

this stage and developing a common understanding amongst the team is highly

desirable. Later when higher levels of the functional model are reasonably mature,

detailed aspects are best addressed by individuals. Unfortunately, what happens in

practice is often the other way round! Typically this is a consequence of poorly

resourced teams during the early stages of system development and especially

during the biding type activities. Later, when the deficiencies of the functional model

are discovered, management attempt to resolve these by “throwing bodies” at the

modelling activity. This never works satisfactorily.

In the early stages the team size need not be large. Indeed, a very small team of 3 -

5 works best: provided of course there is sufficient knowledge.

There is great benefit in terms of quality of output and time efficiency if the modelling

sessions are facilitated by a modelling craftsman. Such people, who are familiar with

to tool and its use, can often help to choose model structures that require little

subsequent iteration.

How to do it?

The concept

Before giving a detailed description of Functional Modelling it is important to reflect

upon the modelling concepts which predicate its use. These are:

• Diagramming: natural languages are ambiguous and the use of textual

methods to convey complex information will lead to errors. The prime reason

for this is the relative inability of text based descriptions to convey structure.

Diagrams on the other hand are very good at being able to convey structure.

• Information hiding: most systems are too complex to represent on one

diagram, but humans can understand any degree of complexity if it is

presented in small ‘chunks’ together with a ‘map’ of how the chunks are

structured together. Combined with diagramming, information hiding allows

complex systems to be represented in a logical hierarchical fashion. The

highest levels leave out the fine detail and concentrate on the essential

information at that level. The information that is hidden at the higher level can

be revealed in lower level diagrams. This approach has many names

including top-down, modular, and abstraction. The latter name however also

has another very important meaning.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 5 of 24

• Abstraction: although sometimes used imply information hiding, abstraction

also refers to the diagramming conventions whereby a single convention is

used to represent different real world items. For example, the single

diagramming convention of an arrow to represent an input or output flow is

used represent material, energy, information and control type flows.

The Process

The process for functional modelling is shown in figure 3

Figure 3: Process for Functional Modelling.

The first step is to collect information about the system of interest. This is achieved

via a variety of means that include:

• Viewpoint Analysis.

• Customer Requirements documents.

• Textual Analysis.

• Use Cases.

• Involving customers and users.

• Involving experienced staff.

The purpose of this step is to gain the information necessary to produce a

preliminary set of Functional Flow Diagrams together with the basic Flow Dictionary

and Functional Specifications. This is step 2. The draft Functional Flow Diagrams

can then be shown to the customer/user or some other reviewer, walking them

through each diagram, explaining the meanings of the flows together with a brief

description of each function. The purpose of the review or walkthrough is to seeking

approval of the model. The process of constructing a model and seeking approval is

an iterative one. However, the eventual outcome is a validated model of the system

requirements.

System Model

Step 3: Walkthrough with

customer/reviewer and seek

approval

Step 1: Collect and generate

information about the

system of interest

OK

Step 2b: Compile

Flow Dictionary

Step 2a: Draw

Functional Flow

Diagrams

Step 2c: Generate

Functional

Specifications

Draft

System

Model

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 6 of 24

The Role and Purpose of Functional Flow Diagrams (FFD)

The role of the FFD is to present a description of the system in terms of its

component functions and how those functions have to interact (the flows) to deliver

the intended system outcome (the operational requirement). By attempting to

describe how the system functionality has to logically interact helps, the

diagramming team, uncover previously unidentified functions (requirements). This

aspect is one of the prime reasons for undertaking functional modeling. The tool has

a second purpose which is to identify the potential interfaces of the system. Each

flow on a FFD is a potential or logical interface between functions. That is, logic says

there should be a connection or dependency (a flow) between two functions. The key

point here is that some of these logical interfaces will become real interfaces when

the system is realized. This is critical knowledge because experience shows that

most system inefficiency and ineffectiveness occurs at the interfaces. FFDs therefore

highlight all the potentials interfaces and therefore the areas where problems are

likely to occur.

This philosophy is further reinforced by downplaying control and decision making

within the system. There is no “decision” symbol on a Functional Flow Diagram.

Indeed, functional Flow Diagrams deliberately de-emphasize the flow of control

within the system in order to emphasize the logical interfaces. Indeed, decisions and

control aspects are hidden within functions and defined in the Functional

Specifications.

The flows on a FFD can represent physical qualities, energy flows, control flows or

information flows. It is the ability of the FFD to show these various types of flow

simply that makes it such a powerful tool.

In addition to the documentation and modelling benefits, the FFD provides a very

useful partitioning of the system into smaller “sub-systems” or, at the lowest level,

into a set of interconnected primitive functions. It shows all the logical interfaces and

the appropriate Flow Dictionary entry can be used to specify the detail of any one of

these.

While the FFD can be used to describe any system by showing a set of connected

primitive processes, it is clear that for anything larger than a very small system, a

single FFD will be cluttered with detail and much too extensive to be comprehended

easily. Large systems, therefore, require a 'top-down' treatment is used to produce a

hierarchical set of FFDs. This will allow the use of a single FFD to represent the

whole system at a level of detail which can be realistically represented on one

diagram. The 'Functions' of this top-level FFD can then be taken in turn and

described on lower level FFDs. This activity of successive lower levels of description

is continued down to the 'primitive' level or lowest level where functions cannot

usefully be described using the diagramming conventions. This point is typically

where, to describe a lower level of detail requires, design decisions have to be

made. At this primitive level the functions are described rigorously with a Function

Specification. The result is therefore a hierarchical set of FFDs sometimes called a

'leveled' FFD set.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 7 of 24

Functional Modeling is not without limitations. Like all models, the functional model is

a representation of a real system (existing or intended) and cannot capture every

detail. The prime limitation is the deliberate avoidance of an explicit time base. The

sequence of functionality is implicit rather than explicit making the tool less useful

when deal with systems that have time based deadlines3. This limitation is more than

compensated for by the benefits the simple tool offers. It does, however, mean that

on occasions several different models may need to be built for different modes of

operation, viewpoints or scenarios. For example it is possible to construct a set of

Functional Flow Diagram that defines the deployment or implementation of a system.

It also possible to construct an operational model that shows who the system intends

to deliver its operational requirement. The two models are definitely linked but it may

not be easily possible to construct a single set of diagrams that shows both modes of

operation.

Rules for Constructing Functional Flow Diagrams (FFDs)

• The top of the diagram set is a diagram that has the system of interest as a

circle (a single function). This diagram captures all the incoming and outgoing

flows (interfaces) from the elements that are in the environment of the system

of interest. These environmental elements are sources or destinations of flows

– terminators – and therefore represented by squares. It is called the

CONTEXT DIAGRAM and defines the boundary of the system. These points

are shown in Figure 4.

Figure 4: features of the CONTEXT DIAGRAM

The CONTEXT DIAGRAM should reflect the operation of the system and it is

worth writing the operational requirement inside the circle representing the

system as well as naming the system.

3 There are extensions to the tool that can be incorporated to help explicitly the time dependent sequence of
functionality.

SYSTEM NAME

Operational

Requirement

Super-

system

Element/

Function

Super-

System

Element/

FunctionSuper-

System

Element/

Function

The System

“bubble” should

be labelled with

the system name.

It is also good

practice to also

write the

Operational

Requirement

Elements which the system interacts

with are captured as terminators. They

should be named as a thing or as a

function (verb noun)

The interfaces between the

system and its terminators

should be captured a flows

which should be given a

meaningful name

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders

Harry Broeders
the function of

Harry Broeders
Process function

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 8 of 24

• The Context Diagram is the 'parent' of a diagram representing the first-level of

detail. That diagram is in turn parent to a number of 'child' diagrams, which

constitute the second-level. There will be as many level two DFDs as there

are functions (bubbles) on the parent. Similarly, level-two diagrams may be

parent to level-three diagrams, and so on.

• Flows on any diagrams must be declared as “things” using a noun-based

description. Flows should never describe an action or activity (i.e. function).

• The first-level diagram is termed DIAGRAM 0. The function bubbles in this

diagram are numbered sequentially from 1 as well as given a name that

describes the function they perform. In deciding the name it is important to

capture it as a verb-noun combination – and action on an object.

• If a function on DIAGRAM 0 contains more detail, a new FFD is constructed

and labeled DIAGRAM N, where N is the function number on DIAGRAM 0.

The lower-level functions on this new FFD are labeled N.1, N.2, N.3, etc. If

any of these lower level functions require further description, again a new FFD

is constructed and the simple numbering sequence continues. Care must be

exercised when modeling systems of systems, where effectively there are a

number of context diagrams and therefore potentially a number of DIAGRAM

0s. In such cases, a “super” CONTEXT DIAGRAM could be constructed and

individual system CONTEXT DIAGRAMS can be numbered accordingly.

• A 'balancing' rule applies, such that the flows into and out of a function on a

parent diagram are equivalent to the net inputs and outputs to and from a

child diagram.

SYSTEM

NAME

Operational

Requirement

EXTERNAL

ELEMENT

X

EXTERNAL

ELEMENT

Y

EXTERNAL

ELEMENT

Z
A

B

C

D

CONTEXT DIAGRAM

FUNCTION

1

FUNCTION

2

FUNCTION

3

FUNCTION

4

A

B

C

D

DIAGRAM 0

The central function in the

Context Diagram is

described in more detail in

a lower level diagram

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 9 of 24

• It is possible to show balanced flows with more detailed representation on the

child diagram than on the parent. In that case the DFDs show parallel

decomposition, both of data and function. The Flow Dictionary must be used

in this instance to confirm that the decomposition is accurate. For example:

In this example, Function 1 has been decomposed into two Functions: 1.1 and

1.2. At the same time dataflow ‘a’ has been decomposed into ‘a1’ and ‘a2’.

The Flow Dictionary will define:

 a = ‘a1’ AND ‘a2’.

• In order to determine the source or destination of flows which enter or leave

any diagram, it is necessary to reference its parent diagram.

• If there is no further decompositioning of a function, then there must be a

Functional Specification for it.

• The bottom of the set consists of a number of FFD that show the lowest level

of function, called the primitive functions.

Approaches for Constructing Functional Flow Diagrams (FFDs)

Constructing a set of Functional Flow Diagrams is often not easy. This not due to the

modelling tool but is a consequence of the inherent complexity of the problem under

consideration. Humans, with familiarity, tend to take things for granted and assume

they are easy – actually they rarely are. Even what are considered to be the simplest

of systems, often under analysis turn out to be surprisingly complex. Constructing

the diagrams will be an iterative process; the construction of lower-level diagrams

often uncovers aspects that will require the modification of higher level parent

diagrams. When modelling a system, existing or intended, it is necessary to be

prepared to modify diagrams (several times).

a

1 b

a1

1.1
c

a2

1.2 b
Parent

Child
Inputs and outputs should balance between

parent and child diagrams. Just as we have

functional decomposition to show increasing

detail, diagrams can also have flow

decomposition with the relationship defined in

the Flow Dictionary

a = a1 AND a2

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 10 of 24

Writing a prescriptive process for constructing a set of Functional Flow Diagrams is

not possible. However, it possible to provide a framework:

• Do consider using white-boards for the early drafting work. The initial diagram

will require several iterations and a white provides a convenient medium.

Furthermore, it is useful if team members can “sketch” out their ideas to show

other team members. If white boards are not available, flip charts are an

alternative, but are less easy to modify. Software tools are available to

capture the outcome, but, in general they are less useful for constructing

diagrams using a team.

• Consider the operational view of the system first. It is possible to create many

different models of any one system (usually based on phases of the life-cycle

of the system). This may well be necessary at some point, but when initiating

a modelling exercise it is best practice to start with the operational view, i.e.

the system has been designed and installed and consideration is aimed at its

day-today operation.

• Start with the CONTEXT DIAGRAM. A team can often quite quickly put

together a CONTEXT DIAGRAM but can either

o Struggle to make progress.

o Endlessly debate aspects of the diagram.

In both situations it is necessary to start constructing some of the lower level

diagrams in order to resolve or re-invigorate the debate.

• The initial drafting of a CONTEXT DIAGRAM should consider every possible

or potential flow. This often results in a very “busy” diagram and there is a

tendency to either ignore flows because they are considered not important. It

is preferable to capture all these flows and rationalise and simplify the

diagram later. Indeed, having captured all the flows the diagram can be

simplified by collecting similar flow together and creating a collective name

which can be detailed in the Flow Dictionary. The grouping of flows is often

easier once a DIAGRAM 0 has been constructed.

• Once a draft CONTEXT DIAGRAM is available consideration should be given

to constructing the associated DIAGRAM 0. This diagram is often critical and

is the one that will receive the most modification and be the most difficult to

draft. The difficulties arise from the need to group lower level functionality in

an attempt to comply with the 7 or fewer functions on the diagram. There are

two basic strategies that can be adopted:

1. Work forwards and backwards through the “problem” to logically deduce the

functionality necessary.

a. Working forwards by consideration of a scenario and start with a key

system input (look for the one that initiates the operational requirement)

and ask what happens to it as a “sequence” of functions that leads to an

output.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 11 of 24

b. Working backwards by starting with a system output (look for the one that

relates to the operational requirement) and determine what function would

deliver this output, then ask what inputs are necessary, then what

functions generate those inputs etc

When working forwards and backwards following the logical sequence of

functionality of results in an initial DIAGRAM 0 that has more than 7

“functions”. Care should be exercised not to reduce the readability of the

diagram by forcing only 7 “functions”. A readable and understandable diagram

with say 9 “functions” is far superior to one with exactly 7 “functions” that is

difficult to follow. Moreover, DIAGRAM 0 frequently has to be modified as a

consequence of constructing the lower level diagrams.

2. If a Viewpoint Analysis has been undertaken, the Viewpoint Structure Chart is

often a good starting point for constructing DIAGRAM 0 – BUT BEWARE

while all the functions identified on a Viewpoint Structure Chart should appear

on the Functional Flow Diagrams., the grouping on the Viewpoint Structure

Chart may not be the best aggregations for developing a simple set of FFDs.

This idea of using the Viewpoint Analysis is shown in Figure 5.

Figure 5: Using The Viewpoint Structure Chart to identify a suitable set of Diagram 0 functions

• As with the CONTEXT DIAGRAM, a team may find itself:

o Struggling to make progress.

o Endlessly debate aspects of the diagram.

In both situations it is necessary to start constructing some of the lower level

diagrams in order to resolve or re-invigorate the debate.

• Once draft DIAGRAM 0 exists, the CONTEXT DIAGRAM can be reviewed for

consistency and modified accordingly. At this point it may also be possible to

rationalize the flows on the CONTEXT DIAGRAM.

GRASS CUTTING SYSTEM

OPERATE LAWN

MOWER

SUPPLY

POWER

SELL &

INSTALL MOWER
SUPPORT

MOWER

SET UP

SYSTEM

INTERFACE

WITH USER

MANAGE

GRASS

SENSE

LAWN

ENVIRONMENT

MOVE

MOWER

COLLECT

GRASS

CUTTINGS

DISPOSE OF

GRASS

CUTTINGS

DETERMINE

POSITION

MONITOR

MOWER

SENSE

OBSTACLES

SENSE

LAWN STATE

MANOEUVRE

MOWER

AVOID

OBSTACLES

NAVIGATE

MOWER

INFORM

USER

RECEIVE

USER INPUT

MANAGE

POWER

REALISE

MOWER

DISPOSE

MOWER

SELL

SYSTEM

SUPPLY

MOWER

INTERACT WITH

MOWER

CUT GRASS

DRIVE

MOWER

LEARN

LAWN

ENVIRONMENT

To use the Viewpoint

Structure Chart to help

draw DIAGRAM 0. Identify

the System of Interest

MONITOR

MOWER

INTERFACE

WITH USER
MANAGE

POWER

MANAGE

GRASS
MOVE

MOWER

SENSE

LAWN

ENVIRONM’T

LEARN

LAWN

ENVIRONM’T

These functions should

be reconciled with the

inputs and outputs of

the CONTEXT

DIAGRAM before

determining the flows

between functions

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders

Harry Broeders
This is not used in PEE30.

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 12 of 24

• Work should now concentrate on constructing the lower level diagrams. In

general, these are easy to construct and it may be expedient for these to be

developed by individuals rather than the team. Common sense is necessary

here, if there are concerns with the DIAGRAM 0 then in may be best to

continue working as a team for some of the diagrams.

The Role and Purpose of the Flow Dictionary

The Flow Dictionary is used to specify precisely what is meant by every flow on

every Functional Flow Diagram. In particular it specifies the elements which are

contained in each flow. In order to manage complexity, at the highest levels, the

flows are best defined as groups of subordinate items. This deconstruction of flows

into more detailed flow elements is continued until it cannot be usefully pursued

further.

The flows can represent different input/output quantities of:

• Materials

• Energy

• Information/data

• Control.

Determining a suitable name for a flow is important in order to make the FFDs easily

comprehendible. Flows labelled “data” or “control signal” are poor choices. Better

choices specify “what data” (e.g. sensed temperature data) and “what control signal”

(e.g. stock replenishment control signal). The dictionary plays an important role in

making sure the flows are clearly understood.

It is also important to remember also that every Flow represents a logical interface

(that could be a real interface in the real world) hence the Flow Dictionary is an initial

specification the potential system interfaces. In order to reduce ambiguity the Flow

Dictionary uses a set of standard notational conventions.

Dictionary Conventions and Notation

The Flow Dictionary makes use of a set of relational operators that allow for the

formal definition of any possible dictionary entry. This restricted set consists of

simple operators which can be used in combination to construct more complex

operators. The set comprises:

IS EQUIVALENT TO

AND

EITHER-OR

ITERATIONS OF

OPTIONAL

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 13 of 24

An example of a Flow Dictionary definition that uses all five is:

Telephone_directory IS EQUIVALENT TO:

ITERATIONS OF:

EITHER: Business_Name OR: Personal_Surname

AND: OPTIONAL: Initials AND: Address AND: Telephone_number

While the use relational operators brings discipline and consistency to the Flow

Dictionary, it is clear from the above example, their use is tedious. Accordingly, a

more concise notation is used in practice that comprises:

Operator Shorthand

IS EQUIVALENT TO =

AND +

EITHER-OR [option1/option2]

INTERATIONS OF {items}

OPTIONAL (item)

In addition to this basic notation set, there are a few other conventions for dictionary

entries. The iteration brackets can be annotated with upper and/or lower limits

e.g 1{XXXX}8 = from one to eight iterations

 8{XXXX]8 = exactly eight iterations

Thus for the telephone directory example

Telephone_Directory = {[Business_Name/Personal_Surname

+(Initials)]+Address+Telephone Number}

The entries in the Flow Dictionary start the process of defining potential or logical

interfaces. It is where the logical interface requirements are captured and recorded

making it an early form of an Interface Control Document (ICD).

The Flow Dictionary is also where many of the non-functional requirements are

captured.

Role and Purpose of the Functional Specification

The purpose of Functional Specifications is to describe in more detail what has to

happen inside a particular function on a Functional Flow Diagram. In essence, the

Functional Specification of a function will define the rules governing the

transformation of flows entering the associated function into flows leaving it. It

defines the policy governing transformation (what has to be done) but not the

method of implementing it (how it is to be done). The Functional Specifications are

also where many of the non-functional requirements, i.e. constraints, are captured.

Thus, the non-functional requirements are related in a structured way to the

functional requirements.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 14 of 24

Only the primitive Functions require a Functional Specification, since higher level

functions are simply the combination of lower level ones. However, there may be

instances where constraints apply at a certain level. In such cases, constructing a

Functional Specification would be valuable.

Functional Specification Conventions and Notation

In order to minimize ambiguity normal English is used to write the Functional

Specifications. Instead, some form of specification language is used. These are

typically based on high-level procedural software languages which make use of a

limited (English) vocabulary and limited syntax. Any suitable high-level language,

such as Ada, will suffice. Using software-based languages does offer the potential of

compilation and execution as a possible verification and validation route.

In the absence of such software-based languages, Structured English can be used.

It, like software-based languages, has a limited vocabulary and syntax. The

vocabulary consists of:

• Imperative English language verbs.

• Terms defined in the Data Dictionary.

• Reserved words for logic formulation.

The syntax of a statement is limited to:

• Procedural sentence.

• Closed-end decision construct.

• Closed-end repetition construct.

or combinations of these. Thus to build any required Functional Specification the

following constructs are used:

Sequence construct

The sequence construct is a list of simple procedural sentences which are to be

applied in the order:

<Procedural sentence 1>

< Procedural sentence 2>

<Procedural sentence 3>

 etc

Decision construct

This consists of two possible constructs:

1) IF <condition>

 <then policy>

 OTHERWISE

 <otherwise Policy>

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 15 of 24

2) <Selection policy>

 CASE 1: case 1 condition>

 <case 1 policy>

 CASE 2: <case 2 condition>

 <case 2 policy>

 etc.

Repetition construct

This consists of a policy which is repeated several times within some specified limit.

There are two constructs:

1) FOR EACH <item>, WHILE <condition>

 DO THE FOLLOWING

 <policy statements>

2) REPEAT THE FOLLOWING:

 <policy statements>

 UNTIL <condition>

Clearly, to describe any particular function will require combinations of the above. It

is possible to describe any function using these constructs resulting in clear, concise

and unambiguous definition.

Box 1 and 2 show example of Functional Specifications written in Structured English:

FUNCTION 2.3 TEND PLANTS

 REPEAT THE FOLLOWING

 INSPECT PLANTED_VEGETABLES

 DETERMINE appropriate action

 CASE 1: PLANTED_VEGETABLES wilting

 water affected PLANTED_VEGETABLES

 CASE 2: PLANTED_VEGETABLES diseased

 determine disease type

 apply appropriate remedy

 CASE 3: animal attack

 determine animal type

 take appropriate action

 CASE 4: PLANTED_VEGETABLES satisfactory

 UNTIL PLANTED_VEGETABLES ripe

Box 1: Example Functional Specification for the Function “TEND PLANTS”

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 16 of 24

FUNCTION 2.1 ACTIVATE MOWER

IF ACTIVITATION on

 DO THE FOLLOWING

 EXECUTE SELF_TEST

 IF SELF_TEST Failed

 GENERATE USER_MESSAGE

 DELIVER USER_MESSAGE

 ELSE IF SELF_TEST ok

 GENERATE USER_MESSAGE

 DELIVER USER_MESSAGE

 ACTIVATE NAVIGATION

 END

 UNTIL POWER OFF

Box 2: Example Functional Specification for the function “ACTIVATE MOWER”

The writing of Functional Specifications can provide guidance as to whether the

functional decomposition has gone far enough or conversely too far. The basic rule

of thumb is that if a Functional Specification exceeds one side of A4 paper, consider

a further decomposition in the associated Functional Flow Diagram. On the other

hand, if a Functional Specification is less than ¼ page of A4 consider grouping with

another function. Again, common sense is important here; the overall purpose of

Functional Modeling is clarity of understanding.

What Goes Wrong: The limitations of Functional Modelling

Functional Modelling is a very simple but powerful tool for exploring the requirements

of a proposed system or analysing an existing one. Like ALL modelling methods, it

has limitations. The following outline these limitations and where possible propose

approaches to minimise their effect.

• Functional Flow Diagrams are abstract models that focus on the system’s

functionality. The resulting model is not a physically related model and may

appear to not to reflect current thinking or practice. Teams, particularly

inexperienced teams, try to construct a set of diagrams that reflect the likely

physical manifestation of the system. This can lead to inconsistencies and

difficulty in capturing all the requirements. It can also lead to a biased model

that dictates a future architecture. A classic example is the functionality that is

concerned with the diagnosis of faults or prognosis of incipient failures. Both

functions are the responsibility of the system support system (i.e. the system

that will support the system of interest), however, when implemented the

functionality may reside in the system of interest. When constructing a model

of either system introduces the debate as to where the functionality should be

captured.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 17 of 24

• To cover the complete operation of a system may require several functional

Flow Diagram sets. The modelling method does not lend itself to

simultaneously capture multiple modes of operation. Many systems have

several different modes of operation (often due to dealing with different

scenarios). For example a system may have to be deployed before it is

operated, yet constructing a single set of FFDs, would be difficult to achieve.

In such cases two sets, one for deploying the system and one for operating

the system may best capture the necessary detail. In this case a third set may

also be possible that shows the relationships between the two life-cycle

modes.

• Modelling architectural functionality is difficult using Functional Flow

Diagrams. Product based systems often require some form of casing or

chassis. These items do indeed possess functionality, they “protect”,

“support”, “align”, etc, but this type of functionality is difficult to capture on a

model that is typically operationally based (i.e. a model that is concerned with

the functionality necessary for the system to achieve it operational

requirement). It is possible to include such architectural functionality, but the

model is often too abstract and often causes more issues that it solves. In

such cases the best course of action is to recognise the limitations of the

model and proceed with the operational functionality only. The use of methods

to identify and define the architectural functionality is of course essential.

Success Criteria

The following list represents a set of criteria that have been found to be useful when

modelling a system. Ignore them at your peril!

• Team size between five and eight.

• Team constitution covers system life cycle and potential technology.

• Use an experience independent facilitator.

• Plan for a series of half-day events that:

o Event 1: Draft out Context Diagram and DIAGRAM 0. This is best done on

a large whyte board or equivalent. Be wary of constructing the diagrams

directly in software! People should be encouraged to draw out their

understanding – if they are intimidated by not being able to drive the

software they will agree too readily with a team member view rather than

explore their view.

If a Viewpoint Analysis has been undertaken previously considered using

this as a “springboard” for the DIAGRAM 0. If time consider some of the

lower level diagrams.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 18 of 24

Following Event 1 capture the draft diagrams electronically. Attempt to

change the layout of functions and terminators to simplify the diagrams.

Create, electronically, a draft Flow Dictionary. Attempt to be a precise as

possible with the flow descriptions. Although it is unlikely that Functional

Specifications can created after event 1, it is very worthwhile defining the

functions that have been indentified and also what sub-functions they may

contain.

o Event 2: Review the draft Context Diagram and DIAGRAM 0. Determine

which lower level Functional Flow Diagrams need construction as a team

and which can be performed by individuals. Begin to construct the lower

level FFDs, modifying the higher level diagrams as the work proceeds.

Attempt to construct all diagrams deemed necessary as a team and

allocate the lower level diagrams to individuals for completion.

Following Event 2 ensure all diagrams are updated and draft diagrams are

captured electronically. Send copies of the diagrams to individual team

members for comment and review together with deadlines for the

submission of draft lowest level diagrams. Request that the Flow dictionary

and Functional definitions be updated.

o Event 3: Assemble the team and review the diagram set by walkthrough

with, ideally the customer, or an independent reviewer.

Illustrative Examples

One of the difficult aspects of Functional Modelling to capture in a text based

description is the iterative nature of model development. To create a “good” set of

Functional Flow Diagrams can take several attempts (iterations). Moreover, the final

result is often relatively simple and almost obvious and hides the amount of effort

expended in its creation. The following aims to show the iterative - almost

exploratory - approach by describing the step by creation of a functional model.

In order to make the example meaningful to any reader the situation to be modelled

is a familiar one - the domestic kitchen. It has been chosen for many reasons. It is a

something that almost every person will have used. It has been chosen because

many may not view it as a system – but it is. Also it may be considered to be too

trivial – it is not. Indeed, the modelling ubiquitous systems that are often taken for

granted will develop an individual’s modelling skills immeasurably.

Starting a model is often the hardest thing! As humans we have a desire to “get it

right” and will even shy away from situations in which we are unlikely to get it right

first time. Functional Modelling often inflicts this dilemma. The solution is to “have a

go”. Figure 6 show the first draft of a CONTEXT DIAGRAM for the operation of a

domestic kitchen. It has the following Characteristics:

• It is wrong; it was drawn knowing it would be wrong.

• It is not complete.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 19 of 24

However, it has captured my thoughts on paper that I can review and show another

human to build a second better version.

Figure 6: First Draft of a CONTEXT DIAGRAM of the Operation of a Domestic Kitchen

In drawing Figure 6, a number of decisions were taken in order to progress. The first

was to decide exactly what aspect of the kitchen to model. Like all systems, a

kitchen has a life-cycle, with a number of distinct phases; Design, Build, Operate and

Maintain, is one possible breakdown as shown in Figure 74.

Figure 7: Life-Cycle of a Domestic Kitchen

4 There are many other possible life-cycle views depending on the level of detail sought or desired. The one
presented here represents the basic minimum set of phases.

DESIGN
KITCHEN

BUILD
KITCHEN

OPERATE
KITCHEN

MAINTAIN
KITCHEN

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 20 of 24

It follows from Figure 7 that is possible to model the complete life cycle of the

kitchen. It is also possible to construct models for each of the four phases identified.

This in is a general observation: if a complete understanding is required, several

models will have to be developed. Often which aspect to model depends upon the

viewpoint? If I was a Kitchen Installer, then the focus would be on the box “BUILD

KITCHEN”. If I ran a repair business then the “MAINTAIN KITCHEN” would be

appropriate. Interesting, however, the “OPERATE KITCHEN” is critical to all of the

life-cycle phases. If I am a kitchen designer, builder, or maintainer, I have to know

something about the prime system: the kitchen itself. Accordingly, Figure 6 the first

draft CONTEXT DIAGRAM is concerned with the operation of the kitchen.

Life cycles are not the only reason for necessitating multiple models of a system.

Many systems are moded. They have several modes of operation, for example:

Deployment, Start up, Operation, Shut down, etc. When attempting to model such

systems, a single “all-encompassing” model is often not possible. In such cases it is

best to identify the modes of operation and construct a model for each mode of

operation. A good example here is of an Autonomous Lawn Mower. The operational

requirement of this system is to mow a lawn without ant human intervention

excepting initial set up. As such when not mowing the lawn it will have to be stored in

some way, it will have to transport itself to and from the store to the lawn and finally

cut the grass on the lawn. Constructing a single functional model for these mo des of

operation is not impossible but it will lead to a highly abstract model. In such

instances it is easier to construct a model for each mode of operation thereby

requiring several CONTEXT DIAGRAMs.

Returning to Figure 6, there are several features worthy of note at this point. In no

particular order:

• The “bubble” on the CONTEXT DIAGRAM is labelled as verb-noun

description – OPERATE DOMESTIC KITCHEN SYSTEM. The alternative

label could be “Domestic Kitchen” which is fine but gives the impression it is a

physical object rather than the more abstract function. Best practice dictates

the pedantic use of verb-noun descriptions.

• To reinforce the functional nature of the modelling approach, the “bubble” is

also annotated with the Operational Requirement of the system.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 21 of 24

• It is an abstract representation not a physical model. For example the USER

is an integral element of the system and will therefore have multiple instances

in the model (for example, one of the functions of the kitchen is “prepare

meals” this is highly likely to involve the user in some way). The USER also at

times is external to the system. For example on Figure 6 there is the following:

Here the USER has been represented as a Terminator, i.e. external to the system. In

fact this part of the model is capturing the situation of the USER checking the stock

levels to prepare a “shopping list” in order to go shopping to replenish the stock.

This, in itself is an interesting view because implicitly the decision has been made as

to how something is to be done. A good functional model should not do this – but by

capturing this viewpoint now will lead to a better model later.

Drafting a better CONTEXT DIAGRAM often requires knowledge of the next level of

detail. In fact, a key modelling skill is knowing when to stop working on a higher level

diagram and begin working on the lower level diagrams. Experience shows that if

team members end up in circular debate about how to model an aspect it is perhaps

time to consider the lower levels. Equally, is progress on a particular level slows too

much, starting the lower level diagrams is in order. Figure 8 show the first draft of a

DIAGRAM 0 for the Domestic Kitchen example.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 22 of 24

Figure 8: First Draft DIAGRAM 0 for the Domestic Kitchen

Drawing this diagram helped to clear up the issue raised on the draft CONTEXT

DIAGRAM since it became clear that a better output of the MANAGE FOOD ITEMS

function would be the SHOPPING LIST rather that the STOCK LEVELS. This was

based initially on almost a intuitive feeling but confirmed by constructing a draft

DIAGRAM 1 and simultaneously developing a Functional Specification for the

MANAGE FOOD ITEMS. Technically, Functional Specification are only constructed

for the lowest level of functionality – the so called primitive level – but on occasions it

is highly useful to develop ones for higher level functionality. This situation is shown

in Figure 9, which comprises a outline Functional Specification of the MANAGE

FOOD ITEMS function and the corresponding lower level DIAGRAM 1.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders

Harry Broeders

Harry Broeders

Harry Broeders
Use singular nouns.

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 23 of 24

Figure 9: Outline Functional Specification for the MANAGE FOOD ITEMS function and associated
DIAGRAM 1

Have explored the lower levels it is now possible to go back and modify the higher

level Diagrams.

Another “fix” on the draft DIAGRAM 0 concerns function 7: PROVIDE HEAT &

LIGHT. This particular function technically should output HEAT and LIGHT to all the

other functions. However, all this would accomplish is to add complexity for no

benefit. All models are wrong but some are useful5 - the purpose of constructing

functional models is to help clarify our thinking and adding pedantry detail does

achieve this.

5 This is quote from the great British statistician George Box

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/
Harry Broeders
Use singular nouns.

© Stuart Burge 2011: This is a draft document. If you have any comments please contact sburge@burgehugheswalsh.co.uk

Tel: 01788 550015 | E-Mail: enquiries@burgehugheswalsh.co.uk | Web: www.burgehugheswalsh.co.uk
Burge Hughes Walsh – First Floor – 6 Allerton Road - Rugby - Warwickshire - CV23 0UZ

Page 24 of 24

The Diagrams form an important part of the overall model but it is also important to

compile the Flow Dictionary and generate the Functional Specifications. These

should not be left but discussed and agreed as the diagramming proceeds. Quite

simply because doing so will avoid later arguments over precisely what a function

does and what is meant by a particular flow. Indeed, the whole purpose of functional

modelling is for the team to arrive at a common understanding and collective view.

mailto:enquiries@burgehugheswalsh.co.uk
http://www.burgehugheswalsh.co.uk/

